4L 7s
↖ 3L 6s | ↑ 4L 6s | 5L 6s ↗ |
← 3L 7s | 4L 7s | 5L 7s → |
↙ 3L 8s | ↓ 4L 8s | 5L 8s ↘ |
┌╥┬╥┬┬╥┬┬╥┬┬┐ │║│║││║││║│││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLssLsL
4L 7s or mynatonic my-na-TON-ik /maɪnəˈtɒnɪk/ refers to the structure of MOS scales with generators ranging from 1\4edo (one degree of 4edo, 300¢) to 3\11edo (three degrees of 11edo, 327.27¢), representing approximate diatonic minor thirds (6/5). The name refers to the temperament that is one of the harmonic entropy minimums in this range (Myna), as well as being a pun on "minor third".
4L 7s has a heptatonic subset, which is the hard end of the spectrum of the smitonic scale (4L 3s).
Notation
The notation used in this article is LssLsLssLss = ABCDEFGHJKL unless specified otherwise. Chromas are represented by regular sharps and flats. Thus the 15edo gamut is as follows: A A#/Bb B C D D#/Eb E F F#/Gb G H K K#Lb K L A
Intervals
U/C
Tuning ranges
Soft range
The soft range for tunings of mynatonic encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than 4\15 = 320¢. This is the range associated with extensions of Orgone[7].
Hypohard
Hypohard tunings of mynatonic have step ratios between 2/1 and 3/1, implying a generator sharper than 5\19 = 315.79¢ and flatter than 4\15 = 320¢. This range represents of the harmonic entropy minimums, where 6 generators make a just diatonic fifth (3/2), an octave above.
Parahard
Parahard tunings of mynatonic have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.
Hyperhard
Hyperhard tunings of mynatonic have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢. The eponymous temperament, Myna, resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above.
Modes
To be arranged ("Super-" versions of smitonic modes, with additions)
- 10|0 Supernerevarine
- 9|1 Supervivecan
- 8|2 Supernumidian
- 7|3 Superlorkhanic
- 6|4 Superbaardauan
- 5|5 Supersothic
- 4|6 Supervvardenic
- 3|7 Superkagrenacan
- 2|8 Supernecromic
- 1|9 Superalmalexian
- 0|10 Superdagothic
Temperaments
Scale tree
The spectrum looks like this:
1\4 | 300¢ | ||||||||
10\39 | 307.692 | ||||||||
9\35 | 308.571 | ||||||||
8\31 | 309.677 | Myna | |||||||
23\89 | 310.112 | Myna | |||||||
15\58 | 310.345 | Myna | |||||||
7\27 | 311.111 | Starlingtet | |||||||
6\23 | 313.043 | Skateboard | |||||||
17\65 | 313.846 | ||||||||
11\42 | 314.286 | ||||||||
16\61 | 314.754 | ||||||||
21\80 | 315 | ||||||||
26\99 | 315.152 | Parakleismic | |||||||
315.332 | |||||||||
5\19 | 315.789 | Keemun | |||||||
19\72 | 316.667 | Catakleismic | |||||||
316.785 | |||||||||
14\53 | 316.981 | Hanson/Marveltwintri/Cata | |||||||
317.17 | |||||||||
23\87 | 317.241 | Countercata | |||||||
9\34 | 317.647 | ||||||||
4\15 | 320 | Boundary of propriety
(generators larger than this are proper) | |||||||
321.539 | |||||||||
11\41 | 321.951 | Superkleismic | |||||||
322.268 | |||||||||
18\67 | 322.388 | ||||||||
322.585 | |||||||||
7\26 | 323.068 | Magicaltet/Orgone | |||||||
10\37 | 324.324 | Orgone | |||||||
13\48 | 325 | Oregon | |||||||
16\59 | 325.424 | Oregon | |||||||
19\70 | 325.714 | Oregon | |||||||
22/81 | 325.926 | Oregon | |||||||
3\11 | 327.273 | Oregon |