297edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 296edo297edo298edo →
Prime factorization 33 × 11
Step size 4.0404¢
Fifth 174\297 (703.03¢) (→58\99)
Semitones (A1:m2) 30:21 (121.2¢ : 84.85¢)
Consistency limit 7
Distinct consistency limit 7

297 equal divisions of the octave (297edo), or 297-tone equal temperament (297tet), 297 equal temperament (297et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 297 equal parts of about 4.04 ¢ each.

Theory

297edo is consistent in the 7-limit, and being a multiple of 9, it tempers out the tritrizo comma. 297cddee val is a tuning for the musneb temperament.

Harmonics

Approximation of odd harmonics in 297edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +1.08 +1.57 +0.87 -1.89 -1.82 -0.12 -1.40 +0.10 +1.48 +1.95 -2.01
relative (%) +27 +39 +22 -47 -45 -3 -35 +2 +37 +48 -50
Steps
(reduced)
471
(174)
690
(96)
834
(240)
941
(50)
1027
(136)
1099
(208)
1160
(269)
1214
(26)
1262
(74)
1305
(117)
1343
(155)