19L 8s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLsLLsLLLsLLsLLsLLLsLLsLLs
sLLsLLsLLLsLLsLLsLLLsLLsLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
17\27 to 12\19 (755.6¢ to 757.9¢)
Dark
7\19 to 10\27 (442.1¢ to 444.4¢)
TAMNAMS information
Descends from
3L 5s
Ancestor's step ratio range
4:3 to 3:2 (parasoft)
Related MOS scales
Parent
8L 11s
Sister
8L 19s
Daughters
27L 19s, 19L 27s
Neutralized
11L 16s
2-Flought
46L 8s, 19L 35s
Equal tunings
Equalized (L:s = 1:1)
17\27 (755.6¢)
Supersoft (L:s = 4:3)
63\100 (756.0¢)
Soft (L:s = 3:2)
46\73 (756.2¢)
Semisoft (L:s = 5:3)
75\119 (756.3¢)
Basic (L:s = 2:1)
29\46 (756.5¢)
Semihard (L:s = 5:2)
70\111 (756.8¢)
Hard (L:s = 3:1)
41\65 (756.9¢)
Superhard (L:s = 4:1)
53\84 (757.1¢)
Collapsed (L:s = 1:0)
12\19 (757.9¢)
↖ 18L 7s | ↑ 19L 7s | 20L 7s ↗ |
← 18L 8s | 19L 8s | 20L 8s → |
↙ 18L 9s | ↓ 19L 9s | 20L 9s ↘ |
┌╥╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬┐ │║║║│║║│║║║│║║│║║│║║║│║║│║║││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLsLLLsLLsLLsLLLsLLsLLL
19L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 8 small steps, repeating every octave. 19L 8s is a great-grandchild scale of 3L 5s, expanding it by 19 tones. Generators that produce this scale range from 755.6¢ to 757.9¢, or from 442.1¢ to 444.4¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
26|0 | 1 | LLLsLLsLLLsLLsLLsLLLsLLsLLs |
25|1 | 18 | LLLsLLsLLsLLLsLLsLLLsLLsLLs |
24|2 | 8 | LLLsLLsLLsLLLsLLsLLsLLLsLLs |
23|3 | 25 | LLsLLLsLLsLLLsLLsLLsLLLsLLs |
22|4 | 15 | LLsLLLsLLsLLsLLLsLLsLLLsLLs |
21|5 | 5 | LLsLLLsLLsLLsLLLsLLsLLsLLLs |
20|6 | 22 | LLsLLsLLLsLLsLLLsLLsLLsLLLs |
19|7 | 12 | LLsLLsLLLsLLsLLsLLLsLLsLLLs |
18|8 | 2 | LLsLLsLLLsLLsLLsLLLsLLsLLsL |
17|9 | 19 | LLsLLsLLsLLLsLLsLLLsLLsLLsL |
16|10 | 9 | LLsLLsLLsLLLsLLsLLsLLLsLLsL |
15|11 | 26 | LsLLLsLLsLLLsLLsLLsLLLsLLsL |
14|12 | 16 | LsLLLsLLsLLsLLLsLLsLLLsLLsL |
13|13 | 6 | LsLLLsLLsLLsLLLsLLsLLsLLLsL |
12|14 | 23 | LsLLsLLLsLLsLLLsLLsLLsLLLsL |
11|15 | 13 | LsLLsLLLsLLsLLsLLLsLLsLLLsL |
10|16 | 3 | LsLLsLLLsLLsLLsLLLsLLsLLsLL |
9|17 | 20 | LsLLsLLsLLLsLLsLLLsLLsLLsLL |
8|18 | 10 | LsLLsLLsLLLsLLsLLsLLLsLLsLL |
7|19 | 27 | sLLLsLLsLLLsLLsLLsLLLsLLsLL |
6|20 | 17 | sLLLsLLsLLsLLLsLLsLLLsLLsLL |
5|21 | 7 | sLLLsLLsLLsLLLsLLsLLsLLLsLL |
4|22 | 24 | sLLsLLLsLLsLLLsLLsLLsLLLsLL |
3|23 | 14 | sLLsLLLsLLsLLsLLLsLLsLLLsLL |
2|24 | 4 | sLLsLLLsLLsLLsLLLsLLsLLsLLL |
1|25 | 21 | sLLsLLsLLLsLLsLLLsLLsLLsLLL |
0|26 | 11 | sLLsLLsLLLsLLsLLsLLLsLLsLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 44.4¢ |
Major 1-mosstep | M1ms | L | 44.4¢ to 63.2¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2¢ to 88.9¢ |
Major 2-mosstep | M2ms | 2L | 88.9¢ to 126.3¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 126.3¢ to 133.3¢ |
Major 3-mosstep | M3ms | 3L | 133.3¢ to 189.5¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 126.3¢ to 177.8¢ |
Major 4-mosstep | M4ms | 3L + s | 177.8¢ to 189.5¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 189.5¢ to 222.2¢ |
Major 5-mosstep | M5ms | 4L + s | 222.2¢ to 252.6¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 252.6¢ to 266.7¢ |
Major 6-mosstep | M6ms | 5L + s | 266.7¢ to 315.8¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 252.6¢ to 311.1¢ |
Major 7-mosstep | M7ms | 5L + 2s | 311.1¢ to 315.8¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 5L + 3s | 315.8¢ to 355.6¢ |
Major 8-mosstep | M8ms | 6L + 2s | 355.6¢ to 378.9¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 6L + 3s | 378.9¢ to 400.0¢ |
Major 9-mosstep | M9ms | 7L + 2s | 400.0¢ to 442.1¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 7L + 3s | 442.1¢ to 444.4¢ |
Augmented 10-mosstep | A10ms | 8L + 2s | 444.4¢ to 505.3¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 7L + 4s | 442.1¢ to 488.9¢ |
Major 11-mosstep | M11ms | 8L + 3s | 488.9¢ to 505.3¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 8L + 4s | 505.3¢ to 533.3¢ |
Major 12-mosstep | M12ms | 9L + 3s | 533.3¢ to 568.4¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 9L + 4s | 568.4¢ to 577.8¢ |
Major 13-mosstep | M13ms | 10L + 3s | 577.8¢ to 631.6¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 9L + 5s | 568.4¢ to 622.2¢ |
Major 14-mosstep | M14ms | 10L + 4s | 622.2¢ to 631.6¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 10L + 5s | 631.6¢ to 666.7¢ |
Major 15-mosstep | M15ms | 11L + 4s | 666.7¢ to 694.7¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 11L + 5s | 694.7¢ to 711.1¢ |
Major 16-mosstep | M16ms | 12L + 4s | 711.1¢ to 757.9¢ | |
17-mosstep | Diminished 17-mosstep | d17ms | 11L + 6s | 694.7¢ to 755.6¢ |
Perfect 17-mosstep | P17ms | 12L + 5s | 755.6¢ to 757.9¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 12L + 6s | 757.9¢ to 800.0¢ |
Major 18-mosstep | M18ms | 13L + 5s | 800.0¢ to 821.1¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 13L + 6s | 821.1¢ to 844.4¢ |
Major 19-mosstep | M19ms | 14L + 5s | 844.4¢ to 884.2¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 14L + 6s | 884.2¢ to 888.9¢ |
Major 20-mosstep | M20ms | 15L + 5s | 888.9¢ to 947.4¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 14L + 7s | 884.2¢ to 933.3¢ |
Major 21-mosstep | M21ms | 15L + 6s | 933.3¢ to 947.4¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 15L + 7s | 947.4¢ to 977.8¢ |
Major 22-mosstep | M22ms | 16L + 6s | 977.8¢ to 1010.5¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 16L + 7s | 1010.5¢ to 1022.2¢ |
Major 23-mosstep | M23ms | 17L + 6s | 1022.2¢ to 1073.7¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 16L + 8s | 1010.5¢ to 1066.7¢ |
Major 24-mosstep | M24ms | 17L + 7s | 1066.7¢ to 1073.7¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 17L + 8s | 1073.7¢ to 1111.1¢ |
Major 25-mosstep | M25ms | 18L + 7s | 1111.1¢ to 1136.8¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 18L + 8s | 1136.8¢ to 1155.6¢ |
Major 26-mosstep | M26ms | 19L + 7s | 1155.6¢ to 1200.0¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 19L + 8s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
17\27 | 755.556 | 444.444 | 1:1 | 1.000 | Equalized 19L 8s | |||||
97\154 | 755.844 | 444.156 | 6:5 | 1.200 | ||||||
80\127 | 755.906 | 444.094 | 5:4 | 1.250 | ||||||
143\227 | 755.947 | 444.053 | 9:7 | 1.286 | ||||||
63\100 | 756.000 | 444.000 | 4:3 | 1.333 | Supersoft 19L 8s | |||||
172\273 | 756.044 | 443.956 | 11:8 | 1.375 | ||||||
109\173 | 756.069 | 443.931 | 7:5 | 1.400 | ||||||
155\246 | 756.098 | 443.902 | 10:7 | 1.429 | ||||||
46\73 | 756.164 | 443.836 | 3:2 | 1.500 | Soft 19L 8s | |||||
167\265 | 756.226 | 443.774 | 11:7 | 1.571 | ||||||
121\192 | 756.250 | 443.750 | 8:5 | 1.600 | ||||||
196\311 | 756.270 | 443.730 | 13:8 | 1.625 | ||||||
75\119 | 756.303 | 443.697 | 5:3 | 1.667 | Semisoft 19L 8s | |||||
179\284 | 756.338 | 443.662 | 12:7 | 1.714 | ||||||
104\165 | 756.364 | 443.636 | 7:4 | 1.750 | ||||||
133\211 | 756.398 | 443.602 | 9:5 | 1.800 | ||||||
29\46 | 756.522 | 443.478 | 2:1 | 2.000 | Basic 19L 8s Scales with tunings softer than this are proper | |||||
128\203 | 756.650 | 443.350 | 9:4 | 2.250 | ||||||
99\157 | 756.688 | 443.312 | 7:3 | 2.333 | ||||||
169\268 | 756.716 | 443.284 | 12:5 | 2.400 | ||||||
70\111 | 756.757 | 443.243 | 5:2 | 2.500 | Semihard 19L 8s | |||||
181\287 | 756.794 | 443.206 | 13:5 | 2.600 | ||||||
111\176 | 756.818 | 443.182 | 8:3 | 2.667 | ||||||
152\241 | 756.846 | 443.154 | 11:4 | 2.750 | ||||||
41\65 | 756.923 | 443.077 | 3:1 | 3.000 | Hard 19L 8s | |||||
135\214 | 757.009 | 442.991 | 10:3 | 3.333 | ||||||
94\149 | 757.047 | 442.953 | 7:2 | 3.500 | ||||||
147\233 | 757.082 | 442.918 | 11:3 | 3.667 | ||||||
53\84 | 757.143 | 442.857 | 4:1 | 4.000 | Superhard 19L 8s | |||||
118\187 | 757.219 | 442.781 | 9:2 | 4.500 | ||||||
65\103 | 757.282 | 442.718 | 5:1 | 5.000 | ||||||
77\122 | 757.377 | 442.623 | 6:1 | 6.000 | ||||||
12\19 | 757.895 | 442.105 | 1:0 | → ∞ | Collapsed 19L 8s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |