Porcupine family: Difference between revisions
m Bold lemma |
Restore POTE tuning by request (and correct the tunings for undecimation) |
||
Line 17: | Line 17: | ||
* [[49/48]], the slendro diesis, for [[#Nautilus|nautilus]]. | * [[49/48]], the slendro diesis, for [[#Nautilus|nautilus]]. | ||
Temperaments discussed elsewhere include [[ | Temperaments discussed elsewhere include [[7th-octave temperaments #Jamesbond|jamesbond]]. | ||
== Porcupine == | == Porcupine == | ||
Line 30: | Line 30: | ||
: mapping generators: ~2, ~10/9 | : mapping generators: ~2, ~10/9 | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~10/9 = 164.1659 | |||
* [[POTE]]: ~2 = 1\1, ~10/9 = 163.950 | |||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
Line 52: | Line 54: | ||
: gencom: [2 10/9; 55/54, 100/99] | : gencom: [2 10/9; 55/54, 100/99] | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 163.8867 | |||
* POTE: ~2 = 1\1, ~11/10 = 164.0777 | |||
{{Optimal ET sequence|legend=1| 7, 15, 22, 73ce, 95ce }} | {{Optimal ET sequence|legend=1| 7, 15, 22, 73ce, 95ce }} | ||
Line 67: | Line 71: | ||
: sval mapping generators: ~2, ~65/44 | : sval mapping generators: ~2, ~65/44 | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~88/65 = 518.0865 | |||
* POTE: ~2 = 1\1, ~88/65 = 518.2094 | |||
{{Optimal ET sequence|legend=1| 7, 23bc, 30, 37, 44 }} | {{Optimal ET sequence|legend=1| 7, 23bc, 30, 37, 44 }} | ||
Line 86: | Line 92: | ||
{{Multival|legend=1| 3 5 -6 1 -18 -28 }} | {{Multival|legend=1| 3 5 -6 1 -18 -28 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~10/9 = 163.2032 | |||
* [[POTE]]: ~2 = 1\1, ~10/9 = 162.880 | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 111: | Line 119: | ||
Mapping: {{mapping| 1 2 3 2 4 | 0 -3 -5 6 -4 }} | Mapping: {{mapping| 1 2 3 2 4 | 0 -3 -5 6 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 163.1055 | |||
* POTE: ~2 = 1\1, ~11/10 = 162.747 | |||
Minimax tuning: | Minimax tuning: | ||
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }} | * 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }} | ||
: | : eigenmonzo basis (unchanged-interval basis): 2.9/7 | ||
Tuning ranges: | Tuning ranges: | ||
Line 133: | Line 143: | ||
Mapping: {{mapping| 1 2 3 2 4 4 | 0 -3 -5 6 -4 -2 }} | Mapping: {{mapping| 1 2 3 2 4 4 | 0 -3 -5 6 -4 -2 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 163.4425 | |||
* POTE: ~2 = 1\1, ~11/10 = 162.708 | |||
Minimax tuning: | Minimax tuning: | ||
Line 159: | Line 171: | ||
Mapping: {{mapping| 1 2 3 2 4 6 | 0 -3 -5 6 -4 -17 }} | Mapping: {{mapping| 1 2 3 2 4 6 | 0 -3 -5 6 -4 -17 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 162.6361 | |||
* POTE: ~2 = 1\1, ~11/10 = 162.277 | |||
Minimax tuning: | Minimax tuning: | ||
Line 183: | Line 197: | ||
Mapping: {{mapping| 1 2 3 2 4 1 | 0 -3 -5 6 -4 20 }} | Mapping: {{mapping| 1 2 3 2 4 1 | 0 -3 -5 6 -4 20 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 163.3781 | |||
* POTE: ~2 = 1\1, ~11/10 = 162.482 | |||
Minimax tuning: | Minimax tuning: | ||
Line 200: | Line 216: | ||
Mapping: {{mapping| 1 2 3 2 4 3 | 0 -3 -5 6 -4 5 }} | Mapping: {{mapping| 1 2 3 2 4 3 | 0 -3 -5 6 -4 5 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 163.6778 | |||
* POTE: ~2 = 1\1, ~11/10 = 163.688 | |||
Minimax tuning: | Minimax tuning: | ||
Line 273: | Line 291: | ||
{{Multival|legend=1| 3 5 16 1 17 23 }} | {{Multival|legend=1| 3 5 16 1 17 23 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~10/9 = 164.3913 | |||
* [[POTE]]: ~2 = 1\1, ~10/9 = 164.412 | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 290: | Line 310: | ||
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }} | Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 164.3207 | |||
* POTE: ~2 = 1\1, ~11/10 = 164.552 | |||
Minimax tuning: | Minimax tuning: | ||
Line 307: | Line 329: | ||
Mapping: {{mapping| 1 2 3 5 4 3 | 0 -3 -5 -16 -4 5 }} | Mapping: {{mapping| 1 2 3 5 4 3 | 0 -3 -5 -16 -4 5 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 164.4782 | |||
* POTE: ~2 = 1\1, ~11/10 = 164.953 | |||
{{Optimal ET sequence|legend=1| 7d, 22, 29, 51f, 80cdeff }} | {{Optimal ET sequence|legend=1| 7d, 22, 29, 51f, 80cdeff }} | ||
Line 324: | Line 348: | ||
{{Multival|legend=1| 3 5 -13 1 -29 -44 }} | {{Multival|legend=1| 3 5 -13 1 -29 -44 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~10/9 = 166.0938 | |||
* [[POTE]]: ~2 = 1\1, ~10/9 = 166.041 | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 341: | Line 367: | ||
Mapping: {{mapping| 1 2 3 1 4 | 0 -3 -5 13 -4 }} | Mapping: {{mapping| 1 2 3 1 4 | 0 -3 -5 13 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 165.9246 | |||
* POTE: ~2 = 1\1, ~11/10 = 165.981 | |||
Minimax tuning: | Minimax tuning: | ||
Line 358: | Line 386: | ||
Mapping: {{mapping| 1 2 3 1 4 3 | 0 -3 -5 13 -4 5 }} | Mapping: {{mapping| 1 2 3 1 4 3 | 0 -3 -5 13 -4 5 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 166.0459 | |||
* POTE: ~2 = 1\1, ~11/10 = 165.974 | |||
Minimax tuning: | Minimax tuning: | ||
Line 379: | Line 409: | ||
{{Multival|legend=1| 3 5 1 1 -7 -12 }} | {{Multival|legend=1| 3 5 1 1 -7 -12 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~10/9 = 165.1845 | |||
* [[POTE]]: ~2 = 1\1, ~10/9 = 158.868 | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
Line 396: | Line 428: | ||
Mapping: {{mapping| 1 2 3 3 4 | 0 -3 -5 -1 -4 }} | Mapping: {{mapping| 1 2 3 3 4 | 0 -3 -5 -1 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~11/10 = 164.7684 | |||
* POTE: ~2 = 1\1, ~11/10 = 158.750 | |||
{{Optimal ET sequence|legend=1| 7, 8d, 15d }} | {{Optimal ET sequence|legend=1| 7, 8d, 15d }} | ||
Line 413: | Line 447: | ||
{{Multival|legend=1| 3 5 2 1 -5 -9 }} | {{Multival|legend=1| 3 5 2 1 -5 -9 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~10/9 = 161.3408 | |||
* [[POTE]]: ~2 = 1\1, ~10/9 = 169.112 | |||
{{Optimal ET sequence|legend=1| 7d }} | {{Optimal ET sequence|legend=1| 7d }} | ||
Line 435: | Line 471: | ||
{{Multival|legend=1| 6 10 10 2 -1 -5 }} | {{Multival|legend=1| 6 10 10 2 -1 -5 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~7/5 = 1\2, ~9/7 = 435.2580 | |||
* [[POTE]]: ~7/5 = 1\2, ~9/7 = 435.648 | |||
{{Optimal ET sequence|legend=1| 8d, 14c, 22 }} | {{Optimal ET sequence|legend=1| 8d, 14c, 22 }} | ||
Line 448: | Line 486: | ||
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }} | Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~7/5 = 1\2, ~9/7 = 435.5281 | |||
* POTE: ~7/5 = 1\2, ~9/7 = 435.386 | |||
{{Optimal ET sequence|legend=1| 8d, 14c, 22, 58ce }} | {{Optimal ET sequence|legend=1| 8d, 14c, 22, 58ce }} | ||
Line 461: | Line 501: | ||
Mapping: {{mapping| 2 1 1 2 4 3 | 0 3 5 5 4 6 }} | Mapping: {{mapping| 2 1 1 2 4 3 | 0 3 5 5 4 6 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~7/5 = 1\2, ~9/7 = 436.3087 | |||
* POTE: ~7/5 = 1\2, ~9/7 = 435.861 | |||
{{Optimal ET sequence|legend=1| 8d, 14cf, 22 }} | {{Optimal ET sequence|legend=1| 8d, 14cf, 22 }} | ||
Line 474: | Line 516: | ||
Mapping: {{mapping| 2 1 1 2 4 6 | 0 3 5 5 4 2 }} | Mapping: {{mapping| 2 1 1 2 4 6 | 0 3 5 5 4 2 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~7/5 = 1\2, ~9/7 = 435.1856 | |||
* POTE: ~7/5 = 1\2, ~9/7 = 437.078 | |||
{{Optimal ET sequence|legend=1| 14c, 22f }} | {{Optimal ET sequence|legend=1| 14c, 22f }} | ||
Line 487: | Line 531: | ||
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }} | Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~7/5 = 1\2, ~9/7 = 435.3289 | |||
* POTE: ~7/5 = 1\2, ~9/7 = 435.425 | |||
{{Optimal ET sequence|legend=1| 22 }} | {{Optimal ET sequence|legend=1| 22 }} | ||
Line 507: | Line 553: | ||
{{Multival|legend=1| 6 10 3 2 -12 -21 }} | {{Multival|legend=1| 6 10 3 2 -12 -21 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~21/20 = 81.9143 | |||
* [[POTE]]: ~2 = 1\1, ~21/20 = 82.505 | |||
{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }} | {{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }} | ||
Line 520: | Line 568: | ||
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }} | Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~21/20 = 81.8017 | |||
* POTE: ~2 = 1\1, ~21/20 = 82.504 | |||
{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }} | {{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }} | ||
Line 533: | Line 583: | ||
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -6 -10 -3 -8 -19 }} | Mapping: {{mapping| 1 2 3 3 4 5 | 0 -6 -10 -3 -8 -19 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~21/20 = 81.9123 | |||
* POTE: ~2 = 1\1, ~21/20 = 82.530 | |||
{{Optimal ET sequence|legend=1| 14cf, 15, 29, 44d }} | {{Optimal ET sequence|legend=1| 14cf, 15, 29, 44d }} | ||
Line 546: | Line 598: | ||
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -6 -10 -3 -8 -4 }} | Mapping: {{mapping| 1 2 3 3 4 4 | 0 -6 -10 -3 -8 -4 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~21/20 = 82.0342 | |||
* POTE: ~2 = 1\1, ~21/20 = 81.759 | |||
{{Optimal ET sequence|legend=1| 14c, 15, 29f, 44dff }} | {{Optimal ET sequence|legend=1| 14c, 15, 29f, 44dff }} | ||
Line 566: | Line 620: | ||
{{Multival|legend=1| 9 15 19 3 5 2 }} | {{Multival|legend=1| 9 15 19 3 5 2 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~9/7 = 454.5500 | |||
* [[POTE]]: ~2 = 1\1, ~9/7 = 454.448 | |||
{{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }} | {{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }} | ||
Line 579: | Line 635: | ||
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }} | Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~9/7 = 454.5050 | |||
* POTE: ~2 = 1\1, ~9/7 = 454.512 | |||
{{Optimal ET sequence|legend=1| 8d, 21cde, 29, 37, 66 }} | {{Optimal ET sequence|legend=1| 8d, 21cde, 29, 37, 66 }} | ||
Line 592: | Line 650: | ||
Mapping: {{mapping| 1 5 8 10 8 9 | 0 -9 -15 -19 -12 -14 }} | Mapping: {{mapping| 1 5 8 10 8 9 | 0 -9 -15 -19 -12 -14 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~13/10 = 454.4798 | |||
* POTE: ~2 = 1\1, ~13/10 = 454.529 | |||
{{Optimal ET sequence|legend=1| 8d, 21cdef, 29, 37, 66 }} | {{Optimal ET sequence|legend=1| 8d, 21cdef, 29, 37, 66 }} | ||
Line 609: | Line 669: | ||
{{Multival|legend=1| 9 15 4 3 -19 -33 }} | {{Multival|legend=1| 9 15 4 3 -19 -33 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1\1, ~36/35 = 54.8040 | |||
* [[POTE]]: ~2 = 1\1, ~36/35 = 54.384 | |||
{{Optimal ET sequence|legend=1| 1c, 21c, 22 }} | {{Optimal ET sequence|legend=1| 1c, 21c, 22 }} | ||
Line 622: | Line 684: | ||
Mapping: {{mapping| 1 2 3 3 4 | 0 -9 -15 -4 -12 }} | Mapping: {{mapping| 1 2 3 3 4 | 0 -9 -15 -4 -12 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~36/35 = 54.7019 | |||
* POTE: ~2 = 1\1, ~36/35 = 54.376 | |||
{{Optimal ET sequence|legend=1| 1ce, 21ce, 22 }} | {{Optimal ET sequence|legend=1| 1ce, 21ce, 22 }} | ||
Line 635: | Line 699: | ||
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -9 -15 -4 -12 -7 }} | Mapping: {{mapping| 1 2 3 3 4 4 | 0 -9 -15 -4 -12 -7 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1\1, ~36/35 = 54.5751 | |||
* POTE: ~2 = 1\1, ~36/35 = 54.665 | |||
{{Optimal ET sequence|legend=1| 1ce, 21cef, 22 }} | {{Optimal ET sequence|legend=1| 1ce, 21cef, 22 }} |
Revision as of 07:36, 16 March 2024
The porcupine family is the rank-2 family of temperaments whose 5-limit parent comma is 250/243, also called the maximal diesis or porcupine comma.
Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.
Notice 250/243 = (55/54)(100/99), the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine.
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
Temperaments discussed elsewhere include jamesbond.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- mapping generators: ~2, ~10/9
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015]
Optimal ET sequence: 7, 15, 22, 95c
Badness: 0.030778
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
- gencom: [2 10/9; 55/54, 100/99]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.8867
- POTE: ~2 = 1\1, ~11/10 = 164.0777
Optimal ET sequence: 7, 15, 22, 73ce, 95ce
Badness: 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- sval mapping generators: ~2, ~65/44
Optimal tunings:
- CTE: ~2 = 1\1, ~88/65 = 518.0865
- POTE: ~2 = 1\1, ~88/65 = 518.2094
Optimal ET sequence: 7, 23bc, 30, 37, 44
Badness: 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]
Optimal ET sequence: 7, 15, 22, 37, 59, 81bd
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.1055
- POTE: ~2 = 1\1, ~11/10 = 162.747
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- eigenmonzo basis (unchanged-interval basis): 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
- 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
Optimal ET sequence: 7, 15, 22, 37, 59
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.4425
- POTE: ~2 = 1\1, ~11/10 = 162.708
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- Eigenmonzo basis (unchanged-interval basis): 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
- 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636
Optimal ET sequence: 7, 15, 22f, 37f
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 162.6361
- POTE: ~2 = 1\1, ~11/10 = 162.277
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- Eigenmonzo basis (unchanged-interval basis): 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 162.162]
- 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162
Optimal ET sequence: 15, 22, 37
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.3781
- POTE: ~2 = 1\1, ~11/10 = 162.482
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- Eigenmonzo basis (unchanged-interval basis): 2.13/7
Optimal ET sequence: 15f, 22f, 37, 59f
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 163.6778
- POTE: ~2 = 1\1, ~11/10 = 163.688
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis (unchanged-interval basis): 2.9/7
Optimal ET sequence: 7, 15f, 22
Badness: 0.026043
Opossum
Opossum can be described as 7d & 8d. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.
Subgroup: 2.3.5.7
Comma list: 28/27, 126/125
Mapping: [⟨1 2 3 4], ⟨0 -3 -5 -9]]
Wedgie: ⟨⟨ 3 5 9 1 6 7 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 161.3063
Optimal ET sequence: 7d, 8d, 15
Badness: 0.040650
11-limit
Subgroup: 2.3.5.7.11
Comma list: 28/27, 55/54, 77/75
Mapping: [⟨1 2 3 4 4], ⟨0 -3 -5 -9 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.3646
Minimax tuning:
- 11-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15
Badness: 0.022325
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 28/27, 40/39, 55/54, 66/65
Mapping: [⟨1 2 3 4 4 4], ⟨0 -3 -5 -9 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.6312
Minimax tuning:
- 13- and 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.7
Optimal ET sequence: 7d, 8d, 15, 38bceff
Badness: 0.019389
Porky
Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
Optimal ET sequence: 7d, 15d, 22, 29, 51, 73c
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.3207
- POTE: ~2 = 1\1, ~11/10 = 164.552
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11⟩
- eigenmonzo basis (unchanged-interval basis): 2.7/5
Optimal ET sequence: 7d, 15d, 22, 51
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.4782
- POTE: ~2 = 1\1, ~11/10 = 164.953
Optimal ET sequence: 7d, 22, 29, 51f, 80cdeff
Badness: 0.026543
Coendou
Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
Optimal ET sequence: 7, 22d, 29, 65c, 94cd
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 165.9246
- POTE: ~2 = 1\1, ~11/10 = 165.981
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo basis (unchanged-interval basis): 2.3
Optimal ET sequence: 7, 22d, 29, 65ce
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 166.0459
- POTE: ~2 = 1\1, ~11/10 = 165.974
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [2/3 -1/3⟩
- eigenmonzo basis (unchanged-interval basis): 2.3
Optimal ET sequence: 7, 22d, 29, 65cef
Badness: 0.030233
Hystrix
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
- 7- and 9-odd-limit: ~10/9 = [3/5 0 -1/5⟩
Optimal ET sequence: 7, 8d, 15d
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/10 = 164.7684
- POTE: ~2 = 1\1, ~11/10 = 158.750
Optimal ET sequence: 7, 8d, 15d
Badness: 0.026790
Oxygen
Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct Fokker blocks.
Subgroup: 2.3.5.7
Comma list: 21/20, 175/162
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -2]]
Wedgie: ⟨⟨ 3 5 2 1 -5 -9 ]]
Badness: 0.059866
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the ⟨146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
- mapping generators: ~7/5, ~9/7
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
Optimal ET sequence: 8d, 14c, 22
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.5281
- POTE: ~7/5 = 1\2, ~9/7 = 435.386
Optimal ET sequence: 8d, 14c, 22, 58ce
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 436.3087
- POTE: ~7/5 = 1\2, ~9/7 = 435.861
Optimal ET sequence: 8d, 14cf, 22
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.1856
- POTE: ~7/5 = 1\2, ~9/7 = 437.078
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
Optimal tunings:
- CTE: ~7/5 = 1\2, ~9/7 = 435.3289
- POTE: ~7/5 = 1\2, ~9/7 = 435.425
Badness: 0.068406
- Music
- Phobos Light by Chris Vaisvil in hedgehog[14] to 22edo.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
- mapping generators: ~2, ~21/20
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
Optimal ET sequence: 14c, 15, 29, 44d
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 81.8017
- POTE: ~2 = 1\1, ~21/20 = 82.504
Optimal ET sequence: 14c, 15, 29, 44d
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 81.9123
- POTE: ~2 = 1\1, ~21/20 = 82.530
Optimal ET sequence: 14cf, 15, 29, 44d
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 82.0342
- POTE: ~2 = 1\1, ~21/20 = 81.759
Optimal ET sequence: 14c, 15, 29f, 44dff
Badness: 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
Optimal ET sequence: 8d, 21cd, 29, 37, 66
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
Optimal tunings:
- CTE: ~2 = 1\1, ~9/7 = 454.5050
- POTE: ~2 = 1\1, ~9/7 = 454.512
Optimal ET sequence: 8d, 21cde, 29, 37, 66
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
Optimal tunings:
- CTE: ~2 = 1\1, ~13/10 = 454.4798
- POTE: ~2 = 1\1, ~13/10 = 454.529
Optimal ET sequence: 8d, 21cdef, 29, 37, 66
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
- mapping generators: ~2, ~36/35
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
Optimal ET sequence: 1c, 21c, 22
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36/35 = 54.7019
- POTE: ~2 = 1\1, ~36/35 = 54.376
Optimal ET sequence: 1ce, 21ce, 22
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
Optimal tunings:
- CTE: ~2 = 1\1, ~36/35 = 54.5751
- POTE: ~2 = 1\1, ~36/35 = 54.665
Optimal ET sequence: 1ce, 21cef, 22
Badness: 0.044739