19L 8s
Jump to navigation
Jump to search
↖ 18L 7s | ↑ 19L 7s | 20L 7s ↗ |
← 18L 8s | 19L 8s | 20L 8s → |
↙ 18L 9s | ↓ 19L 9s | 20L 9s ↘ |
┌╥╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬╥╥╥┬╥╥┬╥╥┬┐ │║║║│║║│║║║│║║│║║│║║║│║║│║║││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLsLLsLLLsLLsLLsLLLsLLsLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
19L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 8 small steps, repeating every octave. 19L 8s is a great-grandchild scale of 3L 5s, expanding it by 19 tones. Generators that produce this scale range from 755.6 ¢ to 757.9 ¢, or from 442.1 ¢ to 444.4 ¢. This scale is primarily associated with sensi and variants thereof, especially the more accurate sensipent extensions such as sensible and sendai.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 44.4 ¢ |
Major 1-mosstep | M1ms | L | 44.4 ¢ to 63.2 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2 ¢ to 88.9 ¢ |
Major 2-mosstep | M2ms | 2L | 88.9 ¢ to 126.3 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 126.3 ¢ to 133.3 ¢ |
Major 3-mosstep | M3ms | 3L | 133.3 ¢ to 189.5 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 126.3 ¢ to 177.8 ¢ |
Major 4-mosstep | M4ms | 3L + s | 177.8 ¢ to 189.5 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 189.5 ¢ to 222.2 ¢ |
Major 5-mosstep | M5ms | 4L + s | 222.2 ¢ to 252.6 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 252.6 ¢ to 266.7 ¢ |
Major 6-mosstep | M6ms | 5L + s | 266.7 ¢ to 315.8 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 252.6 ¢ to 311.1 ¢ |
Major 7-mosstep | M7ms | 5L + 2s | 311.1 ¢ to 315.8 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 5L + 3s | 315.8 ¢ to 355.6 ¢ |
Major 8-mosstep | M8ms | 6L + 2s | 355.6 ¢ to 378.9 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 6L + 3s | 378.9 ¢ to 400.0 ¢ |
Major 9-mosstep | M9ms | 7L + 2s | 400.0 ¢ to 442.1 ¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 7L + 3s | 442.1 ¢ to 444.4 ¢ |
Augmented 10-mosstep | A10ms | 8L + 2s | 444.4 ¢ to 505.3 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 7L + 4s | 442.1 ¢ to 488.9 ¢ |
Major 11-mosstep | M11ms | 8L + 3s | 488.9 ¢ to 505.3 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 8L + 4s | 505.3 ¢ to 533.3 ¢ |
Major 12-mosstep | M12ms | 9L + 3s | 533.3 ¢ to 568.4 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 9L + 4s | 568.4 ¢ to 577.8 ¢ |
Major 13-mosstep | M13ms | 10L + 3s | 577.8 ¢ to 631.6 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 9L + 5s | 568.4 ¢ to 622.2 ¢ |
Major 14-mosstep | M14ms | 10L + 4s | 622.2 ¢ to 631.6 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 10L + 5s | 631.6 ¢ to 666.7 ¢ |
Major 15-mosstep | M15ms | 11L + 4s | 666.7 ¢ to 694.7 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 11L + 5s | 694.7 ¢ to 711.1 ¢ |
Major 16-mosstep | M16ms | 12L + 4s | 711.1 ¢ to 757.9 ¢ | |
17-mosstep | Diminished 17-mosstep | d17ms | 11L + 6s | 694.7 ¢ to 755.6 ¢ |
Perfect 17-mosstep | P17ms | 12L + 5s | 755.6 ¢ to 757.9 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 12L + 6s | 757.9 ¢ to 800.0 ¢ |
Major 18-mosstep | M18ms | 13L + 5s | 800.0 ¢ to 821.1 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 13L + 6s | 821.1 ¢ to 844.4 ¢ |
Major 19-mosstep | M19ms | 14L + 5s | 844.4 ¢ to 884.2 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 14L + 6s | 884.2 ¢ to 888.9 ¢ |
Major 20-mosstep | M20ms | 15L + 5s | 888.9 ¢ to 947.4 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 14L + 7s | 884.2 ¢ to 933.3 ¢ |
Major 21-mosstep | M21ms | 15L + 6s | 933.3 ¢ to 947.4 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 15L + 7s | 947.4 ¢ to 977.8 ¢ |
Major 22-mosstep | M22ms | 16L + 6s | 977.8 ¢ to 1010.5 ¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 16L + 7s | 1010.5 ¢ to 1022.2 ¢ |
Major 23-mosstep | M23ms | 17L + 6s | 1022.2 ¢ to 1073.7 ¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 16L + 8s | 1010.5 ¢ to 1066.7 ¢ |
Major 24-mosstep | M24ms | 17L + 7s | 1066.7 ¢ to 1073.7 ¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 17L + 8s | 1073.7 ¢ to 1111.1 ¢ |
Major 25-mosstep | M25ms | 18L + 7s | 1111.1 ¢ to 1136.8 ¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 18L + 8s | 1136.8 ¢ to 1155.6 ¢ |
Major 26-mosstep | M26ms | 19L + 7s | 1155.6 ¢ to 1200.0 ¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 19L + 8s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
45 | Augmented 9-mosdegree | A9md |
44 | Augmented 19-mosdegree | A19md |
43 | Augmented 2-mosdegree | A2md |
42 | Augmented 12-mosdegree | A12md |
41 | Augmented 22-mosdegree | A22md |
40 | Augmented 5-mosdegree | A5md |
39 | Augmented 15-mosdegree | A15md |
38 | Augmented 25-mosdegree | A25md |
37 | Augmented 8-mosdegree | A8md |
36 | Augmented 18-mosdegree | A18md |
35 | Augmented 1-mosdegree | A1md |
34 | Augmented 11-mosdegree | A11md |
33 | Augmented 21-mosdegree | A21md |
32 | Augmented 4-mosdegree | A4md |
31 | Augmented 14-mosdegree | A14md |
30 | Augmented 24-mosdegree | A24md |
29 | Augmented 7-mosdegree | A7md |
28 | Augmented 17-mosdegree | A17md |
27 | Augmented 0-mosdegree | A0md |
26 | Augmented 10-mosdegree | A10md |
25 | Major 20-mosdegree | M20md |
24 | Major 3-mosdegree | M3md |
23 | Major 13-mosdegree | M13md |
22 | Major 23-mosdegree | M23md |
21 | Major 6-mosdegree | M6md |
20 | Major 16-mosdegree | M16md |
19 | Major 26-mosdegree | M26md |
18 | Major 9-mosdegree | M9md |
17 | Major 19-mosdegree | M19md |
16 | Major 2-mosdegree | M2md |
15 | Major 12-mosdegree | M12md |
14 | Major 22-mosdegree | M22md |
13 | Major 5-mosdegree | M5md |
12 | Major 15-mosdegree | M15md |
11 | Major 25-mosdegree | M25md |
10 | Major 8-mosdegree | M8md |
9 | Major 18-mosdegree | M18md |
8 | Major 1-mosdegree | M1md |
7 | Major 11-mosdegree | M11md |
6 | Major 21-mosdegree | M21md |
5 | Major 4-mosdegree | M4md |
4 | Major 14-mosdegree | M14md |
3 | Major 24-mosdegree | M24md |
2 | Major 7-mosdegree | M7md |
1 | Perfect 17-mosdegree | P17md |
0 | Perfect 0-mosdegree Perfect 27-mosdegree |
P0md P27md |
−1 | Perfect 10-mosdegree | P10md |
−2 | Minor 20-mosdegree | m20md |
−3 | Minor 3-mosdegree | m3md |
−4 | Minor 13-mosdegree | m13md |
−5 | Minor 23-mosdegree | m23md |
−6 | Minor 6-mosdegree | m6md |
−7 | Minor 16-mosdegree | m16md |
−8 | Minor 26-mosdegree | m26md |
−9 | Minor 9-mosdegree | m9md |
−10 | Minor 19-mosdegree | m19md |
−11 | Minor 2-mosdegree | m2md |
−12 | Minor 12-mosdegree | m12md |
−13 | Minor 22-mosdegree | m22md |
−14 | Minor 5-mosdegree | m5md |
−15 | Minor 15-mosdegree | m15md |
−16 | Minor 25-mosdegree | m25md |
−17 | Minor 8-mosdegree | m8md |
−18 | Minor 18-mosdegree | m18md |
−19 | Minor 1-mosdegree | m1md |
−20 | Minor 11-mosdegree | m11md |
−21 | Minor 21-mosdegree | m21md |
−22 | Minor 4-mosdegree | m4md |
−23 | Minor 14-mosdegree | m14md |
−24 | Minor 24-mosdegree | m24md |
−25 | Minor 7-mosdegree | m7md |
−26 | Diminished 17-mosdegree | d17md |
−27 | Diminished 27-mosdegree | d27md |
−28 | Diminished 10-mosdegree | d10md |
−29 | Diminished 20-mosdegree | d20md |
−30 | Diminished 3-mosdegree | d3md |
−31 | Diminished 13-mosdegree | d13md |
−32 | Diminished 23-mosdegree | d23md |
−33 | Diminished 6-mosdegree | d6md |
−34 | Diminished 16-mosdegree | d16md |
−35 | Diminished 26-mosdegree | d26md |
−36 | Diminished 9-mosdegree | d9md |
−37 | Diminished 19-mosdegree | d19md |
−38 | Diminished 2-mosdegree | d2md |
−39 | Diminished 12-mosdegree | d12md |
−40 | Diminished 22-mosdegree | d22md |
−41 | Diminished 5-mosdegree | d5md |
−42 | Diminished 15-mosdegree | d15md |
−43 | Diminished 25-mosdegree | d25md |
−44 | Diminished 8-mosdegree | d8md |
−45 | Diminished 18-mosdegree | d18md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | |||
26|0 | 1 | LLLsLLsLLLsLLsLLsLLLsLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
25|1 | 18 | LLLsLLsLLsLLLsLLsLLLsLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
24|2 | 8 | LLLsLLsLLsLLLsLLsLLsLLLsLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
23|3 | 25 | LLsLLLsLLsLLLsLLsLLsLLLsLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
22|4 | 15 | LLsLLLsLLsLLsLLLsLLsLLLsLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
21|5 | 5 | LLsLLLsLLsLLsLLLsLLsLLsLLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. |
20|6 | 22 | LLsLLsLLLsLLsLLLsLLsLLsLLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. |
19|7 | 12 | LLsLLsLLLsLLsLLsLLLsLLsLLLs | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. |
18|8 | 2 | LLsLLsLLLsLLsLLsLLLsLLsLLsL | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
17|9 | 19 | LLsLLsLLsLLLsLLsLLLsLLsLLsL | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
16|10 | 9 | LLsLLsLLsLLLsLLsLLsLLLsLLsL | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
15|11 | 26 | LsLLLsLLsLLLsLLsLLsLLLsLLsL | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
14|12 | 16 | LsLLLsLLsLLsLLLsLLsLLLsLLsL | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. |
13|13 | 6 | LsLLLsLLsLLsLLLsLLsLLsLLLsL | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. |
12|14 | 23 | LsLLsLLLsLLsLLLsLLsLLsLLLsL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. |
11|15 | 13 | LsLLsLLLsLLsLLsLLLsLLsLLLsL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. |
10|16 | 3 | LsLLsLLLsLLsLLsLLLsLLsLLsLL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
9|17 | 20 | LsLLsLLsLLLsLLsLLLsLLsLLsLL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
8|18 | 10 | LsLLsLLsLLLsLLsLLsLLLsLLsLL | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
7|19 | 27 | sLLLsLLsLLLsLLsLLsLLLsLLsLL | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
6|20 | 17 | sLLLsLLsLLsLLLsLLsLLLsLLsLL | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. |
5|21 | 7 | sLLLsLLsLLsLLLsLLsLLsLLLsLL | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
4|22 | 24 | sLLsLLLsLLsLLLsLLsLLsLLLsLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
3|23 | 14 | sLLsLLLsLLsLLsLLLsLLsLLLsLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. |
2|24 | 4 | sLLsLLLsLLsLLsLLLsLLsLLsLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
1|25 | 21 | sLLsLLsLLLsLLsLLLsLLsLLsLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
0|26 | 11 | sLLsLLsLLLsLLsLLsLLLsLLsLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
17\27 | 755.556 | 444.444 | 1:1 | 1.000 | Equalized 19L 8s | |||||
97\154 | 755.844 | 444.156 | 6:5 | 1.200 | ||||||
80\127 | 755.906 | 444.094 | 5:4 | 1.250 | ||||||
143\227 | 755.947 | 444.053 | 9:7 | 1.286 | ||||||
63\100 | 756.000 | 444.000 | 4:3 | 1.333 | Supersoft 19L 8s | |||||
172\273 | 756.044 | 443.956 | 11:8 | 1.375 | ||||||
109\173 | 756.069 | 443.931 | 7:5 | 1.400 | ||||||
155\246 | 756.098 | 443.902 | 10:7 | 1.429 | ||||||
46\73 | 756.164 | 443.836 | 3:2 | 1.500 | Soft 19L 8s | |||||
167\265 | 756.226 | 443.774 | 11:7 | 1.571 | ||||||
121\192 | 756.250 | 443.750 | 8:5 | 1.600 | ||||||
196\311 | 756.270 | 443.730 | 13:8 | 1.625 | ||||||
75\119 | 756.303 | 443.697 | 5:3 | 1.667 | Semisoft 19L 8s | |||||
179\284 | 756.338 | 443.662 | 12:7 | 1.714 | ||||||
104\165 | 756.364 | 443.636 | 7:4 | 1.750 | ||||||
133\211 | 756.398 | 443.602 | 9:5 | 1.800 | ||||||
29\46 | 756.522 | 443.478 | 2:1 | 2.000 | Basic 19L 8s Scales with tunings softer than this are proper | |||||
128\203 | 756.650 | 443.350 | 9:4 | 2.250 | ||||||
99\157 | 756.688 | 443.312 | 7:3 | 2.333 | ||||||
169\268 | 756.716 | 443.284 | 12:5 | 2.400 | ||||||
70\111 | 756.757 | 443.243 | 5:2 | 2.500 | Semihard 19L 8s | |||||
181\287 | 756.794 | 443.206 | 13:5 | 2.600 | ||||||
111\176 | 756.818 | 443.182 | 8:3 | 2.667 | ||||||
152\241 | 756.846 | 443.154 | 11:4 | 2.750 | ||||||
41\65 | 756.923 | 443.077 | 3:1 | 3.000 | Hard 19L 8s | |||||
135\214 | 757.009 | 442.991 | 10:3 | 3.333 | ||||||
94\149 | 757.047 | 442.953 | 7:2 | 3.500 | ||||||
147\233 | 757.082 | 442.918 | 11:3 | 3.667 | ||||||
53\84 | 757.143 | 442.857 | 4:1 | 4.000 | Superhard 19L 8s | |||||
118\187 | 757.219 | 442.781 | 9:2 | 4.500 | ||||||
65\103 | 757.282 | 442.718 | 5:1 | 5.000 | ||||||
77\122 | 757.377 | 442.623 | 6:1 | 6.000 | ||||||
12\19 | 757.895 | 442.105 | 1:0 | → ∞ | Collapsed 19L 8s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |