User:Lériendil/Square and triangle superparticulars by prime subgroup: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
== 2- and 3-prime subgroups (2.3 and 2.3.p) ==
== 2- and 3-prime subgroups (2.3 and 2.3.p) ==
Note that the following lists are ''complete'' and the insertion of higher primes will add no new inclusions to them.
Note that the following lists are ''complete'' and the insertion of higher primes will add no new inclusions to them.
{| class="wikitable"
! integer
! prime limit
! factorization
! monzo
|- style="background-color: lavender;"
|'''2'''||2||2||{{Monzo| 1 }}
|- style="background-color: lavender;"
|'''3'''||3||3||{{Monzo| 0 1 }}
|}


=== 2-prime subgroup (2.3) ===
=== 2-prime subgroup (2.3) ===

Revision as of 17:19, 28 July 2024

Some shorthand notation used here:

  • Sk stands for k^2/[(k-1)(k+1)] by standard convention (the kth square superparticular).
  • Tk = Sk * S(k+1) stands for [k(k+1)/2]/[(k-1)(k+2)/2] (the kth triangle superparticular).
  • Uk = Sk/S(k+1) stands for the kth ultraparticular, which has the same subgroup as Tk except in the case where k is congruent to 4 (mod 9), in which case the subgroup of Uk lacks prime 3 from that of Tk.
  • Lp refers to the p-limit, i.e. the subgroup of primes less than or equal to p.
  • Lp(-q) refers to the p limit with the prime q omitted: e.g. L17(-11) refers to the 2.3.5.7.13.17 subgroup; these omissions can be stacked so that L23(-5.17) refers to the group 2.3.7.11.13.19.23.

This list eventually aims to be complete to the 29-add-one-limit, i.e. the class of subgroups with at most one prime greater than 29, which is a superset of the 31-limit.

2- and 3-prime subgroups (2.3 and 2.3.p)

Note that the following lists are complete and the insertion of higher primes will add no new inclusions to them.

integer prime limit factorization monzo
2 2 2 [1
3 3 3 [0 1

2-prime subgroup (2.3)

Square-particular Subgroup Comma
Ratio Smonzo
S2 2.3 4/3 [2 -1
S3 2.3 9/8 [-3 2
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T2 2.3 3/2 [-1 1 U2 2.3 32/27 [5 -3

3-prime subgroups (2.3.p)

Square-particular Subgroup Comma
Ratio Smonzo
S4 L5 16/15 [4 -1 -1
S5 L5 25/24 [-3 -1 2
S9 L5 81/80 [-4 4 -1
S7 2.3.7 49/48 [-4 -1 2
S8 2.3.7 64/63 [6 -2 -1
S17 2.3.17 289/288 [-5 -2 2
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T3 L5 6/5 [1 1 -1 U3 L5 135/128 [-7 3 1
T4 L5 10/9 [1 -2 1 U4 2.5 128/125 [7 -3
T7 2.3.7 28/27 [2 -3 1 U7 2.3.7 1029/1024 [-10 1 3

4-prime subgroups

Note that the lists of triangle-particulars are complete and the insertion of higher primes will add no new inclusions to them. The lists of square particulars other than the "Higher primes" table are likewise complete.

5-add-one-limit (L5.p)

Square-particular Subgroup Comma
Ratio Smonzo
S6 = T8 L7 36/35 [2 2 -1 -1
S15 L7 225/224 [-5 2 2 -1
S49 L7 2401/2400 [-5 -1 -2 4
S10 L5.11 100/99 [2 -2 2 -1
S11 L5.11 121/120 [-3 -1 -1 2
S25 L5.13 625/624 [-4 -1 4 -1
S26 L5.13 676/675 [2 -3 -2 2
S16 L5.17 256/255 [8 -1 -1 -1
S19 L5.19 361/360 [-3 -2 -1 2
S24 L5.23 576/575 [6 2 -2 -1
S31 L5.31 961/960 [-6 -1 -1 2
S81 L5.41 6561/6560 [-5 8 -1 -1
S80 L5.79 6400/6399 [8 -4 2 -1
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T5 L7 15/14 [-1 1 1 -1 U5 L7 875/864 [-5 -3 3 1
T6 L7 21/20 [-2 1 -1 1 U6 L7 1728/1715 [6 3 -1 -3
T8 = S6 L7 36/35 [2 2 -1 -1 U8 L7 5120/5103 [10 -6 1 -1
T9 L5.11 45/44 [-2 2 1 -1 U9 L5.11 8019/8000 [-6 6 -3 1
T10 L5.11 55/54 [-1 -3 1 1 U10 L5.11 4000/3993 [5 -1 3 -3
T25 L5.13 325/324 [-2 -4 2 1 U25 L5.13 140625/140608 [-6 2 6 -3
T16 L5.17 136/135 [3 -3 -1 1 U16 L5.17 24576/24565 [13 1 -1 -3

2.3.7.p subgroups

Square-particular Subgroup Comma
Ratio Smonzo
S13 2.3.7.13 169/168 [-3 -1 -1 2
S27 2.3.7.13 729/728 [-3 6 -1 -1
S28 2.3.7.29 784/783 [4 -3 2 -1
S63 2.3.7.31 3969/3968 [-7 4 2 -1
S48 2.3.7.47 2304/2303 [8 2 -2 -1
S97 2.3.7.97 9409/9408 [-6 -1 -2 2
S127 2.3.7.127 16129/16128 [-8 -2 -1 2

2.3.11.p subgroups

Square-particular Subgroup Comma
Ratio Smonzo
S12 2.3.11.13 144/143 [4 2 -1 -1
S33 2.3.11.17 1089/1088 [-6 2 -1 2
S23 2.3.11.23 529/528 [-4 -1 -1 2
S32 2.3.11.31 1024/1023 [10 -1 -1 -1
S243 2.3.11.61 59049/59048 [-3 10 -2 -1
S242 2.3.11.241 58564/58563 [2 -5 4 -1

Higher primes

Square-particular Subgroup Comma
Ratio Smonzo
S53 2.3.13.53 2809/2808 [-3 -3 -1 2
S18 2.3.17.19 324/323 [2 4 -1 -1
S577 2.3.17.577 332929/332928 [-7 -2 -2 2
S37 2.3.19.37 1369/1368 [-3 -2 -1 2
S47 2.3.23.47 2209/2208 [-5 -1 -1 2
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T17 2.3.17.19 153/152 [-3 2 1 -1 U17 2.3.17.19 93347/93312 [-7 -6 3 1

5-prime subgroups

7-add-one-limit (L7.p)

Square-particular Subgroup Comma
Ratio Smonzo
S21 L11 441/440 [-3 2 -1 2 -1
S55 L11 3025/3024 [-4 -3 2 -1 2
S99 L11 9801/9800 [-3 4 -2 -2 2
S14 L7.13 196/195 [2 -1 -1 2 -1
S64 L7.13 4096/4095 [12 -2 -1 -1 -1
S35 = T49 L7.17 1225/1224 [-3 -2 2 2 -1
S50 L7.17 2500/2499 [2 -1 4 -2 -1
S20 L7.19 400/399 [4 -1 2 -1 -1
S161 L7.23 25921/25920 [-6 -4 -1 2 2
S29 L7.29 841/840 [-3 -1 -1 -1 2
S125 L7.31 15625/15624 [-3 -2 6 -1 -1
S36 L7.37 1296/1295 [4 4 -1 -1 -1
S41 L7.41 1681/1680 [-4 -1 -1 -1 2
S244 L7.61 59536/59535 [4 -5 -1 -2 2
S71 L7.71 5041/5040 [-4 -2 -1 -1 2
S225 L7.113 50625/50624 [-6 4 -1 4 -1
S126 L7.127 15876/15875 [2 4 -3 2 -1
S224 L7.223 50176/50175 [10 -2 -2 2 -1
S251 L7.251 59536/59535 [-3 -2 -3 -1 2
S449 L7.449 201601/201600 [-7 -2 -2 -1 2
S4375 L7.547 19140625/19140624 [-4 -7 8 2 -1
S2401 L7.1201 5764801/5764800 [-5 -1 -2 8 -1
S2400 L7.2399 5760000/5759999 [10 2 4 -4 -1
S4801 L7.4801 23049601/23049600 [-7 -1 -2 -4 2
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T13 L7.13 91/90 [-1 -2 -1 1 1 U13 2.5.7.13 10985/10976 [-5 1 -3 3
T14 L7.13 105/104 [-3 1 1 1 -1 U14 L7.13 43904/43875 [7 -3 -3 3 -1
T26 L7.13 351/350 [-1 3 -2 -1 1 U26 L7.13 492128/492075 [5 -9 -2 1 3
T15 L7.17 120/119 [3 1 1 -1 -1 U15 L7.17 57375/57344 [-13 3 3 -1 1
T49 = S35 L7.17 1225/1224 [-3 -2 2 2 -1 U49 2.5.7.17 2000033/2000000 [-7 -6 6 1
T19 L7.19 190/189 [1 -3 1 -1 1 U19 L7.19 48013/48000 [-7 -1 -3 1 3
T28 L7.29 406/405 [1 -4 -1 1 1 U28 L7.29 219520/219501 [7 -2 1 3 -3
T126 L7.127 8001/8000 [-6 2 -3 1 1 U126 L7.127 256048128/256047875 [10 6 -3 3 -3

11-add-one-limit

L5.11.p subgroups

Square-particular Subgroup Comma
Ratio Smonzo
S65 L13(-7) 4225/4224 [-7 -1 2 -1 2
S45 L5.11.23 2025/2024 [-3 4 2 -1 -1
S44 L5.11.43 1936/1935 [4 -2 -1 2 -1
S54 L5.11.53 2916/2915 [2 6 -1 -1 -1
S121 L5.11.61 14641/14640 [-4 -1 -1 4 -1
S89 L5.11.89 7921/7920 [-4 -2 -1 -1 2
S485 L5.11.97 235225/235224 [-3 -5 2 -2 2
S100 L5.11.101 10000/9999 [4 -2 4 -1 -1
S109 L5.11.109 11881/11880 [-3 -3 -1 -1 2
S199 L5.11.199 39601/39600 [-4 -2 -2 -1 2
S241 L5.11.241 58081/58080 [-5 -1 -1 -2 2
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T11 L13(-7) 66/65 [1 1 -1 1 -1 U11 L13(-7) 17303/17280 [7 3 1 -3 -1
T23 L5.11.23 276/275 [2 1 -2 -1 1 U23 L5.11.23 304175/304128 [-10 -3 2 -1 3
T31 L5.11.31 496/495 [4 -2 -1 -1 1 U31 2.5.11.31 327701/327680 [-16 -1 1 3
T241 L5.11.241 29161/29160 [-4 -6 -1 2 1 U241 L5.11.241 1133799201/1133799040 [-7 4 -1 -6 3

No-fives (L11(-5).p) subgroups

Square-particular Subgroup Comma
Ratio Smonzo
S22 L11(-5).23 484/483 [2 -1 -1 2 -1
S43 L11(-5).43 1849/1848 [-3 -1 -1 -1 2
S98 L11(-5).97 9604/9603 [2 -2 4 -1 -1
S197 L11(-5).197 38809/38808 [-3 -2 -2 -1 2
Triangle-particular Subgroup Comma Ultraparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
T12 L13(-5) 78/77 [1 1 -1 -1 1 U12 L13(-5) 24192/24167 [7 3 1 -1 -3
T22 L11(-5).23 253/252 [-2 -2 -1 1 1 U22 2.7.11.23 85184/85169 [6 -1 3 -3
T97 L11(-5).97 4753/4752 [-4 -3 2 -1 1 U97 L11(-5).97 30118209/30118144 [-8 1 -6 1 3

See also