# 297edo

 ← 296edo 297edo 298edo →
Prime factorization 33 × 11
Step size 4.0404¢
Fifth 174\297 (703.03¢) (→58\99)
Semitones (A1:m2) 30:21 (121.2¢ : 84.85¢)
Consistency limit 7
Distinct consistency limit 7

297 equal divisions of the octave (abbreviated 297edo or 297ed2), also called 297-tone equal temperament (297tet) or 297 equal temperament (297et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 297 equal parts of about 4.04 ¢ each. Each step represents a frequency ratio of 21/297, or the 297th root of 2.

297 = 3 × 99, and 297edo is enfactored in the 7-limit with the same tuning as 99edo. It is only consistent in the 7-odd-limit, unlike 99edo. In the 11-limit, the 297e val is the most reasonable, and it corrects 99edo's harmonic 11 somewhat closer to just, tempering out 4000/3993.

The 297cddee val is a tuning for the musneb temperament.

### Odd harmonics

Approximation of odd harmonics in 297edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.08 +1.57 +0.87 -1.89 -1.82 -0.12 -1.40 +0.10 +1.48 +1.95 -2.01
Relative (%) +26.6 +38.7 +21.6 -46.8 -45.1 -3.1 -34.7 +2.4 +36.6 +48.2 -49.8
Steps
(reduced)
471
(174)
690
(96)
834
(240)
941
(50)
1027
(136)
1099
(208)
1160
(269)
1214
(26)
1262
(74)
1305
(117)
1343
(155)

### Subsets and supersets

Since 297 factors into 33 × 11, 297edo has subset edos 3, 9, 11, 27, 33, and 99.