Porcupine family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Bold lemma
Restore POTE tuning by request (and correct the tunings for undecimation)
Line 17: Line 17:
* [[49/48]], the slendro diesis, for [[#Nautilus|nautilus]].
* [[49/48]], the slendro diesis, for [[#Nautilus|nautilus]].


Temperaments discussed elsewhere include [[Dicot family #Jamesbond|jamesbond]].
Temperaments discussed elsewhere include [[7th-octave temperaments #Jamesbond|jamesbond]].


== Porcupine ==
== Porcupine ==
Line 30: Line 30:
: mapping generators: ~2, ~10/9
: mapping generators: ~2, ~10/9


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.1659
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~10/9 = 164.1659
* [[POTE]]: ~2 = 1\1, ~10/9 = 163.950


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 52: Line 54:
: gencom: [2 10/9; 55/54, 100/99]  
: gencom: [2 10/9; 55/54, 100/99]  


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 163.8867
* POTE: ~2 = 1\1, ~11/10 = 164.0777


{{Optimal ET sequence|legend=1| 7, 15, 22, 73ce, 95ce }}
{{Optimal ET sequence|legend=1| 7, 15, 22, 73ce, 95ce }}
Line 67: Line 71:
: sval mapping generators: ~2, ~65/44
: sval mapping generators: ~2, ~65/44


Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094
Optimal tunings:
* CTE: ~2 = 1\1, ~88/65 = 518.0865
* POTE: ~2 = 1\1, ~88/65 = 518.2094


{{Optimal ET sequence|legend=1| 7, 23bc, 30, 37, 44 }}
{{Optimal ET sequence|legend=1| 7, 23bc, 30, 37, 44 }}
Line 86: Line 92:
{{Multival|legend=1| 3 5 -6 1 -18 -28 }}
{{Multival|legend=1| 3 5 -6 1 -18 -28 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 163.2032
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~10/9 = 163.2032
* [[POTE]]: ~2 = 1\1, ~10/9 = 162.880


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 111: Line 119:
Mapping: {{mapping| 1 2 3 2 4 | 0 -3 -5 6 -4 }}
Mapping: {{mapping| 1 2 3 2 4 | 0 -3 -5 6 -4 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.1055
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 163.1055
* POTE: ~2 = 1\1, ~11/10 = 162.747


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
: Eigenmonzo basis (unchanged-interval basis): 2.9/7
: eigenmonzo basis (unchanged-interval basis): 2.9/7


Tuning ranges:  
Tuning ranges:  
Line 133: Line 143:
Mapping: {{mapping| 1 2 3 2 4 4 | 0 -3 -5 6 -4 -2 }}
Mapping: {{mapping| 1 2 3 2 4 4 | 0 -3 -5 6 -4 -2 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.4425
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 163.4425
* POTE: ~2 = 1\1, ~11/10 = 162.708


Minimax tuning:  
Minimax tuning:  
Line 159: Line 171:
Mapping: {{mapping| 1 2 3 2 4 6 | 0 -3 -5 6 -4 -17 }}
Mapping: {{mapping| 1 2 3 2 4 6 | 0 -3 -5 6 -4 -17 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 162.6361
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 162.6361
* POTE: ~2 = 1\1, ~11/10 = 162.277


Minimax tuning:  
Minimax tuning:  
Line 183: Line 197:
Mapping: {{mapping| 1 2 3 2 4 1 | 0 -3 -5 6 -4 20 }}
Mapping: {{mapping| 1 2 3 2 4 1 | 0 -3 -5 6 -4 20 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.3781
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 163.3781
* POTE: ~2 = 1\1, ~11/10 = 162.482


Minimax tuning:  
Minimax tuning:  
Line 200: Line 216:
Mapping: {{mapping| 1 2 3 2 4 3 | 0 -3 -5 6 -4 5 }}
Mapping: {{mapping| 1 2 3 2 4 3 | 0 -3 -5 6 -4 5 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.6778
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 163.6778
* POTE: ~2 = 1\1, ~11/10 = 163.688


Minimax tuning:  
Minimax tuning:  
Line 273: Line 291:
{{Multival|legend=1| 3 5 16 1 17 23 }}
{{Multival|legend=1| 3 5 16 1 17 23 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 164.3913
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~10/9 = 164.3913
* [[POTE]]: ~2 = 1\1, ~10/9 = 164.412


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 290: Line 310:
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }}
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.3207
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 164.3207
* POTE: ~2 = 1\1, ~11/10 = 164.552


Minimax tuning:  
Minimax tuning:  
Line 307: Line 329:
Mapping: {{mapping| 1 2 3 5 4 3 | 0 -3 -5 -16 -4 5 }}
Mapping: {{mapping| 1 2 3 5 4 3 | 0 -3 -5 -16 -4 5 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 164.4782
* POTE: ~2 = 1\1, ~11/10 = 164.953


{{Optimal ET sequence|legend=1| 7d, 22, 29, 51f, 80cdeff }}
{{Optimal ET sequence|legend=1| 7d, 22, 29, 51f, 80cdeff }}
Line 324: Line 348:
{{Multival|legend=1| 3 5 -13 1 -29 -44 }}
{{Multival|legend=1| 3 5 -13 1 -29 -44 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 166.0938
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~10/9 = 166.0938
* [[POTE]]: ~2 = 1\1, ~10/9 = 166.041


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 341: Line 367:
Mapping: {{mapping| 1 2 3 1 4 | 0 -3 -5 13 -4 }}
Mapping: {{mapping| 1 2 3 1 4 | 0 -3 -5 13 -4 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 165.9246
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 165.9246
* POTE: ~2 = 1\1, ~11/10 = 165.981


Minimax tuning:  
Minimax tuning:  
Line 358: Line 386:
Mapping: {{mapping| 1 2 3 1 4 3 | 0 -3 -5 13 -4 5 }}
Mapping: {{mapping| 1 2 3 1 4 3 | 0 -3 -5 13 -4 5 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 166.0459
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 166.0459
* POTE: ~2 = 1\1, ~11/10 = 165.974


Minimax tuning:  
Minimax tuning:  
Line 379: Line 409:
{{Multival|legend=1| 3 5 1 1 -7 -12 }}
{{Multival|legend=1| 3 5 1 1 -7 -12 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 165.1845
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~10/9 = 165.1845
* [[POTE]]: ~2 = 1\1, ~10/9 = 158.868


[[Minimax tuning]]:  
[[Minimax tuning]]:  
Line 396: Line 428:
Mapping: {{mapping| 1 2 3 3 4 | 0 -3 -5 -1 -4 }}
Mapping: {{mapping| 1 2 3 3 4 | 0 -3 -5 -1 -4 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684
Optimal tunings:
* CTE: ~2 = 1\1, ~11/10 = 164.7684
* POTE: ~2 = 1\1, ~11/10 = 158.750


{{Optimal ET sequence|legend=1| 7, 8d, 15d }}
{{Optimal ET sequence|legend=1| 7, 8d, 15d }}
Line 413: Line 447:
{{Multival|legend=1| 3 5 2 1 -5 -9 }}
{{Multival|legend=1| 3 5 2 1 -5 -9 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 161.3408
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~10/9 = 161.3408
* [[POTE]]: ~2 = 1\1, ~10/9 = 169.112


{{Optimal ET sequence|legend=1| 7d }}
{{Optimal ET sequence|legend=1| 7d }}
Line 435: Line 471:
{{Multival|legend=1| 6 10 10 2 -1 -5 }}
{{Multival|legend=1| 6 10 10 2 -1 -5 }}


[[Optimal tuning]] ([[CTE]]): ~7/5 = 1\2, ~9/7 = 435.2580
[[Optimal tuning]]s:
* [[CTE]]: ~7/5 = 1\2, ~9/7 = 435.2580
* [[POTE]]: ~7/5 = 1\2, ~9/7 = 435.648


{{Optimal ET sequence|legend=1| 8d, 14c, 22 }}
{{Optimal ET sequence|legend=1| 8d, 14c, 22 }}
Line 448: Line 486:
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }}
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }}


Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281
Optimal tunings:
* CTE: ~7/5 = 1\2, ~9/7 = 435.5281
* POTE: ~7/5 = 1\2, ~9/7 = 435.386


{{Optimal ET sequence|legend=1| 8d, 14c, 22, 58ce }}
{{Optimal ET sequence|legend=1| 8d, 14c, 22, 58ce }}
Line 461: Line 501:
Mapping: {{mapping| 2 1 1 2 4 3 | 0 3 5 5 4 6 }}
Mapping: {{mapping| 2 1 1 2 4 3 | 0 3 5 5 4 6 }}


Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087
Optimal tunings:
* CTE: ~7/5 = 1\2, ~9/7 = 436.3087
* POTE: ~7/5 = 1\2, ~9/7 = 435.861


{{Optimal ET sequence|legend=1| 8d, 14cf, 22 }}
{{Optimal ET sequence|legend=1| 8d, 14cf, 22 }}
Line 474: Line 516:
Mapping: {{mapping| 2 1 1 2 4 6 | 0 3 5 5 4 2 }}
Mapping: {{mapping| 2 1 1 2 4 6 | 0 3 5 5 4 2 }}


Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856
Optimal tunings:
* CTE: ~7/5 = 1\2, ~9/7 = 435.1856
* POTE: ~7/5 = 1\2, ~9/7 = 437.078


{{Optimal ET sequence|legend=1| 14c, 22f }}
{{Optimal ET sequence|legend=1| 14c, 22f }}
Line 487: Line 531:
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }}
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }}


Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289
Optimal tunings:
* CTE: ~7/5 = 1\2, ~9/7 = 435.3289
* POTE: ~7/5 = 1\2, ~9/7 = 435.425


{{Optimal ET sequence|legend=1| 22 }}
{{Optimal ET sequence|legend=1| 22 }}
Line 507: Line 553:
{{Multival|legend=1| 6 10 3 2 -12 -21 }}
{{Multival|legend=1| 6 10 3 2 -12 -21 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~21/20 = 81.9143
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~21/20 = 81.9143
* [[POTE]]: ~2 = 1\1, ~21/20 = 82.505


{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }}
{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }}
Line 520: Line 568:
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }}
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }}


Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017
Optimal tunings:
* CTE: ~2 = 1\1, ~21/20 = 81.8017
* POTE: ~2 = 1\1, ~21/20 = 82.504


{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }}
{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }}
Line 533: Line 583:
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -6 -10 -3 -8 -19 }}
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -6 -10 -3 -8 -19 }}


Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123
Optimal tunings:
* CTE: ~2 = 1\1, ~21/20 = 81.9123
* POTE: ~2 = 1\1, ~21/20 = 82.530


{{Optimal ET sequence|legend=1| 14cf, 15, 29, 44d }}
{{Optimal ET sequence|legend=1| 14cf, 15, 29, 44d }}
Line 546: Line 598:
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -6 -10 -3 -8 -4 }}
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -6 -10 -3 -8 -4 }}


Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342
Optimal tunings:
* CTE: ~2 = 1\1, ~21/20 = 82.0342
* POTE: ~2 = 1\1, ~21/20 = 81.759


{{Optimal ET sequence|legend=1| 14c, 15, 29f, 44dff }}
{{Optimal ET sequence|legend=1| 14c, 15, 29f, 44dff }}
Line 566: Line 620:
{{Multival|legend=1| 9 15 19 3 5 2 }}
{{Multival|legend=1| 9 15 19 3 5 2 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~9/7 = 454.5500
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~9/7 = 454.5500
* [[POTE]]: ~2 = 1\1, ~9/7 = 454.448


{{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }}
{{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }}
Line 579: Line 635:
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }}
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }}


Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050
Optimal tunings:
* CTE: ~2 = 1\1, ~9/7 = 454.5050
* POTE: ~2 = 1\1, ~9/7 = 454.512


{{Optimal ET sequence|legend=1| 8d, 21cde, 29, 37, 66 }}
{{Optimal ET sequence|legend=1| 8d, 21cde, 29, 37, 66 }}
Line 592: Line 650:
Mapping: {{mapping| 1 5 8 10 8 9 | 0 -9 -15 -19 -12 -14 }}
Mapping: {{mapping| 1 5 8 10 8 9 | 0 -9 -15 -19 -12 -14 }}


Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798
Optimal tunings:
* CTE: ~2 = 1\1, ~13/10 = 454.4798
* POTE: ~2 = 1\1, ~13/10 = 454.529


{{Optimal ET sequence|legend=1| 8d, 21cdef, 29, 37, 66 }}
{{Optimal ET sequence|legend=1| 8d, 21cdef, 29, 37, 66 }}
Line 609: Line 669:
{{Multival|legend=1| 9 15 4 3 -19 -33 }}
{{Multival|legend=1| 9 15 4 3 -19 -33 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~36/35 = 54.8040
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~36/35 = 54.8040
* [[POTE]]: ~2 = 1\1, ~36/35 = 54.384


{{Optimal ET sequence|legend=1| 1c, 21c, 22 }}
{{Optimal ET sequence|legend=1| 1c, 21c, 22 }}
Line 622: Line 684:
Mapping: {{mapping| 1 2 3 3 4 | 0 -9 -15 -4 -12 }}
Mapping: {{mapping| 1 2 3 3 4 | 0 -9 -15 -4 -12 }}


Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019
Optimal tunings:
* CTE: ~2 = 1\1, ~36/35 = 54.7019
* POTE: ~2 = 1\1, ~36/35 = 54.376


{{Optimal ET sequence|legend=1| 1ce, 21ce, 22 }}
{{Optimal ET sequence|legend=1| 1ce, 21ce, 22 }}
Line 635: Line 699:
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -9 -15 -4 -12 -7 }}
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -9 -15 -4 -12 -7 }}


Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751
Optimal tunings:
* CTE: ~2 = 1\1, ~36/35 = 54.5751
* POTE: ~2 = 1\1, ~36/35 = 54.665


{{Optimal ET sequence|legend=1| 1ce, 21cef, 22 }}
{{Optimal ET sequence|legend=1| 1ce, 21cef, 22 }}

Revision as of 07:36, 16 March 2024

The porcupine family is the rank-2 family of temperaments whose 5-limit parent comma is 250/243, also called the maximal diesis or porcupine comma.

Its monzo is [1 -5 3, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.

Notice 250/243 = (55/54)(100/99), the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine.

The second comma of the normal comma list defines which 7-limit family member we are looking at. That means

Temperaments discussed elsewhere include jamesbond.

Porcupine

Subgroup: 2.3.5

Comma list: 250/243

Mapping[1 2 3], 0 -3 -5]]

mapping generators: ~2, ~10/9

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/9 = 164.1659
  • POTE: ~2 = 1\1, ~10/9 = 163.950

Tuning ranges:

  • 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
  • 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
  • 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015]

Optimal ET sequence7, 15, 22, 95c

Badness: 0.030778

2.3.5.11 subgroup (porkypine)

Subgroup: 2.3.5.11

Comma list: 55/54, 100/99

Sval mapping: [1 2 3 4], 0 -3 -5 -4]]

Gencom mapping: [1 2 3 0 4], 0 -3 -5 0 -4]]

gencom: [2 10/9; 55/54, 100/99]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 163.8867
  • POTE: ~2 = 1\1, ~11/10 = 164.0777

Optimal ET sequence7, 15, 22, 73ce, 95ce

Badness: 0.0097

Undecimation

Subgroup: 2.3.5.11.13

Comma list: 55/54, 100/99, 512/507

Sval mapping: [1 5 8 8 2], 0 -6 -10 -8 3]]

sval mapping generators: ~2, ~65/44

Optimal tunings:

  • CTE: ~2 = 1\1, ~88/65 = 518.0865
  • POTE: ~2 = 1\1, ~88/65 = 518.2094

Optimal ET sequence7, 23bc, 30, 37, 44

Badness: 0.0305

Septimal porcupine

Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.

Subgroup: 2.3.5.7

Comma list: 64/63, 250/243

Mapping[1 2 3 2], 0 -3 -5 6]]

Wedgie⟨⟨ 3 5 -6 1 -18 -28 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/9 = 163.2032
  • POTE: ~2 = 1\1, ~10/9 = 162.880

Minimax tuning:

eigenmonzo (unchanged-interval) basis: 2.5
eigenmonzo (unchanged-interval) basis: 2.9/7

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
  • 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
  • 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
  • 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]

Optimal ET sequence7, 15, 22, 37, 59, 81bd

Badness: 0.041057

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 100/99

Mapping: [1 2 3 2 4], 0 -3 -5 6 -4]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 163.1055
  • POTE: ~2 = 1\1, ~11/10 = 162.747

Minimax tuning:

  • 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12
eigenmonzo basis (unchanged-interval basis): 2.9/7

Tuning ranges:

  • 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
  • 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
  • 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]

Optimal ET sequence7, 15, 22, 37, 59

Badness: 0.021562

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 66/65

Mapping: [1 2 3 2 4 4], 0 -3 -5 6 -4 -2]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 163.4425
  • POTE: ~2 = 1\1, ~11/10 = 162.708

Minimax tuning:

  • 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4
Eigenmonzo basis (unchanged-interval basis): 2.11

Tuning ranges:

  • 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
  • 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
  • 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
  • 13-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
  • 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636

Optimal ET sequence7, 15, 22f, 37f

Badness: 0.021276

Porcupinefish

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 100/99

Mapping: [1 2 3 2 4 6], 0 -3 -5 6 -4 -17]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 162.6361
  • POTE: ~2 = 1\1, ~11/10 = 162.277

Minimax tuning:

  • 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13
Eigenmonzo basis (unchanged-interval basis): 2.13/11

Tuning ranges:

  • 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
  • 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
  • 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
  • 13-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 162.162]
  • 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162

Optimal ET sequence15, 22, 37

Badness: 0.025314

Pourcup

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 100/99, 196/195

Mapping: [1 2 3 2 4 1], 0 -3 -5 6 -4 20]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 163.3781
  • POTE: ~2 = 1\1, ~11/10 = 162.482

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14
Eigenmonzo basis (unchanged-interval basis): 2.13/7

Optimal ET sequence15f, 22f, 37, 59f

Badness: 0.035130

Porkpie

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 100/99

Mapping: [1 2 3 2 4 3], 0 -3 -5 6 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 163.6778
  • POTE: ~2 = 1\1, ~11/10 = 163.688

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12
Eigenmonzo basis (unchanged-interval basis): 2.9/7

Optimal ET sequence7, 15f, 22

Badness: 0.026043

Opossum

Opossum can be described as 7d & 8d. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.

Subgroup: 2.3.5.7

Comma list: 28/27, 126/125

Mapping[1 2 3 4], 0 -3 -5 -9]]

Wedgie⟨⟨ 3 5 9 1 6 7 ]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 161.3063

Minimax tuning:

Optimal ET sequence7d, 8d, 15

Badness: 0.040650

11-limit

Subgroup: 2.3.5.7.11

Comma list: 28/27, 55/54, 77/75

Mapping: [1 2 3 4 4], 0 -3 -5 -9 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.3646

Minimax tuning:

  • 11-odd-limit eigenmonzo (unchanged-interval) basis: 2.7

Optimal ET sequence7d, 8d, 15

Badness: 0.022325

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 28/27, 40/39, 55/54, 66/65

Mapping: [1 2 3 4 4 4], 0 -3 -5 -9 -4 -2]]

Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.6312

Minimax tuning:

  • 13- and 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.7

Optimal ET sequence7d, 8d, 15, 38bceff

Badness: 0.019389

Porky

Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.

Subgroup: 2.3.5.7

Comma list: 225/224, 250/243

Mapping[1 2 3 5], 0 -3 -5 -16]]

Wedgie⟨⟨ 3 5 16 1 17 23 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/9 = 164.3913
  • POTE: ~2 = 1\1, ~10/9 = 164.412

Minimax tuning:

eigenmonzo (unchanged-interval) basis: 2.7/5

Optimal ET sequence7d, 15d, 22, 29, 51, 73c

Badness: 0.054389

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 225/224

Mapping: [1 2 3 5 4], 0 -3 -5 -16 -4]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 164.3207
  • POTE: ~2 = 1\1, ~11/10 = 164.552

Minimax tuning:

  • 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11
eigenmonzo basis (unchanged-interval basis): 2.7/5

Optimal ET sequence7d, 15d, 22, 51

Badness: 0.027268

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 91/90, 100/99

Mapping: [1 2 3 5 4 3], 0 -3 -5 -16 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 164.4782
  • POTE: ~2 = 1\1, ~11/10 = 164.953

Optimal ET sequence7d, 22, 29, 51f, 80cdeff

Badness: 0.026543

Coendou

Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.

Subgroup: 2.3.5.7

Comma list: 250/243, 525/512

Mapping[1 2 3 1], 0 -3 -5 13]]

Wedgie⟨⟨ 3 5 -13 1 -29 -44 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/9 = 166.0938
  • POTE: ~2 = 1\1, ~10/9 = 166.041

Minimax tuning:

eigenmonzo (unchanged-interval) basis: 2.3

Optimal ET sequence7, 22d, 29, 65c, 94cd

Badness: 0.118344

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 525/512

Mapping: [1 2 3 1 4], 0 -3 -5 13 -4]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 165.9246
  • POTE: ~2 = 1\1, ~11/10 = 165.981

Minimax tuning:

  • 11-odd-limit: ~11/10 = [2/3 -1/3
eigenmonzo basis (unchanged-interval basis): 2.3

Optimal ET sequence7, 22d, 29, 65ce

Badness: 0.049669

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 100/99, 105/104

Mapping: [1 2 3 1 4 3], 0 -3 -5 13 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 166.0459
  • POTE: ~2 = 1\1, ~11/10 = 165.974

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [2/3 -1/3
eigenmonzo basis (unchanged-interval basis): 2.3

Optimal ET sequence7, 22d, 29, 65cef

Badness: 0.030233

Hystrix

Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.

Subgroup: 2.3.5.7

Comma list: 36/35, 160/147

Mapping[1 2 3 3], 0 -3 -5 -1]]

Wedgie⟨⟨ 3 5 1 1 -7 -12 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/9 = 165.1845
  • POTE: ~2 = 1\1, ~10/9 = 158.868

Minimax tuning:

eigenmonzo (unchanged-interval) basis: 2.5

Optimal ET sequence7, 8d, 15d

Badness: 0.044944

11-limit

Subgroup: 2.3.5.7.11

Comma list: 22/21, 36/35, 80/77

Mapping: [1 2 3 3 4], 0 -3 -5 -1 -4]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/10 = 164.7684
  • POTE: ~2 = 1\1, ~11/10 = 158.750

Optimal ET sequence7, 8d, 15d

Badness: 0.026790

Oxygen

Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct Fokker blocks.

Subgroup: 2.3.5.7

Comma list: 21/20, 175/162

Mapping[1 2 3 3], 0 -3 -5 -2]]

Wedgie⟨⟨ 3 5 2 1 -5 -9 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/9 = 161.3408
  • POTE: ~2 = 1\1, ~10/9 = 169.112

Optimal ET sequence7d

Badness: 0.059866

Hedgehog

Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the 146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22.

Subgroup: 2.3.5.7

Comma list: 50/49, 245/243

Mapping[2 1 1 2], 0 3 5 5]]

mapping generators: ~7/5, ~9/7

Wedgie⟨⟨ 6 10 10 2 -1 -5 ]]

Optimal tunings:

  • CTE: ~7/5 = 1\2, ~9/7 = 435.2580
  • POTE: ~7/5 = 1\2, ~9/7 = 435.648

Optimal ET sequence8d, 14c, 22

Badness: 0.043983

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 99/98

Mapping: [2 1 1 2 4], 0 3 5 5 4]]

Optimal tunings:

  • CTE: ~7/5 = 1\2, ~9/7 = 435.5281
  • POTE: ~7/5 = 1\2, ~9/7 = 435.386

Optimal ET sequence8d, 14c, 22, 58ce

Badness: 0.023095

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 99/98

Mapping: [2 1 1 2 4 3], 0 3 5 5 4 6]]

Optimal tunings:

  • CTE: ~7/5 = 1\2, ~9/7 = 436.3087
  • POTE: ~7/5 = 1\2, ~9/7 = 435.861

Optimal ET sequence8d, 14cf, 22

Badness: 0.021516

Urchin

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 50/49, 55/54, 66/65

Mapping: [2 1 1 2 4 6], 0 3 5 5 4 2]]

Optimal tunings:

  • CTE: ~7/5 = 1\2, ~9/7 = 435.1856
  • POTE: ~7/5 = 1\2, ~9/7 = 437.078

Optimal ET sequence14c, 22f

Badness: 0.025233

Hedgepig

Subgroup: 2.3.5.7.11

Comma list: 50/49, 245/243, 385/384

Mapping: [2 1 1 2 12], 0 3 5 5 -7]]

Optimal tunings:

  • CTE: ~7/5 = 1\2, ~9/7 = 435.3289
  • POTE: ~7/5 = 1\2, ~9/7 = 435.425

Optimal ET sequence22

Badness: 0.068406

Music

Nautilus

Subgroup: 2.3.5.7

Comma list: 49/48, 250/243

Mapping[1 2 3 3], 0 -6 -10 -3]]

mapping generators: ~2, ~21/20

Wedgie⟨⟨ 6 10 3 2 -12 -21 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~21/20 = 81.9143
  • POTE: ~2 = 1\1, ~21/20 = 82.505

Optimal ET sequence14c, 15, 29, 44d

Badness: 0.057420

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 245/242

Mapping: [1 2 3 3 4], 0 -6 -10 -3 -8]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~21/20 = 81.8017
  • POTE: ~2 = 1\1, ~21/20 = 82.504

Optimal ET sequence14c, 15, 29, 44d

Badness: 0.026023

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 91/90, 100/99

Mapping: [1 2 3 3 4 5], 0 -6 -10 -3 -8 -19]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~21/20 = 81.9123
  • POTE: ~2 = 1\1, ~21/20 = 82.530

Optimal ET sequence14cf, 15, 29, 44d

Badness: 0.022285

Belauensis

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 49/48, 55/54, 66/65

Mapping: [1 2 3 3 4 4], 0 -6 -10 -3 -8 -4]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~21/20 = 82.0342
  • POTE: ~2 = 1\1, ~21/20 = 81.759

Optimal ET sequence14c, 15, 29f, 44dff

Badness: 0.029816

Music

Ammonite

Subgroup: 2.3.5.7

Comma list: 250/243, 686/675

Mapping[1 5 8 10], 0 -9 -15 -19]]

mapping generators: ~2, ~9/7

Wedgie⟨⟨ 9 15 19 3 5 2 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~9/7 = 454.5500
  • POTE: ~2 = 1\1, ~9/7 = 454.448

Optimal ET sequence8d, 21cd, 29, 37, 66

Badness: 0.107686

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 686/675

Mapping: [1 5 8 10 8], 0 -9 -15 -19 -12]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~9/7 = 454.5050
  • POTE: ~2 = 1\1, ~9/7 = 454.512

Optimal ET sequence8d, 21cde, 29, 37, 66

Badness: 0.045694

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 91/90, 100/99, 169/168

Mapping: [1 5 8 10 8 9], 0 -9 -15 -19 -12 -14]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~13/10 = 454.4798
  • POTE: ~2 = 1\1, ~13/10 = 454.529

Optimal ET sequence8d, 21cdef, 29, 37, 66

Badness: 0.027168

Ceratitid

Subgroup: 2.3.5.7

Comma list: 250/243, 1728/1715

Mapping[1 2 3 3], 0 -9 -15 -4]]

mapping generators: ~2, ~36/35

Wedgie⟨⟨ 9 15 4 3 -19 -33 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~36/35 = 54.8040
  • POTE: ~2 = 1\1, ~36/35 = 54.384

Optimal ET sequence1c, 21c, 22

Badness: 0.115304

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 352/343

Mapping: [1 2 3 3 4], 0 -9 -15 -4 -12]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~36/35 = 54.7019
  • POTE: ~2 = 1\1, ~36/35 = 54.376

Optimal ET sequence1ce, 21ce, 22

Badness: 0.051319

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/63, 100/99, 352/343

Mapping: [1 2 3 3 4 4], 0 -9 -15 -4 -12 -7]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~36/35 = 54.5751
  • POTE: ~2 = 1\1, ~36/35 = 54.665

Optimal ET sequence1ce, 21cef, 22

Badness: 0.044739