↖ 4L 5s ↑ 5L 5s 6L 5s ↗
← 4L 6s 5L 6s 6L 6s →
↙ 4L 7s ↓ 5L 7s 6L 7s ↘
┌╥┬╥┬╥┬╥┬╥┬┬┐
│║│║│║│║│║│││
│││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LsLsLsLsLss
ssLsLsLsLsL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 2\11 to 1\5 (218.2 ¢ to 240.0 ¢)
Dark 4\5 to 9\11 (960.0 ¢ to 981.8 ¢)
TAMNAMS information
Related to 5L 1s (machinoid)
With tunings 2:1 to 1:0 (hard-of-basic)
Related MOS scales
Parent 5L 1s
Sister 6L 5s
Daughters 11L 5s, 5L 11s
Neutralized 10L 1s
2-Flought 16L 6s, 5L 17s
Equal tunings
Equalized (L:s = 1:1) 2\11 (218.2 ¢)
Supersoft (L:s = 4:3) 7\38 (221.1 ¢)
Soft (L:s = 3:2) 5\27 (222.2 ¢)
Semisoft (L:s = 5:3) 8\43 (223.3 ¢)
Basic (L:s = 2:1) 3\16 (225.0 ¢)
Semihard (L:s = 5:2) 7\37 (227.0 ¢)
Hard (L:s = 3:1) 4\21 (228.6 ¢)
Superhard (L:s = 4:1) 5\26 (230.8 ¢)
Collapsed (L:s = 1:0) 1\5 (240.0 ¢)

5L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 6 small steps, repeating every octave. 5L 6s is a child scale of 5L 1s, expanding it by 5 tones. Generators that produce this scale range from 218.2 ¢ to 240 ¢, or from 960 ¢ to 981.8 ¢.

This pattern has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6 ¢ flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root. The name for this MOS pattern is p-chro machinoid, although the alternative name mothroid was given by CompactStar as part of their temperament-centric MOS naming system (TCMNAMS).

Scale properties

  MOS data is deprecated. Please use the following templates individually: MOS intervals, MOS genchain, and MOS mode degrees

Scale tree

Scale tree and tuning spectrum of 5L 6s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
2\11 218.182 981.818 1:1 1.000 Equalized 5L 6s
11\60 220.000 980.000 6:5 1.200
9\49 220.408 979.592 5:4 1.250
16\87 220.690 979.310 9:7 1.286
7\38 221.053 978.947 4:3 1.333 Supersoft 5L 6s
19\103 221.359 978.641 11:8 1.375
12\65 221.538 978.462 7:5 1.400
17\92 221.739 978.261 10:7 1.429
5\27 222.222 977.778 3:2 1.500 Soft 5L 6s
18\97 222.680 977.320 11:7 1.571
13\70 222.857 977.143 8:5 1.600
21\113 223.009 976.991 13:8 1.625
8\43 223.256 976.744 5:3 1.667 Semisoft 5L 6s
19\102 223.529 976.471 12:7 1.714
11\59 223.729 976.271 7:4 1.750
14\75 224.000 976.000 9:5 1.800
3\16 225.000 975.000 2:1 2.000 Basic 5L 6s
Scales with tunings softer than this are proper
13\69 226.087 973.913 9:4 2.250
10\53 226.415 973.585 7:3 2.333
17\90 226.667 973.333 12:5 2.400
7\37 227.027 972.973 5:2 2.500 Semihard 5L 6s
18\95 227.368 972.632 13:5 2.600
11\58 227.586 972.414 8:3 2.667
15\79 227.848 972.152 11:4 2.750
4\21 228.571 971.429 3:1 3.000 Hard 5L 6s
13\68 229.412 970.588 10:3 3.333
9\47 229.787 970.213 7:2 3.500
14\73 230.137 969.863 11:3 3.667
5\26 230.769 969.231 4:1 4.000 Superhard 5L 6s
11\57 231.579 968.421 9:2 4.500 Cynder
6\31 232.258 967.742 5:1 5.000 Mothra
7\36 233.333 966.667 6:1 6.000 Slendric, Rodan ↓
1\5 240.000 960.000 1:0 → ∞ Collapsed 5L 6s