9L 18s

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 8L 17s ↑ 9L 17s 10L 17s ↗
← 8L 18s 9L 18s 10L 18s →
↙ 8L 19s ↓ 9L 19s 10L 19s ↘
┌╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬╥┬┬┐
│║││║││║││║││║││║││║││║││║│││
│││││││││││││││││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LssLssLssLssLssLssLssLssLss
ssLssLssLssLssLssLssLssLssL
Equave 2/1 (1200.0¢)
Period 1\9 (133.3¢)
Generator size
Bright 2\27 to 1\9 (88.9¢ to 133.3¢)
Dark 0\9 to 1\27 (0.0¢ to 44.4¢)
TAMNAMS information
Descends from 9L 9s
Ancestor's step ratio range 2:1 to 1:0 (hard-of-basic)
Related MOS scales
Parent 9L 9s
Sister 18L 9s
Daughters 27L 9s, 9L 27s
Neutralized 18L 9s
2-Flought 36L 18s, 9L 45s
Equal tunings
Equalized (L:s = 1:1) 2\27 (88.9¢)
Supersoft (L:s = 4:3) 7\90 (93.3¢)
Soft (L:s = 3:2) 5\63 (95.2¢)
Semisoft (L:s = 5:3) 8\99 (97.0¢)
Basic (L:s = 2:1) 3\36 (100.0¢)
Semihard (L:s = 5:2) 7\81 (103.7¢)
Hard (L:s = 3:1) 4\45 (106.7¢)
Superhard (L:s = 4:1) 5\54 (111.1¢)
Collapsed (L:s = 1:0) 1\9 (133.3¢)

9L 18s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 9 large steps and 18 small steps, with a period of 1 large step and 2 small steps that repeats every 133.3¢, or 9 times every octave. 9L 18s is a child scale of 9L 9s, expanding it by 9 tones. Generators that produce this scale range from 88.9¢ to 133.3¢, or from 0¢ to 44.4¢.

Modes

Modes of 9L 18s
UDP Cyclic
order
Step
pattern
18|0(9) 1 LssLssLssLssLssLssLssLssLss
9|9(9) 3 sLssLssLssLssLssLssLssLssLs
0|18(9) 2 ssLssLssLssLssLssLssLssLssL

Intervals

Intervals of 9L 18s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0¢
1-mosstep Perfect 1-mosstep P1ms s 0.0¢ to 44.4¢
Augmented 1-mosstep A1ms L 44.4¢ to 133.3¢
2-mosstep Diminished 2-mosstep d2ms 2s 0.0¢ to 88.9¢
Perfect 2-mosstep P2ms L + s 88.9¢ to 133.3¢
3-mosstep Perfect 3-mosstep P3ms L + 2s 133.3¢
4-mosstep Perfect 4-mosstep P4ms L + 3s 133.3¢ to 177.8¢
Augmented 4-mosstep A4ms 2L + 2s 177.8¢ to 266.7¢
5-mosstep Diminished 5-mosstep d5ms L + 4s 133.3¢ to 222.2¢
Perfect 5-mosstep P5ms 2L + 3s 222.2¢ to 266.7¢
6-mosstep Perfect 6-mosstep P6ms 2L + 4s 266.7¢
7-mosstep Perfect 7-mosstep P7ms 2L + 5s 266.7¢ to 311.1¢
Augmented 7-mosstep A7ms 3L + 4s 311.1¢ to 400.0¢
8-mosstep Diminished 8-mosstep d8ms 2L + 6s 266.7¢ to 355.6¢
Perfect 8-mosstep P8ms 3L + 5s 355.6¢ to 400.0¢
9-mosstep Perfect 9-mosstep P9ms 3L + 6s 400.0¢
10-mosstep Perfect 10-mosstep P10ms 3L + 7s 400.0¢ to 444.4¢
Augmented 10-mosstep A10ms 4L + 6s 444.4¢ to 533.3¢
11-mosstep Diminished 11-mosstep d11ms 3L + 8s 400.0¢ to 488.9¢
Perfect 11-mosstep P11ms 4L + 7s 488.9¢ to 533.3¢
12-mosstep Perfect 12-mosstep P12ms 4L + 8s 533.3¢
13-mosstep Perfect 13-mosstep P13ms 4L + 9s 533.3¢ to 577.8¢
Augmented 13-mosstep A13ms 5L + 8s 577.8¢ to 666.7¢
14-mosstep Diminished 14-mosstep d14ms 4L + 10s 533.3¢ to 622.2¢
Perfect 14-mosstep P14ms 5L + 9s 622.2¢ to 666.7¢
15-mosstep Perfect 15-mosstep P15ms 5L + 10s 666.7¢
16-mosstep Perfect 16-mosstep P16ms 5L + 11s 666.7¢ to 711.1¢
Augmented 16-mosstep A16ms 6L + 10s 711.1¢ to 800.0¢
17-mosstep Diminished 17-mosstep d17ms 5L + 12s 666.7¢ to 755.6¢
Perfect 17-mosstep P17ms 6L + 11s 755.6¢ to 800.0¢
18-mosstep Perfect 18-mosstep P18ms 6L + 12s 800.0¢
19-mosstep Perfect 19-mosstep P19ms 6L + 13s 800.0¢ to 844.4¢
Augmented 19-mosstep A19ms 7L + 12s 844.4¢ to 933.3¢
20-mosstep Diminished 20-mosstep d20ms 6L + 14s 800.0¢ to 888.9¢
Perfect 20-mosstep P20ms 7L + 13s 888.9¢ to 933.3¢
21-mosstep Perfect 21-mosstep P21ms 7L + 14s 933.3¢
22-mosstep Perfect 22-mosstep P22ms 7L + 15s 933.3¢ to 977.8¢
Augmented 22-mosstep A22ms 8L + 14s 977.8¢ to 1066.7¢
23-mosstep Diminished 23-mosstep d23ms 7L + 16s 933.3¢ to 1022.2¢
Perfect 23-mosstep P23ms 8L + 15s 1022.2¢ to 1066.7¢
24-mosstep Perfect 24-mosstep P24ms 8L + 16s 1066.7¢
25-mosstep Perfect 25-mosstep P25ms 8L + 17s 1066.7¢ to 1111.1¢
Augmented 25-mosstep A25ms 9L + 16s 1111.1¢ to 1200.0¢
26-mosstep Diminished 26-mosstep d26ms 8L + 18s 1066.7¢ to 1155.6¢
Perfect 26-mosstep P26ms 9L + 17s 1155.6¢ to 1200.0¢
27-mosstep Perfect 27-mosstep P27ms 9L + 18s 1200.0¢

Scale tree

Scale Tree and Tuning Spectrum of 9L 18s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
2\27 88.889 44.444 1:1 1.000 Equalized 9L 18s
11\144 91.667 41.667 6:5 1.200
9\117 92.308 41.026 5:4 1.250
16\207 92.754 40.580 9:7 1.286
7\90 93.333 40.000 4:3 1.333 Supersoft 9L 18s
19\243 93.827 39.506 11:8 1.375
12\153 94.118 39.216 7:5 1.400
17\216 94.444 38.889 10:7 1.429
5\63 95.238 38.095 3:2 1.500 Soft 9L 18s
18\225 96.000 37.333 11:7 1.571
13\162 96.296 37.037 8:5 1.600
21\261 96.552 36.782 13:8 1.625
8\99 96.970 36.364 5:3 1.667 Semisoft 9L 18s
19\234 97.436 35.897 12:7 1.714
11\135 97.778 35.556 7:4 1.750
14\171 98.246 35.088 9:5 1.800
3\36 100.000 33.333 2:1 2.000 Basic 9L 18s
Scales with tunings softer than this are proper
13\153 101.961 31.373 9:4 2.250
10\117 102.564 30.769 7:3 2.333
17\198 103.030 30.303 12:5 2.400
7\81 103.704 29.630 5:2 2.500 Semihard 9L 18s
18\207 104.348 28.986 13:5 2.600
11\126 104.762 28.571 8:3 2.667
15\171 105.263 28.070 11:4 2.750
4\45 106.667 26.667 3:1 3.000 Hard 9L 18s
13\144 108.333 25.000 10:3 3.333
9\99 109.091 24.242 7:2 3.500
14\153 109.804 23.529 11:3 3.667
5\54 111.111 22.222 4:1 4.000 Superhard 9L 18s
11\117 112.821 20.513 9:2 4.500
6\63 114.286 19.048 5:1 5.000
7\72 116.667 16.667 6:1 6.000
1\9 133.333 0.000 1:0 → ∞ Collapsed 9L 18s


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.