9L 18s
Jump to navigation
Jump to search
Scale structure
Step pattern
LssLssLssLssLssLssLssLssLss
ssLssLssLssLssLssLssLssLssL
Equave
2/1 (1200.0¢)
Period
1\9 (133.3¢)
Generator size
Bright
2\27 to 1\9 (88.9¢ to 133.3¢)
Dark
0\9 to 1\27 (0.0¢ to 44.4¢)
TAMNAMS information
Descends from
9L 9s
Ancestor's step ratio range
2:1 to 1:0 (hard-of-basic)
Related MOS scales
Parent
9L 9s
Sister
18L 9s
Daughters
27L 9s, 9L 27s
Neutralized
18L 9s
2-Flought
36L 18s, 9L 45s
Equal tunings
Equalized (L:s = 1:1)
2\27 (88.9¢)
Supersoft (L:s = 4:3)
7\90 (93.3¢)
Soft (L:s = 3:2)
5\63 (95.2¢)
Semisoft (L:s = 5:3)
8\99 (97.0¢)
Basic (L:s = 2:1)
3\36 (100.0¢)
Semihard (L:s = 5:2)
7\81 (103.7¢)
Hard (L:s = 3:1)
4\45 (106.7¢)
Superhard (L:s = 4:1)
5\54 (111.1¢)
Collapsed (L:s = 1:0)
1\9 (133.3¢)
↖ 8L 17s | ↑ 9L 17s | 10L 17s ↗ |
← 8L 18s | 9L 18s | 10L 18s → |
↙ 8L 19s | ↓ 9L 19s | 10L 19s ↘ |
┌╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬┐ │║││║││║││║││║││║││║││║││║│││ │││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLssLssLssLssLssLssLssL
9L 18s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 9 large steps and 18 small steps, with a period of 1 large step and 2 small steps that repeats every 133.3¢, or 9 times every octave. 9L 18s is a child scale of 9L 9s, expanding it by 9 tones. Generators that produce this scale range from 88.9¢ to 133.3¢, or from 0¢ to 44.4¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0(9) | 1 | LssLssLssLssLssLssLssLssLss |
9|9(9) | 3 | sLssLssLssLssLssLssLssLssLs |
0|18(9) | 2 | ssLssLssLssLssLssLssLssLssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Perfect 1-mosstep | P1ms | s | 0.0¢ to 44.4¢ |
Augmented 1-mosstep | A1ms | L | 44.4¢ to 133.3¢ | |
2-mosstep | Diminished 2-mosstep | d2ms | 2s | 0.0¢ to 88.9¢ |
Perfect 2-mosstep | P2ms | L + s | 88.9¢ to 133.3¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | L + 2s | 133.3¢ |
4-mosstep | Perfect 4-mosstep | P4ms | L + 3s | 133.3¢ to 177.8¢ |
Augmented 4-mosstep | A4ms | 2L + 2s | 177.8¢ to 266.7¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | L + 4s | 133.3¢ to 222.2¢ |
Perfect 5-mosstep | P5ms | 2L + 3s | 222.2¢ to 266.7¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 2L + 4s | 266.7¢ |
7-mosstep | Perfect 7-mosstep | P7ms | 2L + 5s | 266.7¢ to 311.1¢ |
Augmented 7-mosstep | A7ms | 3L + 4s | 311.1¢ to 400.0¢ | |
8-mosstep | Diminished 8-mosstep | d8ms | 2L + 6s | 266.7¢ to 355.6¢ |
Perfect 8-mosstep | P8ms | 3L + 5s | 355.6¢ to 400.0¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 3L + 6s | 400.0¢ |
10-mosstep | Perfect 10-mosstep | P10ms | 3L + 7s | 400.0¢ to 444.4¢ |
Augmented 10-mosstep | A10ms | 4L + 6s | 444.4¢ to 533.3¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 3L + 8s | 400.0¢ to 488.9¢ |
Perfect 11-mosstep | P11ms | 4L + 7s | 488.9¢ to 533.3¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 4L + 8s | 533.3¢ |
13-mosstep | Perfect 13-mosstep | P13ms | 4L + 9s | 533.3¢ to 577.8¢ |
Augmented 13-mosstep | A13ms | 5L + 8s | 577.8¢ to 666.7¢ | |
14-mosstep | Diminished 14-mosstep | d14ms | 4L + 10s | 533.3¢ to 622.2¢ |
Perfect 14-mosstep | P14ms | 5L + 9s | 622.2¢ to 666.7¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 5L + 10s | 666.7¢ |
16-mosstep | Perfect 16-mosstep | P16ms | 5L + 11s | 666.7¢ to 711.1¢ |
Augmented 16-mosstep | A16ms | 6L + 10s | 711.1¢ to 800.0¢ | |
17-mosstep | Diminished 17-mosstep | d17ms | 5L + 12s | 666.7¢ to 755.6¢ |
Perfect 17-mosstep | P17ms | 6L + 11s | 755.6¢ to 800.0¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 6L + 12s | 800.0¢ |
19-mosstep | Perfect 19-mosstep | P19ms | 6L + 13s | 800.0¢ to 844.4¢ |
Augmented 19-mosstep | A19ms | 7L + 12s | 844.4¢ to 933.3¢ | |
20-mosstep | Diminished 20-mosstep | d20ms | 6L + 14s | 800.0¢ to 888.9¢ |
Perfect 20-mosstep | P20ms | 7L + 13s | 888.9¢ to 933.3¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 7L + 14s | 933.3¢ |
22-mosstep | Perfect 22-mosstep | P22ms | 7L + 15s | 933.3¢ to 977.8¢ |
Augmented 22-mosstep | A22ms | 8L + 14s | 977.8¢ to 1066.7¢ | |
23-mosstep | Diminished 23-mosstep | d23ms | 7L + 16s | 933.3¢ to 1022.2¢ |
Perfect 23-mosstep | P23ms | 8L + 15s | 1022.2¢ to 1066.7¢ | |
24-mosstep | Perfect 24-mosstep | P24ms | 8L + 16s | 1066.7¢ |
25-mosstep | Perfect 25-mosstep | P25ms | 8L + 17s | 1066.7¢ to 1111.1¢ |
Augmented 25-mosstep | A25ms | 9L + 16s | 1111.1¢ to 1200.0¢ | |
26-mosstep | Diminished 26-mosstep | d26ms | 8L + 18s | 1066.7¢ to 1155.6¢ |
Perfect 26-mosstep | P26ms | 9L + 17s | 1155.6¢ to 1200.0¢ | |
27-mosstep | Perfect 27-mosstep | P27ms | 9L + 18s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
2\27 | 88.889 | 44.444 | 1:1 | 1.000 | Equalized 9L 18s | |||||
11\144 | 91.667 | 41.667 | 6:5 | 1.200 | ||||||
9\117 | 92.308 | 41.026 | 5:4 | 1.250 | ||||||
16\207 | 92.754 | 40.580 | 9:7 | 1.286 | ||||||
7\90 | 93.333 | 40.000 | 4:3 | 1.333 | Supersoft 9L 18s | |||||
19\243 | 93.827 | 39.506 | 11:8 | 1.375 | ||||||
12\153 | 94.118 | 39.216 | 7:5 | 1.400 | ||||||
17\216 | 94.444 | 38.889 | 10:7 | 1.429 | ||||||
5\63 | 95.238 | 38.095 | 3:2 | 1.500 | Soft 9L 18s | |||||
18\225 | 96.000 | 37.333 | 11:7 | 1.571 | ||||||
13\162 | 96.296 | 37.037 | 8:5 | 1.600 | ||||||
21\261 | 96.552 | 36.782 | 13:8 | 1.625 | ||||||
8\99 | 96.970 | 36.364 | 5:3 | 1.667 | Semisoft 9L 18s | |||||
19\234 | 97.436 | 35.897 | 12:7 | 1.714 | ||||||
11\135 | 97.778 | 35.556 | 7:4 | 1.750 | ||||||
14\171 | 98.246 | 35.088 | 9:5 | 1.800 | ||||||
3\36 | 100.000 | 33.333 | 2:1 | 2.000 | Basic 9L 18s Scales with tunings softer than this are proper | |||||
13\153 | 101.961 | 31.373 | 9:4 | 2.250 | ||||||
10\117 | 102.564 | 30.769 | 7:3 | 2.333 | ||||||
17\198 | 103.030 | 30.303 | 12:5 | 2.400 | ||||||
7\81 | 103.704 | 29.630 | 5:2 | 2.500 | Semihard 9L 18s | |||||
18\207 | 104.348 | 28.986 | 13:5 | 2.600 | ||||||
11\126 | 104.762 | 28.571 | 8:3 | 2.667 | ||||||
15\171 | 105.263 | 28.070 | 11:4 | 2.750 | ||||||
4\45 | 106.667 | 26.667 | 3:1 | 3.000 | Hard 9L 18s | |||||
13\144 | 108.333 | 25.000 | 10:3 | 3.333 | ||||||
9\99 | 109.091 | 24.242 | 7:2 | 3.500 | ||||||
14\153 | 109.804 | 23.529 | 11:3 | 3.667 | ||||||
5\54 | 111.111 | 22.222 | 4:1 | 4.000 | Superhard 9L 18s | |||||
11\117 | 112.821 | 20.513 | 9:2 | 4.500 | ||||||
6\63 | 114.286 | 19.048 | 5:1 | 5.000 | ||||||
7\72 | 116.667 | 16.667 | 6:1 | 6.000 | ||||||
1\9 | 133.333 | 0.000 | 1:0 | → ∞ | Collapsed 9L 18s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |