18L 9s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLLsLLsLLsLLsLLsLLsLLs
sLLsLLsLLsLLsLLsLLsLLsLLsLL
Equave
2/1 (1200.0¢)
Period
1\9 (133.3¢)
Generator size
Bright
1\27 to 1\18 (44.4¢ to 66.7¢)
Dark
1\18 to 2\27 (66.7¢ to 88.9¢)
TAMNAMS information
Descends from
9L 9s
Ancestor's step ratio range
1:1 to 2:1 (soft-of-basic)
Related MOS scales
Parent
9L 9s
Sister
9L 18s
Daughters
27L 18s, 18L 27s
Neutralized
9L 18s
2-Flought
45L 9s, 18L 36s
Equal tunings
Equalized (L:s = 1:1)
1\27 (44.4¢)
Supersoft (L:s = 4:3)
4\99 (48.5¢)
Soft (L:s = 3:2)
3\72 (50.0¢)
Semisoft (L:s = 5:3)
5\117 (51.3¢)
Basic (L:s = 2:1)
2\45 (53.3¢)
Semihard (L:s = 5:2)
5\108 (55.6¢)
Hard (L:s = 3:1)
3\63 (57.1¢)
Superhard (L:s = 4:1)
4\81 (59.3¢)
Collapsed (L:s = 1:0)
1\18 (66.7¢)
↖ 17L 8s | ↑ 18L 8s | 19L 8s ↗ |
← 17L 9s | 18L 9s | 19L 9s → |
↙ 17L 10s | ↓ 18L 10s | 19L 10s ↘ |
┌╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬┐ │║║│║║│║║│║║│║║│║║│║║│║║│║║││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLsLLsLLsLLsLLsLLsLLsLL
18L 9s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 18 large steps and 9 small steps, with a period of 2 large steps and 1 small step that repeats every 133.3¢, or 9 times every octave. 18L 9s is a child scale of 9L 9s, expanding it by 9 tones. Generators that produce this scale range from 44.4¢ to 66.7¢, or from 66.7¢ to 88.9¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
This MOS scale is associated with ennealimmal temperament.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0(9) | 1 | LLsLLsLLsLLsLLsLLsLLsLLsLLs |
9|9(9) | 2 | LsLLsLLsLLsLLsLLsLLsLLsLLsL |
0|18(9) | 3 | sLLsLLsLLsLLsLLsLLsLLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 44.4¢ |
Perfect 1-mosstep | P1ms | L | 44.4¢ to 66.7¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 66.7¢ to 88.9¢ |
Augmented 2-mosstep | A2ms | 2L | 88.9¢ to 133.3¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | 2L + s | 133.3¢ |
4-mosstep | Diminished 4-mosstep | d4ms | 2L + 2s | 133.3¢ to 177.8¢ |
Perfect 4-mosstep | P4ms | 3L + s | 177.8¢ to 200.0¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 3L + 2s | 200.0¢ to 222.2¢ |
Augmented 5-mosstep | A5ms | 4L + s | 222.2¢ to 266.7¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 4L + 2s | 266.7¢ |
7-mosstep | Diminished 7-mosstep | d7ms | 4L + 3s | 266.7¢ to 311.1¢ |
Perfect 7-mosstep | P7ms | 5L + 2s | 311.1¢ to 333.3¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 5L + 3s | 333.3¢ to 355.6¢ |
Augmented 8-mosstep | A8ms | 6L + 2s | 355.6¢ to 400.0¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 6L + 3s | 400.0¢ |
10-mosstep | Diminished 10-mosstep | d10ms | 6L + 4s | 400.0¢ to 444.4¢ |
Perfect 10-mosstep | P10ms | 7L + 3s | 444.4¢ to 466.7¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 7L + 4s | 466.7¢ to 488.9¢ |
Augmented 11-mosstep | A11ms | 8L + 3s | 488.9¢ to 533.3¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 8L + 4s | 533.3¢ |
13-mosstep | Diminished 13-mosstep | d13ms | 8L + 5s | 533.3¢ to 577.8¢ |
Perfect 13-mosstep | P13ms | 9L + 4s | 577.8¢ to 600.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 9L + 5s | 600.0¢ to 622.2¢ |
Augmented 14-mosstep | A14ms | 10L + 4s | 622.2¢ to 666.7¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 10L + 5s | 666.7¢ |
16-mosstep | Diminished 16-mosstep | d16ms | 10L + 6s | 666.7¢ to 711.1¢ |
Perfect 16-mosstep | P16ms | 11L + 5s | 711.1¢ to 733.3¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 11L + 6s | 733.3¢ to 755.6¢ |
Augmented 17-mosstep | A17ms | 12L + 5s | 755.6¢ to 800.0¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 12L + 6s | 800.0¢ |
19-mosstep | Diminished 19-mosstep | d19ms | 12L + 7s | 800.0¢ to 844.4¢ |
Perfect 19-mosstep | P19ms | 13L + 6s | 844.4¢ to 866.7¢ | |
20-mosstep | Perfect 20-mosstep | P20ms | 13L + 7s | 866.7¢ to 888.9¢ |
Augmented 20-mosstep | A20ms | 14L + 6s | 888.9¢ to 933.3¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 14L + 7s | 933.3¢ |
22-mosstep | Diminished 22-mosstep | d22ms | 14L + 8s | 933.3¢ to 977.8¢ |
Perfect 22-mosstep | P22ms | 15L + 7s | 977.8¢ to 1000.0¢ | |
23-mosstep | Perfect 23-mosstep | P23ms | 15L + 8s | 1000.0¢ to 1022.2¢ |
Augmented 23-mosstep | A23ms | 16L + 7s | 1022.2¢ to 1066.7¢ | |
24-mosstep | Perfect 24-mosstep | P24ms | 16L + 8s | 1066.7¢ |
25-mosstep | Diminished 25-mosstep | d25ms | 16L + 9s | 1066.7¢ to 1111.1¢ |
Perfect 25-mosstep | P25ms | 17L + 8s | 1111.1¢ to 1133.3¢ | |
26-mosstep | Perfect 26-mosstep | P26ms | 17L + 9s | 1133.3¢ to 1155.6¢ |
Augmented 26-mosstep | A26ms | 18L + 8s | 1155.6¢ to 1200.0¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 18L + 9s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\27 | 44.444 | 88.889 | 1:1 | 1.000 | Equalized 18L 9s | |||||
6\153 | 47.059 | 86.275 | 6:5 | 1.200 | ||||||
5\126 | 47.619 | 85.714 | 5:4 | 1.250 | ||||||
9\225 | 48.000 | 85.333 | 9:7 | 1.286 | ||||||
4\99 | 48.485 | 84.848 | 4:3 | 1.333 | Supersoft 18L 9s | |||||
11\270 | 48.889 | 84.444 | 11:8 | 1.375 | ||||||
7\171 | 49.123 | 84.211 | 7:5 | 1.400 | ||||||
10\243 | 49.383 | 83.951 | 10:7 | 1.429 | ||||||
3\72 | 50.000 | 83.333 | 3:2 | 1.500 | Soft 18L 9s | |||||
11\261 | 50.575 | 82.759 | 11:7 | 1.571 | ||||||
8\189 | 50.794 | 82.540 | 8:5 | 1.600 | ||||||
13\306 | 50.980 | 82.353 | 13:8 | 1.625 | ||||||
5\117 | 51.282 | 82.051 | 5:3 | 1.667 | Semisoft 18L 9s | |||||
12\279 | 51.613 | 81.720 | 12:7 | 1.714 | ||||||
7\162 | 51.852 | 81.481 | 7:4 | 1.750 | ||||||
9\207 | 52.174 | 81.159 | 9:5 | 1.800 | ||||||
2\45 | 53.333 | 80.000 | 2:1 | 2.000 | Basic 18L 9s | |||||
9\198 | 54.545 | 78.788 | 9:4 | 2.250 | ||||||
7\153 | 54.902 | 78.431 | 7:3 | 2.333 | ||||||
12\261 | 55.172 | 78.161 | 12:5 | 2.400 | ||||||
5\108 | 55.556 | 77.778 | 5:2 | 2.500 | Semihard 18L 9s | |||||
13\279 | 55.914 | 77.419 | 13:5 | 2.600 | ||||||
8\171 | 56.140 | 77.193 | 8:3 | 2.667 | ||||||
11\234 | 56.410 | 76.923 | 11:4 | 2.750 | ||||||
3\63 | 57.143 | 76.190 | 3:1 | 3.000 | Hard 18L 9s | |||||
10\207 | 57.971 | 75.362 | 10:3 | 3.333 | ||||||
7\144 | 58.333 | 75.000 | 7:2 | 3.500 | ||||||
11\225 | 58.667 | 74.667 | 11:3 | 3.667 | ||||||
4\81 | 59.259 | 74.074 | 4:1 | 4.000 | Superhard 18L 9s | |||||
9\180 | 60.000 | 73.333 | 9:2 | 4.500 | ||||||
5\99 | 60.606 | 72.727 | 5:1 | 5.000 | ||||||
6\117 | 61.538 | 71.795 | 6:1 | 6.000 | ||||||
1\18 | 66.667 | 66.667 | 1:0 | → ∞ | Collapsed 18L 9s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |