User:FloraC/Sandbox
Notes for temperament pages
Comment: the example below looks great to me by the very formatting.
Note:
- Order: subgroup, comma list, mapping, mapping generators (or simply "generators", this is the same thing), wedgie, minimax tuning, tuning ranges, algebraic generator, complexity spectrum, vals, badness.
- Comma list shows the simplest commas sufficient to define the temperament, stated in Normal lists #Normal interval list.
- Mapping generators should show all the ratios as used in the mapping, including the period.
- Minimax tuning are based on tonality diamond, so it should explicitly state the odd limit, or a diamond function of ratios.
- Use Template:Val list.
Who's next?
Meantone familyArchytas clanFather familyTrienstonic clanSeptisemi temperaments- Archytas family
- Marvel temperaments
- Marvel family
- Schismatic family
Septimal meantone
The 7/4 of septimal meantone is the augmented sixth, C-A#, and other septimal intervals are 7/6, C-D#, the augmented second, 7/5, C-F#, the tritone, and 21/16, C-E#, the augmented third. Septimal meantone also tempers out the common 7-limit comma 225/224 and is in fact can be defined as the 7-limit temperament that tempers out 81/80 and 225/224.
Period: 1\1
Optimal (POTE) generator: ~3/2 = 696.495
EDO generators: 7\12, 11\19, 18\31, 25\43, 29\50
Scales (Scala files): Meantone5, Meantone7, Meantone12
Subgroup: 2.3.5.7
Comma list: 81/80, 126/125
Mapping: [⟨1 0 -4 -13], ⟨0 1 4 10]]
Mapping generators: ~2, ~3
Wedgie: ⟨⟨1 4 10 4 13 12]]
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [1 0 1/4 0⟩, [0 0 1 0⟩, [-3 0 5/2 0⟩]
- Eigenmonzos: 2, 5
- valid range: [694.737, 700.000] (19 to 12)
- nice range: [694.786, 701.955]
- strict range: [694.786, 700.000]
Algebraic generator: Cybozem, the real root of 15x3 - 10x2 - 18, which comes to 503.4257 cents. The recurrence converges quickly.
Badness: 0.0137
Archytas
Period: 1\1
Optimal (POTE) generators: ~3/2 = 709.3213, ~5/4 = 393.3747
EDO generators: (12, 5)\15, (7, 13)\22, (9, 16)\27
Scales: archytas12, archytas12synch
Comma list: 64/63
Mapping: [⟨1 0 0 6], ⟨0 1 0 -2], ⟨0 0 1 0]]
Mapping generators: 2, 3, 5
Map to lattice: [⟨0 1 0 -2], ⟨0 0 1 0]]
Lattice basis:
- 3/2 length = 1.0508, 5/4 length = 2.3219
- Angle (3/2, 5/4) = 90 degrees
Minimax tuning:
- [[1 0 0 0⟩, [2 1/3 0 -1/3⟩, [2 -2/3 1 -1/3⟩, [2 -2/3 0 2/3⟩]
- Eigenmonzos: 2, 6/5, 7/5
- [[1 0 0 0⟩, [3/2 1/2 0 -1/4⟩, [3/2 -1/2 1 -1/4⟩, [3 -1 0 1/2⟩]
- Eigenmonzos: 2, 6/5, 9/7
Commas
41edo tempers out the following commas using its patent val, ⟨41 65 95 115 142 152 168 174 185 199 203].
Prime limit |
Ratio[1] | Name(s) |
---|---|---|
3 | [65 -41⟩ | 41-comma |
5 | [-5 -10 9⟩ | Shibboleth |
5 | [-25 7 6⟩ | Ampersand |
5 | 3125/3072 | Magic comma |
5 | [5 -9 4⟩ | Tetracot comma |
5 | [20 -17 3⟩ | Roda |
5 | [-15 8 1⟩ | Schisma |
7 | [0 -7 6 -1⟩ | Great BP diesis |
7 | [-10 7 8 -7⟩ | Blackjackisma |
7 | 875/864 | Keema |
7 | 3125/3087 | Gariboh |
7 | [10 -11 2 1⟩ | Tolerma |
7 | [-15 3 2 2⟩ | Mirwomo comma |
7 | 245/243 | Sensamagic |
7 | 4000/3969 | Octagar |
7 | [-15 0 -2 7⟩ | Quince |
7 | 1029/1024 | Gamelisma |
7 | 225/224 | Marvel comma |
7 | [0 3 4 -5⟩ | Mirkwai |
7 | [5 -7 -1 3⟩ | Hemimage |
7 | 5120/5103 | Hemifamity |
7 | [25 -14 0 -1⟩ | Garischisma |
7 | 2401/2400 | Breedsma |
11 | [15 0 1 0 -5⟩ | Thuja comma |
11 | 245/242 | Cassacot |
11 | 100/99 | Ptolemisma |
11 | 1344/1331 | Hemimin |
11 | 896/891 | Pentacircle |
11 | [16 0 0 -2 -3⟩ | Orgonisma |
11 | 243/242 | Rastma |
11 | 385/384 | Keenanisma |
11 | 441/440 | Werckisma |
11 | 1375/1372 | Moctdel |
11 | 540/539 | Swetisma |
11 | 3025/3024 | Lehmerisma |
11 | [-1 2 -4 5 -2⟩ | Odiheim |
13 | 343/338 | |
13 | 105/104 | Animist comma |
13 | [12 -7 0 1 0 -1⟩ | Secorian |
13 | 275/273 | Gassorma |
13 | 144/143 | Grossma |
13 | 196/195 | Mynucuma |
13 | 640/637 | Huntma |
13 | 1188/1183 | Kestrel comma |
13 | 325/324 | Marveltwin |
13 | 352/351 | Minthma |
13 | 364/363 | Gentle comma |
13 | 847/845 | Cuthbert |
13 | 729/728 | Squbema |
13 | 4096/4095 | Schismina |
13 | [3 -2 0 -1 3 -2⟩ | Harmonisma |
17 | 2187/2176 | Septendecimal schisma |
17 | 256/255 | Septendecimal kleisma |
17 | 715/714 | Septendecimal bridge comma |
19 | 210/209 | Spleen comma |
19 | 361/360 | Go comma |
19 | 513/512 | Undevicesimal comma |
19 | 1216/1215 | Eratosthenes' comma |
23 | 736/729 | Vicesimotertial comma |
29 | 145/144 | 29th-partial chroma |
- ↑ Ratios with more than 9 digits are presented in monzos