Sensamagic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Xenllium (talk | contribs)
No edit summary
Line 32: Line 32:
[[POTE generator]]: ~9/7 = 440.4881
[[POTE generator]]: ~9/7 = 440.4881


[[Val]]s: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
[[Optimal GPV sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]


== Sensi ==
== Sensi ==
Line 38: Line 38:
{{see also| Sensipent family #Sensi }}
{{see also| Sensipent family #Sensi }}


Sensi tempers out [[126/125]], [[686/675]] and [[4375/4374]] in addition to [[245/243]], and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo|46EDO]] is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."
Sensi tempers out [[126/125]], [[686/675]] and [[4375/4374]] in addition to [[245/243]], and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo]] is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."


=== Septimal sensi ===
=== Septimal sensi ===
Line 52: Line 52:


[[POTE generator]]: ~9/7 = 443.383
[[POTE generator]]: ~9/7 = 443.383
[[Minimax tuning]]:
* [[7-odd-limit]]
: [{{monzo| 1 0 0 0 }}, {{monzo| 1/13 0 0 7/13 }}, {{monzo| 5/13 0 0 9/13 }}, {{monzo| 0 0 0 1 }}]
: [[Eigenmonzo]]s (unchanged intervals): 2, 7
* [[9-odd-limit]]
: [{{monzo| 1 0 0 0 }}, {{monzo| 2/5 14/5 -7/5 0 }}, {{monzo| 4/5 18/5 -9/5 0 }}, {{monzo| 3/5 26/5 -13/5 0 }}]
: [[Eigenmonzo]]s (unchanged intervals): 2, 9/5
[[Algebraic generator]]: The real root of ''x''<sup>5</sup> + ''x''<sup>4</sup> - 4''x''<sup>2</sup> + ''x'' - 1, at 443.3783 cents.


{{Val list|legend=1| 19, 27, 46, 157d, 203cd, 249cdd, 295ccdd }}
{{Val list|legend=1| 19, 27, 46, 157d, 203cd, 249cdd, 295ccdd }}
Line 80: Line 70:
POTE generator: ~9/7 = 443.322
POTE generator: ~9/7 = 443.322


Vals: {{Val list| 19, 27, 46, 111de, 157de }}
Optimal GPV sequence: {{Val list| 19, 27, 46, 111de, 157de }}


=== Sensor ===
=== Sensor ===
Line 91: Line 81:
POTE generator: ~9/7 = 443.294
POTE generator: ~9/7 = 443.294


Vals: {{Val list| 19, 27, 46, 111d, 157d, 268cdd }}
Optimal GPV sequence: {{Val list| 19, 27, 46, 111d, 157d, 268cdd }}


Badness: 0.037942
Badness: 0.037942
Line 104: Line 94:
POTE generator: ~9/7 = 443.321
POTE generator: ~9/7 = 443.321


Vals: {{Val list| 19, 27, 46, 111df, 157df }}
Optimal GPV sequence: {{Val list| 19, 27, 46, 111df, 157df }}


Badness: 0.025575
Badness: 0.025575
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Comma list: 91/90, 126/125, 154/153, 169/168, 256/255
Mapping: [{{val| 1 -1 -1 -2 9 0 10 }}, {{val| 0 7 9 13 -15 10 -16 }}]
POTE generator: ~9/7 = 443.365
Optimal GPV sequence: {{Val list| 19, 27, 46, 157df, 203cdff, 249cddff }}
Badness: 0.022908


=== Sensis ===
=== Sensis ===
Line 117: Line 120:
POTE generator: ~9/7 = 443.962
POTE generator: ~9/7 = 443.962


Vals: {{Val list| 8d, 19, 27e, 73ee }}
Optimal GPV sequence: {{Val list| 8d, 19, 27e, 73ee }}


Badness: 0.028680
Badness: 0.028680
Line 130: Line 133:
POTE generator: ~9/7 = 443.945
POTE generator: ~9/7 = 443.945


Vals: {{Val list| 19, 27e, 46e, 73ee }}
Optimal GPV sequence: {{Val list| 19, 27e, 46e, 73ee }}


Badness: 0.020017
Badness: 0.020017
Line 143: Line 146:
POTE generator: ~9/7 = 443.626
POTE generator: ~9/7 = 443.626


Vals: {{Val list| 19e, 27e, 46, 119c, 165c }}
Optimal GPV sequence: {{Val list| 19e, 27e, 46, 119c, 165c }}


Badness: 0.029486
Badness: 0.029486
Line 156: Line 159:
POTE generator: ~9/7 = 443.559
POTE generator: ~9/7 = 443.559


Vals: {{Val list| 19e, 27e, 46, 165cf, 211bccf, 257bccff, 303bccdff }}
Optimal GPV sequence: {{Val list| 19e, 27e, 46, 165cf, 211bccf, 257bccff, 303bccdff }}


Badness: 0.020789
Badness: 0.020789
Line 169: Line 172:
POTE generator: ~9/7 = 443.518
POTE generator: ~9/7 = 443.518


Vals: {{Val list| 19e, 27, 46ee }}
Optimal GPV sequence: {{Val list| 19e, 27, 46ee }}


Badness: 0.036835
Badness: 0.036835
Line 182: Line 185:
POTE generator: ~9/7 = 443.506
POTE generator: ~9/7 = 443.506


Vals: {{Val list| 19e, 27, 46ee }}
Optimal GPV sequence: {{Val list| 19e, 27, 46ee }}


Badness: 0.023258
Badness: 0.023258
Line 195: Line 198:
POTE generator: ~25/22 = 221.605
POTE generator: ~25/22 = 221.605


Vals: {{Val list| 27e, 65, 157de, 222cde }}
Optimal GPV sequence: {{Val list| 27e, 65, 157de, 222cde }}


Badness: 0.048714
Badness: 0.048714
Line 204: Line 207:
'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]].
'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]].


=== 5-limit (satheyo) ===
Subgroup: 2.3.5
Subgroup: 2.3.5


Line 272: Line 276:
* 11-odd-limit diamond monotone and tradeoff: ~12/11 = [145.455, 146.939]
* 11-odd-limit diamond monotone and tradeoff: ~12/11 = [145.455, 146.939]


Vals: {{Val list| 41, 90e, 131e }}
Optimal GPV sequence: {{Val list| 41, 90e, 131e }}


Badness: 0.033949
Badness: 0.033949
Line 296: Line 300:
* 15-odd-limit diamond monotone and tradeoff: ~12/11 = [146.341, 146.939]
* 15-odd-limit diamond monotone and tradeoff: ~12/11 = [146.341, 146.939]


Vals: {{Val list| 41, 90ef, 131ef, 221bdeff }}
Optimal GPV sequence: {{Val list| 41, 90ef, 131ef, 221bdeff }}


Badness: 0.024864
Badness: 0.024864
Line 316: Line 320:
POTE generator: ~77/75 = 48.828
POTE generator: ~77/75 = 48.828


Vals: {{Val list| 49, 123ce, 172 }}
Optimal GPV sequence: {{Val list| 49, 123ce, 172 }}


Badness: 0.162592
Badness: 0.162592
Line 329: Line 333:
POTE generator: ~77/75 = 48.822
POTE generator: ~77/75 = 48.822


Vals: {{Val list| 49f, 123ce, 172f, 295ce, 467bccef }}
Optimal GPV sequence: {{Val list| 49f, 123ce, 172f, 295ce, 467bccef }}


Badness: 0.082158
Badness: 0.082158
Line 361: Line 365:
POTE generator: ~28/27 = 55.126
POTE generator: ~28/27 = 55.126


Vals: {{Val list| 22, 65, 87, 196, 283 }}
Optimal GPV sequence: {{Val list| 22, 65, 87, 196, 283 }}


Badness: 0.035844
Badness: 0.035844
Line 374: Line 378:
POTE generator: ~28/27 = 55.138
POTE generator: ~28/27 = 55.138


Vals: {{Val list| 22, 65, 87, 283 }}
Optimal GPV sequence: {{Val list| 22, 65, 87, 283 }}


Badness: 0.031366
Badness: 0.031366
Line 404: Line 408:
POTE generator: ~11/9 = 351.014
POTE generator: ~11/9 = 351.014


Vals: {{Val list| 17, 24, 41, 106d, 147d }}
Optimal GPV sequence: {{Val list| 17, 24, 41, 106d, 147d }}


Badness: 0.039444
Badness: 0.039444
Line 417: Line 421:
POTE generator: ~11/9 = 351.025
POTE generator: ~11/9 = 351.025


Vals: {{Val list| 17, 24, 41, 106df, 147df }}
Optimal GPV sequence: {{Val list| 17, 24, 41, 106df, 147df }}


Badness: 0.030793
Badness: 0.030793
Line 466: Line 470:
POTE generator: ~7/5 = 549.945
POTE generator: ~7/5 = 549.945


Vals: {{Val list| 11cdee, 13cdee, 24 }}
Optimal GPV sequence: {{Val list| 11cdee, 13cdee, 24 }}


Badness: 0.082716
Badness: 0.082716
Line 479: Line 483:
POTE generator: ~7/5 = 549.958
POTE generator: ~7/5 = 549.958


Vals: {{Val list| 11cdeef, 13cdeef, 24 }}
Optimal GPV sequence: {{Val list| 11cdeef, 13cdeef, 24 }}


Badness: 0.049933
Badness: 0.049933
Line 509: Line 513:
POTE generator: ~9/7 = 439.152
POTE generator: ~9/7 = 439.152


Vals: {{Val list| 11cd, 30d, 41, 153be, 194be, 235bcee }}
Optimal GPV sequence: {{Val list| 11cd, 30d, 41, 153be, 194be, 235bcee }}


Badness: 0.070917
Badness: 0.070917
Line 522: Line 526:
POTE generator: ~9/7 = 439.119
POTE generator: ~9/7 = 439.119


Vals: {{Val list| 11cdf, 30df, 41 }}
Optimal GPV sequence: {{Val list| 11cdf, 30df, 41 }}


Badness: 0.052835
Badness: 0.052835
Line 554: Line 558:
POTE generator: ~5/4 = 391.503
POTE generator: ~5/4 = 391.503


Vals: {{Val list| 46, 95, 141bc }}
Optimal GPV sequence: {{Val list| 46, 95, 141bc }}


Badness: 0.045108
Badness: 0.045108
Line 567: Line 571:
POTE generator: ~5/4 = 391.366
POTE generator: ~5/4 = 391.366


Vals: {{Val list| 46, 233bcff, 279bccff }}
Optimal GPV sequence: {{Val list| 46, 233bcff, 279bccff }}


Badness: 0.043024
Badness: 0.043024
Line 593: Line 597:
POTE generator: ~3/2 = 704.554
POTE generator: ~3/2 = 704.554


Vals: {{Val list| 17, 29c, 46, 109, 264b, 373b, 637bbe }}
Optimal GPV sequence: {{Val list| 17, 29c, 46, 109, 264b, 373b, 637bbe }}


Badness: 0.050679
Badness: 0.050679
Line 606: Line 610:
POTE generator: ~3/2 = 704.571
POTE generator: ~3/2 = 704.571


Vals: {{Val list| 17, 29c, 46, 63, 109 }}
Optimal GPV sequence: {{Val list| 17, 29c, 46, 63, 109 }}


Badness: 0.032727
Badness: 0.032727
Line 619: Line 623:
[[POL2]] generator: ~7/6 = 262.1728
[[POL2]] generator: ~7/6 = 262.1728


[[Vals]]: [[3edf]], [[5edf]], [[8edf]]
[[Optimal GPV sequence]]: [[3edf]], [[5edf]], [[8edf]]


=== Semilupine ===
=== Semilupine ===
Line 630: Line 634:
[[POL2]] generator: ~7/6 = 264.3771
[[POL2]] generator: ~7/6 = 264.3771


[[Vals]]: [[8edf]], [[13edf]]
[[Optimal GPV sequence]]: [[8edf]], [[13edf]]


=== Hemilycan ===
=== Hemilycan ===
Line 641: Line 645:
[[POL2]] generator: ~7/6 = 261.5939
[[POL2]] generator: ~7/6 = 261.5939


[[Vals]]: [[8edf]], [[11edf]]
[[Optimal GPV sequence]]: [[8edf]], [[11edf]]
 


[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]

Revision as of 23:59, 28 December 2021

The sensamagic clan tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2, 0 -5 1 2] to be exact.

For full 7-limit extensions, we have sensi, bohpier, escaped, salsa, pycnic, cohemiripple, superthird, magus and leapweek discussed below, as well as

Tempering out 245/243 alone in the full 7-limit leads to a rank-3 temperament, sensamagic, for which 283EDO is the optimal patent val.

BPS

The BPS, for Bohlen–Pierce–Stearns, is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called as lambda temperament, which was named after lambda scale.

Subgroup: 3.5.7

Comma list: 245/243

Sval mapping: [1 1 2], 0 -2 1]]

Sval mapping generators: ~3, ~9/7

POTE generator: ~9/7 = 440.4881

Optimal GPV sequence: b4, b9, b13, b56, b69, b82, b95

Sensi

Sensi tempers out 126/125, 686/675 and 4375/4374 in addition to 245/243, and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. 46edo is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."

Septimal sensi

Subgroup: 2.3.5.7

Comma list: 126/125, 245/243

Mapping: [1 -1 -1 -2], 0 7 9 13]]

Mapping generators: ~2, ~9/7

Wedgie⟨⟨ 7 9 13 -2 1 5 ]]

POTE generator: ~9/7 = 443.383

Template:Val list

Badness: 0.025622

Sensation

Subgroup: 2.3.5.7.13

Comma list: 91/90, 126/125, 169/168

Sval mapping: [1 -1 -1 -2 0], 0 7 9 13 10]]

Gencom mapping: [1 -1 -1 -2 0 0], 0 7 9 13 0 10]]

Gencom: [2 9/7; 91/90 126/125 169/168]

POTE generator: ~9/7 = 443.322

Optimal GPV sequence: Template:Val list

Sensor

Subgroup: 2.3.5.7.11

Comma list: 126/125, 245/243, 385/384

Mapping: [1 -1 -1 -2 9], 0 7 9 13 -15]]

POTE generator: ~9/7 = 443.294

Optimal GPV sequence: Template:Val list

Badness: 0.037942

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 385/384

Mapping: [1 -1 -1 -2 9 0], 0 7 9 13 -15 10]]

POTE generator: ~9/7 = 443.321

Optimal GPV sequence: Template:Val list

Badness: 0.025575

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 91/90, 126/125, 154/153, 169/168, 256/255

Mapping: [1 -1 -1 -2 9 0 10], 0 7 9 13 -15 10 -16]]

POTE generator: ~9/7 = 443.365

Optimal GPV sequence: Template:Val list

Badness: 0.022908

Sensis

Subgroup: 2.3.5.7.11

Comma list: 56/55, 100/99, 245/243

Mapping: [1 -1 -1 -2 2], 0 7 9 13 4]]

POTE generator: ~9/7 = 443.962

Optimal GPV sequence: Template:Val list

Badness: 0.028680

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 78/77, 91/90, 100/99

Mapping: [1 -1 -1 -2 2 0], 0 7 9 13 4 10]]

POTE generator: ~9/7 = 443.945

Optimal GPV sequence: Template:Val list

Badness: 0.020017

Sensus

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 245/243

Mapping: [1 -1 -1 -2 -8], 0 7 9 13 31]]

POTE generator: ~9/7 = 443.626

Optimal GPV sequence: Template:Val list

Badness: 0.029486

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 352/351

Mapping: [1 -1 -1 -2 -8 0], 0 7 9 13 31 10]]

POTE generator: ~9/7 = 443.559

Optimal GPV sequence: Template:Val list

Badness: 0.020789

Sensa

Subgroup: 2.3.5.7.11

Comma list: 55/54, 77/75, 99/98

Mapping: [1 -1 -1 -2 -1], 0 7 9 13 12]]

POTE generator: ~9/7 = 443.518

Optimal GPV sequence: Template:Val list

Badness: 0.036835

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 66/65, 77/75, 143/140

Mapping: [1 -1 -1 -2 -1 0], 0 7 9 13 12 11]]

POTE generator: ~9/7 = 443.506

Optimal GPV sequence: Template:Val list

Badness: 0.023258

Hemisensi

Subgroup: 2.3.5.7.11

Comma list: 126/125, 243/242, 245/242

Mapping: [1 -1 -1 -2 -3], 0 14 18 26 35]]

POTE generator: ~25/22 = 221.605

Optimal GPV sequence: Template:Val list

Badness: 0.048714

Bohpier

Bohpier is named after its interesting relationship with the non-octave Bohlen-Pierce equal temperament.

5-limit (satheyo)

Subgroup: 2.3.5

Comma list: 1220703125/1162261467

Mapping: [1 0 0], 0 13 19]]

POTE generator: ~27/25 = 146.476

Minimax tuning:

  • 5-odd-limit: ~27/25 = [0 0 1/19
Eigenmonzos (unchanged intervals): 2, 5/4

Tuning ranges:

  • 5-odd-limit diamond monotone: ~27/25 = [144.000, 150.000] (3\25 to 1\8)
  • 5-odd-limit diamond tradeoff: ~27/25 = [146.304, 147.393]
  • 5-odd-limit diamond monotone and tradeoff: ~27/25 = [146.304, 147.393]

Template:Val list

Badness: 0.860534

7-limit

Subgroup: 2.3.5.7

Comma list: 245/243, 3125/3087

Mapping: [1 0 0 0], 0 13 19 23]]

Wedgie⟨⟨ 13 19 23 0 0 0 ]]

POTE generator: ~27/25 = 146.474

Minimax tuning:

  • 7-odd-limit: ~27/25 = [0 0 1/19
Eigenmonzos (unchanged intervals): 2, 5/4
  • 9-odd-limit: ~27/25 = [0 1/13
Eigenmonzos (unchanged intervals): 2, 4/3

Tuning ranges:

  • 7-odd-limit diamond monotone: ~27/25 = [145.455, 150.000] (4\33 to 1\8)
  • 9-odd-limit diamond monotone: ~27/25 = [145.455, 146.939] (4\33 to 6\49)
  • 7-odd-limit diamond tradeoff: ~27/25 = [145.628, 147.393]
  • 9-odd-limit diamond tradeoff: ~27/25 = [145.028, 147.393]
  • 7-odd-limit diamond monotone and tradeoff: ~27/25 = [145.628, 147.393]
  • 9-odd-limit diamond monotone and tradeoff: ~27/25 = [145.455, 146.939]

Template:Val list

Badness: 0.068237

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/243, 1344/1331

Mapping: [1 0 0 0 2], 0 13 19 23 12]]

POTE generator: ~12/11 = 146.545

Minimax tuning:

  • 11-odd-limit: ~12/11 = [1/7 1/7 0 0 -1/14
Eigenmonzos (unchanged intervals): 2, 11/9

Tuning ranges:

  • 11-odd-limit diamond monotone: ~12/11 = [145.455, 146.939] (4\33 to 6\49)
  • 11-odd-limit diamond tradeoff: ~12/11 = [145.028, 150.637]
  • 11-odd-limit diamond monotone and tradeoff: ~12/11 = [145.455, 146.939]

Optimal GPV sequence: Template:Val list

Badness: 0.033949

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 275/273

Mapping: [1 0 0 0 2 2], 0 13 19 23 12 14]]

POTE generator: ~12/11 = 146.603

Minimax tuning:

  • 13- and 15-odd-limit: ~12/11 = [0 0 1/19
Eigenmonzos (unchanged intervals): 2, 5/4

Tuning ranges:

  • 13-odd-limit diamond monotone: ~12/11 = [145.455, 146.939] (4\33 to 6\49)
  • 15-odd-limit diamond monotone: ~12/11 = [146.341, 146.939] (5\41 to 6\49)
  • 13- and 15-odd-limit diamond tradeoff: ~12/11 = [138.573, 150.637]
  • 13-odd-limit diamond monotone and tradeoff: ~12/11 = [145.455, 146.939]
  • 15-odd-limit diamond monotone and tradeoff: ~12/11 = [146.341, 146.939]

Optimal GPV sequence: Template:Val list

Badness: 0.024864

Music

by Chris Vaisvil:

Triboh

Triboh is named after "Triple Bohlen-Pierce scale", which divides each step of the equal-tempered Bohlen-Pierce scale into three equal parts.

Subgroup: 2.3.5.7.11

Comma list: 245/243, 1331/1323, 3125/3087

Mapping: [1 0 0 0 0], 0 39 57 69 85]]

POTE generator: ~77/75 = 48.828

Optimal GPV sequence: Template:Val list

Badness: 0.162592

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 245/243, 275/273, 847/845, 1331/1323

Mapping: [1 0 0 0 0 0], 0 39 57 69 85 91]]

POTE generator: ~77/75 = 48.822

Optimal GPV sequence: Template:Val list

Badness: 0.082158

Escaped

This temperament is also called as "sensa" because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. Not to be confused with 19e&27 temperament (sensi extension).

Subgroup: 2.3.5.7

Comma list: 245/243, 65625/65536

Mapping: [1 2 2 4], 0 -9 7 -26]]

Wedgie⟨⟨ 9 -7 26 -32 16 80 ]]

POTE generator: ~28/27 = 55.122

Template:Val list

Badness: 0.088746

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/243, 385/384, 4000/3993

Mapping: [1 2 2 4 3], 0 -9 7 -26 10]]

POTE generator: ~28/27 = 55.126

Optimal GPV sequence: Template:Val list

Badness: 0.035844

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 245/243, 352/351, 385/384, 625/624

Mapping: [1 2 2 4 3 2], 0 -9 7 -26 10 37]]

POTE generator: ~28/27 = 55.138

Optimal GPV sequence: Template:Val list

Badness: 0.031366

Salsa

Subgroup: 2.3.5.7

Comma list: 245/243, 32805/32768

Mapping: [1 1 7 -1], 0 2 -16 13]]

Wedgie⟨⟨ 2 -16 13 -30 15 75 ]]

POTE generator: ~128/105 = 351.049

Template:Val list

Badness: 0.080152

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 245/242, 385/384

Mapping: [1 1 7 -1 2], 0 2 -16 13 5]]

POTE generator: ~11/9 = 351.014

Optimal GPV sequence: Template:Val list

Badness: 0.039444

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 144/143, 243/242, 245/242

Mapping: [1 1 7 -1 2 4], 0 2 -16 13 5 -1]]

POTE generator: ~11/9 = 351.025

Optimal GPV sequence: Template:Val list

Badness: 0.030793

Pycnic

The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.

Subgroup: 2.3.5.7

Comma list: 245/243, 525/512

Mapping: [1 3 -1 8], 0 -3 7 -11]]

Wedgie⟨⟨ 3 -7 11 -18 9 45 ]]

POTE generator: ~45/32 = 567.720

Template:Val list

Badness: 0.073735

Cohemiripple

Subgroup: 2.3.5.7

Comma list: 245/243, 1323/1250

Mapping: [1 -3 -5 -5], 0 10 16 17]]

Wedgie⟨⟨ 10 16 17 2 -1 -5 ]]

POTE generator: ~7/5 = 549.944

Template:Val list

Badness: 0.190208

11-limit

Subgroup: 2.3.5.7.11

Comma list: 77/75, 243/242, 245/242

Mapping: [1 -3 -5 -5 -8], 0 10 16 17 25]]

POTE generator: ~7/5 = 549.945

Optimal GPV sequence: Template:Val list

Badness: 0.082716

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 77/75, 147/143, 243/242

Mapping: [1 -3 -5 -5 -8 -5], 0 -10 -16 -17 -25 -19]]

POTE generator: ~7/5 = 549.958

Optimal GPV sequence: Template:Val list

Badness: 0.049933

Superthird

Subgroup: 2.3.5.7

Comma list: 245/243, 78125/76832

Mapping: [1 -5 -5 -10], 0 18 20 35]]

Wedgie⟨⟨ 18 20 35 -10 5 25 ]]

POTE generator: ~9/7 = 439.076

Template:Val list

Badness: 0.139379

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/243, 78125/76832

Mapping: [1 -5 -5 -10 2], 0 18 20 35 4]]

POTE generator: ~9/7 = 439.152

Optimal GPV sequence: Template:Val list

Badness: 0.070917

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 1375/1352

Mapping: [1 -5 -5 -10 2 -8], 0 18 20 35 4 32]]

POTE generator: ~9/7 = 439.119

Optimal GPV sequence: Template:Val list

Badness: 0.052835

Magus

For the 5-limit version of this temperament, see High badness temperaments #Magus.

Magus temperament tempers out 50331648/48828125 (salegu) in the 5-limit. This temperament can be described as 46&49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). Alternative extension amigo (43&46) tempers out the same 5-limit comma as the magus, but with the starling comma (126/125) rather than the sensamagic tempered out.

Subgroup: 2.3.5.7

Comma list: 245/243, 28672/28125

Mapping: [1 -2 2 -6], 0 11 1 27]]

Wedgie⟨⟨ 11 1 27 -24 12 60 ]]

POTE generator: ~5/4 = 391.465

Template:Val list

Badness: 0.108417

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 245/243, 1331/1323

Mapping: [1 -2 2 -6 -6], 0 11 1 27 29]]

POTE generator: ~5/4 = 391.503

Optimal GPV sequence: Template:Val list

Badness: 0.045108

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 176/175, 245/243, 1331/1323

Mapping: [1 -2 2 -6 -6 5], 0 11 1 27 29 -4]]

POTE generator: ~5/4 = 391.366

Optimal GPV sequence: Template:Val list

Badness: 0.043024

Leapweek

Subgroup: 2.3.5.7

Comma list: 245/243, 2097152/2066715

Mapping: [1 1 17 -6], 0 1 -25 15]]

POTE generator: ~3/2 = 704.536

Template:Val list

Badness: 0.140577

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/243, 385/384, 1331/1323

Mapping: [1 1 17 -6 -3], 0 1 -25 15 11]]

POTE generator: ~3/2 = 704.554

Optimal GPV sequence: Template:Val list

Badness: 0.050679

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 245/243, 352/351, 364/363

Mapping: [1 1 17 -6 -3 -1], 0 1 -25 15 11 8]]

POTE generator: ~3/2 = 704.571

Optimal GPV sequence: Template:Val list

Badness: 0.032727

Semiwolf

Subgroup: 3/2.7/4.5/2

Comma list: 245/243

Mapping: [1 1 3], 0 1 -2]]

POL2 generator: ~7/6 = 262.1728

Optimal GPV sequence: 3edf, 5edf, 8edf

Semilupine

Subgroup: 3/2.7/4.5/2.11/4

Comma list: 100/99, 245/243

Mapping: [1 1 3 4], 0 1 -2 -4]]

POL2 generator: ~7/6 = 264.3771

Optimal GPV sequence: 8edf, 13edf

Hemilycan

Subgroup: 3/2.7/4.5/2.11/4

Comma list: 245/243, 441/440

Mapping: [1 1 3 1], 0 1 -2 4]]

POL2 generator: ~7/6 = 261.5939

Optimal GPV sequence: 8edf, 11edf