Table of 198edo intervals: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
7-limit is done
BudjarnLambeth (talk | contribs)
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="background: aliceblue; color: darkslategray; font-style: italic; border: 1px solid lightblue; margin: 15px; padding: 4px; text-align: center;">
This '''table of [[198edo]] intervals''' assumes [[13-limit]] [[patent val]] {{val| 198 314 460 556 685 733 }}.  
This article is a work in progress.


7-limit is done.  
Intervals highlighted in '''bold''' are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. Intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in ''italic''. Intervals that differ by more than 100%, or with odd limit over 729 are not shown. For clarity, an entry can contain multiple intervals if they are of comparable complexity.  
</div>


This '''table of [[198edo]] intervals''' assumes 13-limit [[patent val]] {{val|198 314 460 556 685 733}}.
{| class="wikitable center-1 right-2 center-3"
 
Intervals highlighted in '''bold''' are prime harmonics or subharmonics. Intervals that differ from their assigned steps by more than 50% or intervals with odd limit over 729 are not shown. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank.
 
{| class="wikitable center-1 right-2"
|-
|-
! #
! #
! Cents
! Cents
! 5 limit
! Marks
! 7 limit
! 5-limit
! 11 limit
! 7-limit
! 13 limit
! 11-limit
! 13-limit
|-
|-
| 0
| 0
| 0.00
| 0.00
| P1
| colspan="4" | '''[[1/1]]'''
| colspan="4" | '''[[1/1]]'''
|-
|-
| 1
| 1
| 6.{{overline|06}}
| 6.{{overline|06}}
|
|  
|  
|  
|  
| [[385/384]], [[441/440]], [[540/539]]
| [[385/384]], [[441/440]], [[540/539]]
| [[196/195]], [[325/324]], [[351/350]], [[364/363]]
| [[196/195]], [[325/324]], [[364/363]]
|-
|-
| 2
| 2
| 12.{{overline|12}}
| 12.{{overline|12}}
|
| ?
| ?
| [[126/125]], [[245/243]]
| [[126/125]]
| [[121/120]]
| [[121/120]], [[176/175]]
| [[144/143]], [[169/168]]
| [[144/143]]
|-
|-
| 3
| 3
| 18.{{overline|18}}
| 18.{{overline|18}}
|
|  
|  
|  
|  
| [[99/98]], [[100/99]]
| [[99/98]], [[100/99]]
| ?
| [[91/90]], [[105/104]]
|-
|-
| 4
| 4
| 24.{{overline|24}}
| 24.{{overline|24}}
|
| [[81/80]]
| [[81/80]]
| [[64/63]]
| [[64/63]]
| 245/242
| "
| [[66/65]], [[78/77]]
| [[66/65]], [[78/77]]
|-
|-
| 5
| 5
| 30.{{overline|30}}
| 30.{{overline|30}}
|
|  
|  
|  
|  
| [[55/54]], [[56/55]]
| [[55/54]], [[56/55]]
| ?
| "
|-
|-
| 6
| 6
| 36.{{overline|36}}
| 36.{{overline|36}}
| ?
|
| ''[[128/125]]''
| [[49/48]], [[50/49]]
| [[49/48]], [[50/49]]
| ?
| "
| ?
| "
|-
|-
| 7
| 7
| 42.{{overline|42}}
| 42.{{overline|42}}
|
|  
|  
|  
|  
| ?
| ''[[45/44]]''
| [[40/39]]
| [[40/39]]
|-
|-
| 8
| 8
| 48.{{overline|48}}
| 48.{{overline|48}}
|
| [[250/243]]
| [[250/243]]
| [[36/35]]
| [[36/35]]
| ?
| "
| ?
| "
|-
|-
| 9
| 9
| 54.{{overline|54}}
| 54.{{overline|54}}
|
|  
|  
|  
|  
| [[33/32]]
| [[33/32]]
| [[65/63]]
| "
|-
|-
| 10
| 10
| 60.{{overline|60}}
| 60.{{overline|60}}
|
| [[648/625]]
| [[648/625]]
| [[28/27]]
| [[28/27]]
| ?
| "
| ?
| "
|-
|-
| 11
| 11
| 66.{{overline|66}}
| 66.{{overline|66}}
|
|  
|  
|  
|  
Line 101: Line 108:
| 12
| 12
| 72.{{overline|72}}
| 72.{{overline|72}}
|
| [[25/24]]
| [[25/24]]
| 729/700
| "
| 126/121
| "
| ?
| "
|-
|-
| 13
| 13
| 78.{{overline|78}}
| 78.{{overline|78}}
|
|  
|  
|  
|  
| [[22/21]], 288/275
| [[22/21]]
| ?
| "
|-
|-
| 14
| 14
| 84.{{overline|84}}
| 84.{{overline|84}}
| ?
| m2
| [[21/20]], 360/343
| ''[[256/243]]''
| 605/576
| [[21/20]]
| ?
| "
| "
|-
|-
| 15
| 15
| 90.{{overline|90}}
| 90.{{overline|90}}
|
|  
|  
|  
|  
Line 129: Line 140:
| 16
| 16
| 96.{{overline|96}}
| 96.{{overline|96}}
| ?
|
| 200/189, 343/324
| ''[[135/128]]''
| 200/189
| [[128/121]]
| [[128/121]]
| ?
| [[55/52]]
|-
|-
| 17
| 17
| 103.{{overline|03}}
| 103.{{overline|03}}
|
|  
|  
|  
|  
| [[35/33]], 297/280
| [[35/33]]
| ?
| [[52/49]]
|-
|-
| 18
| 18
| 109.{{overline|09}}
| 109.{{overline|09}}
|
| [[16/15]]
| [[16/15]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 19
| 19
| 115.{{overline|15}}
| 115.{{overline|15}}
|
|  
|  
|  
|  
| 77/72
| [[77/72]]
| ?
| "
|-
|-
| 20
| 20
| 121.{{overline|21}}
| 121.{{overline|21}}
|
| ?
| ?
| [[15/14]], 343/320
| [[15/14]]
| 648/605
| "
| ?
| "
|-
|-
| 21
| 21
| 127.{{overline|27}}
| 127.{{overline|27}}
|
|  
|  
|  
|  
| 320/297
| 264/245, 320/297
| [[14/13]]
| [[14/13]]
|-
|-
| 22
| 22
| 133.{{overline|33}}
| 133.{{overline|33}}
|
| [[27/25]]
| [[27/25]]
| 175/162
| "
| 121/112
| "
| ?
| "
|-
|-
| 23
| 23
| 139.{{overline|39}}
| 139.{{overline|39}}
|
|  
|  
|  
|  
| 693/640
| ''[[88/81]]''
| [[13/12]]
| [[13/12]]
|-
|-
| 24
| 24
| 145.{{overline|45}}
| 145.{{overline|45}}
| ?
|
| [[49/45]], 160/147
| ''625/576''
| ?
| [[49/45]]
| ?
| "
| "
|-
|-
| 25
| 25
| 151.{{overline|51}}
| 151.{{overline|51}}
|
|  
|  
|  
|  
| [[12/11]]
| [[12/11]]
| ?
| "
|-
|-
| 26
| 26
| 157.{{overline|57}}
| 157.{{overline|57}}
| ?
|
| [[35/32]], 192/175
| ''800/729''
| ?
| [[35/32]]
| ?
| "
| "
|-
|-
| 27
| 27
| 163.{{overline|63}}
| 163.{{overline|63}}
|
|  
|  
|  
|  
| [[11/10]]
| [[11/10]]
| ?
| "
|-
|-
| 28
| 28
| 169.{{overline|69}}
| 169.{{overline|69}}
|
| ?
| ?
| [[54/49]], 441/400
| [[54/49]]
| ?
| "
| ?
| "
|-
|-
| 29
| 29
| 175.{{overline|75}}
| 175.{{overline|75}}
|
|  
|  
|  
|  
| 256/231
| 256/231
| ?
| 72/65
|-
|-
| 30
| 30
| 181.{{overline|81}}
| 181.{{overline|81}}
|
| [[10/9]]
| [[10/9]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 31
| 31
| 187.{{overline|87}}
| 187.{{overline|87}}
|
|  
|  
|  
|  
| 49/44
| 49/44
| ?
| 39/35
|-
|-
| 32
| 32
| 193.{{overline|93}}
| 193.{{overline|93}}
|
| ?
| ?
| [[28/25]], 384/343
| [[28/25]]
| 121/108
| "
| ?
| "
|-
|-
| 33
| 33
| 200.00
| 200.00
|
|  
|  
|  
|  
| [[55/49]], 432/385
| [[55/49]]
| [[91/81]]
| "
|-
|-
| 34
| 34
| 206.{{overline|06}}
| 206.{{overline|06}}
| M2
| [[9/8]]
| [[9/8]]
| ?
| "
| ?
| "
| [[44/39]]
| "
|-
|-
| 35
| 35
| 212.{{overline|12}}
| 212.{{overline|12}}
|
|  
|  
|  
|  
| 112/99, 275/243
| 112/99
| ?
| "
|-
|-
| 36
| 36
| 218.{{overline|18}}
| 218.{{overline|18}}
| ?
|
| 245/216, 500/441
| ''[[256/225]]''
| 363/320
| 245/216
| ?
| "
| 143/126, 162/143
|-
|-
| 37
| 37
| 224.{{overline|24}}
| 224.{{overline|24}}
|
|  
|  
|  
|  
| [[25/22]]
| [[25/22]]
| [[91/80]]
| "
|-
|-
| 38
| 38
| 230.{{overline|30}}
| 230.{{overline|30}}
| ?
|
| '''[[8/7]]''', 343/300
| ''729/640''
| ?
| '''[[8/7]]'''
| ?
| "
| "
|-
|-
| 39
| 39
| 236.{{overline|36}}
| 236.{{overline|36}}
|
|  
|  
|  
|  
| [[55/48]], 63/55
| [[55/48]]
| ?
| "
|-  
|-  
| 40
| 40
| 242.{{overline|42}}
| 242.{{overline|42}}
| 144/125
|
| 147/128, 280/243
| [[144/125]]
| ?
| "
| ?
| "
| "
|-
|-
| 41
| 41
| 248.{{overline|48}}
| 248.{{overline|48}}
|
|  
|  
|  
|  
| ?
| 231/200
| [[15/13]]
| [[15/13]]
|-
|-
| 42
| 42
| 254.{{overline|54}}
| 254.{{overline|54}}
|
| 125/108
| 125/108
| [[81/70]]
| [[81/70]]
| [[140/121]]
| "
| ?
| "
|-
|-
| 43
| 43
| 260.{{overline|60}}
| 260.{{overline|60}}
|
|  
|  
|  
|  
| [[64/55]], 220/189
| [[64/55]]
| ?
| "
|-
|-
| 44
| 44
| 266.{{overline|66}}
| 266.{{overline|66}}
|
| ?
| ?
| [[7/6]], 400/343
| [[7/6]]
| ?
| "
| ?
| "
|-
|-
| 45
| 45
| 272.{{overline|72}}
| 272.{{overline|72}}
|
|  
|  
|  
|  
| 90/77
| 90/77
| ?
| "
|-
|-
| 46
| 46
| 278.{{overline|78}}
| 278.{{overline|78}}
| ?
|
| ''[[75/64]]''
| 147/125, 288/245
| 147/125, 288/245
| ?
| "
| ?
| 168/143
|-
|-
| 47
| 47
| 284.{{overline|84}}
| 284.{{overline|84}}
|
|  
|  
|  
|  
| [[33/28]], 324/275
| [[33/28]]
| ?
| "
|-
|-
| 48
| 48
| 290.{{overline|90}}
| 290.{{overline|90}}
| ?
| m3
| ''[[32/27]]''
| [[189/160]]
| [[189/160]]
| 605/512
| "
| [[13/11]]
| [[13/11]]
|-
|-
| 49
| 49
| 296.{{overline|96}}
| 296.{{overline|96}}
|
|  
|  
|  
|  
| 385/324
| 196/165
| ?
| 108/91
|-
|-
| 50
| 50
| 303.{{overline|03}}
| 303.{{overline|03}}
|
| ?
| ?
| [[25/21]], 343/288
| [[25/21]]
| [[144/121]]
| "
| ?
| "
|-
|-
| 51
| 51
| 309.{{overline|09}}
| 309.{{overline|09}}
|
|  
|  
|  
|  
| 176/147
| 176/147
| ?
| 117/98, 140/117
|-
|-
| 52
| 52
| 315.{{overline|15}}
| 315.{{overline|15}}
|
| [[6/5]]
| [[6/5]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 53
| 53
| 321.{{overline|21}}
| 321.{{overline|21}}
|
|  
|  
|  
|  
| 77/64, 648/539
| 77/64
| ?
| 65/54
|-
|-
| 54
| 54
| 327.{{overline|27}}
| 327.{{overline|27}}
|
| ?
| ?
| [[98/81]], 756/625
| 98/81
| ?
| "
| ?
| "
|-
|-
| 55
| 55
| 333.{{overline|33}}
| 333.{{overline|33}}
|
|  
|  
|  
|  
Line 409: Line 460:
| 56
| 56
| 339.{{overline|39}}
| 339.{{overline|39}}
|
| 243/200
| 243/200
| 175/144
| 175/144
| ?
| 147/121
| ?
| "
|-
|-
| 57
| 57
| 345.{{overline|45}}
| 345.{{overline|45}}
|
|  
|  
|  
|  
Line 423: Line 476:
| 58
| 58
| 351.{{overline|51}}
| 351.{{overline|51}}
| ?
|
| ''768/625''
| [[49/40]], [[60/49]]
| [[49/40]], [[60/49]]
| ?
| "
| ?
| "
|-
|-
| 59
| 59
| 357.{{overline|57}}
| 357.{{overline|57}}
|
|  
|  
|  
|  
Line 437: Line 492:
| 60
| 60
| 363.{{overline|63}}
| 363.{{overline|63}}
|
| 100/81
| 100/81
| 216/175
| 216/175
| 448/363
| 121/98
| ?
| "
|-
|-
| 61
| 61
| 369.{{overline|69}}
| 369.{{overline|69}}
|
|  
|  
|  
|  
Line 451: Line 508:
| 62
| 62
| 375.{{overline|75}}
| 375.{{overline|75}}
|
| ?
| ?
| [[56/45]]
| [[56/45]]
| ?
| "
| ?
| "
|-
|-
| 63
| 63
| 381.{{overline|81}}
| 381.{{overline|81}}
|
|  
|  
|  
|  
| 96/77, 539/432
| 96/77
| ?
| 81/65, 125/78
|-
|-
| 64
| 64
| 387.{{overline|87}}
| 387.{{overline|87}}
|
| '''[[5/4]]'''
| '''[[5/4]]'''
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 65
| 65
| 393.{{overline|93}}
| 393.{{overline|93}}
|
|  
|  
|  
|  
| [[44/35]]
| [[44/35]]
| ?
| 49/39
|-
|-
| 66
| 66
| 400.00
| 400.00
| ?
|
| [[63/50]], 432/343
| ''512/405''
| [[121/96]]
| [[63/50]]
| ?
| "
| "
|-
|-
| 67
| 67
| 406.{{overline|06}}
| 406.{{overline|06}}
|
|  
|  
|  
|  
| 486/385
| 125/99
| ?
| 91/72
|-
|-
| 68
| 68
| 412.{{overline|12}}
| 412.{{overline|12}}
| ?
| M3
| [[80/63]], 343/270
| ''[[81/64]]''
| 768/605
| [[80/63]]
| "
| [[33/26]]
| [[33/26]]
|-
|-
| 69
| 69
| 418.{{overline|18}}
| 418.{{overline|18}}
|
|  
|  
|  
|  
| [[14/11]], 275/216
| [[14/11]]
| ?
| "
|-
|-
| 70
| 70
| 424.{{overline|24}}
| 424.{{overline|24}}
| ?
|
| 125/98, 245/192
| ''[[32/25]]''
| ?
| 125/98
| ?
| "
| "
|-
|-
| 71
| 71
| 430.{{overline|30}}
| 430.{{overline|30}}
|
|  
|  
|  
|  
| 77/60
| 77/60
| ?
| 50/39
|-
|-
| 72
| 72
| 436.{{overline|36}}
| 436.{{overline|36}}
|
| 625/486
| 625/486
| [[9/7]]
| [[9/7]]
| ?
| "
| ?
| "
|-
|-
| 73
| 73
| 442.{{overline|42}}
| 442.{{overline|42}}
|
|  
|  
|  
|  
| [[128/99]], 165/128
| [[128/99]]
| ?
| 84/65
|-
|-
| 74
| 74
| 448.{{overline|48}}
| 448.{{overline|48}}
|
| 162/125
| 162/125
| [[35/27]]
| [[35/27]]
| ?
| "
| ?
| "
|-
|-
| 75
| 75
| 454.{{overline|54}}
| 454.{{overline|54}}
|
|  
|  
|  
|  
| ?
| 100/77
| [[13/10]]
| [[13/10]]
|-
|-
| 76
| 76
| 460.{{overline|60}}
| 460.{{overline|60}}
| ?
|
| [[64/49]], 98/75
| ''125/96''
| ?
| [[64/49]]
| ?
| "
| "
|-
|-
| 77
| 77
| 466.{{overline|66}}
| 466.{{overline|66}}
|
|  
|  
|  
|  
|55/42, 72/55
| 55/42, 72/55
| ?
| "
|-
|-
| 78
| 78
| 472.{{overline|72}}
| 472.{{overline|72}}
| ?
|
| [[21/16]], 450/343
| ''320/243''
| ?
| [[21/16]]
| ?
| "
| "
|-
|-
| 79
| 79
| 478.{{overline|78}}
| 478.{{overline|78}}
|
|  
|  
|  
|  
| [[33/25]], 392/297
| [[33/25]]
| ?
| "
|-
|-
| 80
| 80
| 484.{{overline|84}}
| 484.{{overline|84}}
|
| ?
| ?
| 250/189, 324/245
| 250/189
| 160/121
| 160/121
| ?
| 143/108, 189/143, 224/169
|-
|-
| 81
| 81
| 490.{{overline|90}}
| 490.{{overline|90}}
|
|  
|  
|  
|  
| 297/224, 512/385
| 175/132
| ?
| 65/49
|-
|-
| 82
| 82
| 496.{{overline|96}}
| 496.{{overline|96}}
| P4
| '''[[4/3]]'''
| '''[[4/3]]'''
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 83
| 83
| 503.{{overline|03}}
| 503.{{overline|03}}
|
|  
|  
|  
|  
| 385/288
| 147/110
| ?
| 234/175
|-
|-
| 84
| 84
| 509.{{overline|09}}
| 509.{{overline|09}}
|
| ?
| ?
| 343/256
| ''[[75/56]]'', 168/125
| ?
| "
| ?
| "
|-
|-
| 85
| 85
| 515.{{overline|15}}
| 515.{{overline|15}}
|
|  
|  
|  
|  
| 66/49, 400/297
| 66/49
| ?
| 35/26
|-
|-
| 86
| 86
| 521.{{overline|21}}
| 521.{{overline|21}}
|
| [[27/20]]
| [[27/20]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 87
| 87
| 527.{{overline|27}}
| 527.{{overline|27}}
|
|  
|  
|  
|  
| 110/81, 224/165
| 110/81
| ?
| 65/48
|-
|-
| 88
| 88
| 533.{{overline|33}}
| 533.{{overline|33}}
| ?
|
| [[49/36]], 200/147
| ''512/375''
| ?
| [[49/36]]
| ?
| "
| "
|-
|-
| 89
| 89
| 539.{{overline|39}}
| 539.{{overline|39}}
|
|  
|  
|  
|  
| [[15/11]]
| [[15/11]]
| ?
| "
|-
|-
| 90
| 90
| 545.{{overline|45}}
| 545.{{overline|45}}
|
| 1000/729
| 1000/729
| [[48/35]], 343/250
| [[48/35]]
| ?
| "
| ?
| "
|-
|-
| 91
| 91
| 551.{{overline|51}}
| 551.{{overline|51}}
|
|  
|  
|  
|  
| '''[[11/8]]'''
| '''[[11/8]]'''
| ?
| "
|-
|-
| 92
| 92
| 557.{{overline|57}}
| 557.{{overline|57}}
| ?
|
| 441/320
| ''864/625''
| ?
| ''[[112/81]]''
| ?
| "
| 91/66
|-
|-
| 93
| 93
| 563.{{overline|63}}
| 563.{{overline|63}}
|
|  
|  
|  
|  
Line 675: Line 764:
| 94
| 94
| 569.{{overline|69}}
| 569.{{overline|69}}
|
| [[25/18]]
| [[25/18]]
| 243/175
| "
| 168/121
| "
| ?
| "
|-
|-
| 95
| 95
| 575.{{overline|75}}
| 575.{{overline|75}}
|
|  
|  
|  
|  
| 88/63, 384/275
| 88/63
| ?
| 39/28
|-
|-
| 96
| 96
| 581.{{overline|81}}
| 581.{{overline|81}}
| d5
| ?
| ?
| [[7/5]], 480/343
| [[7/5]]
| 605/432
| "
| ?
| "
|-
|-
| 97
| 97
| 587.{{overline|87}}
| 587.{{overline|87}}
|
|  
|  
|  
|  
| 108/77, 539/384
| 108/77
| ?
| "
|-
|-
| 98
| 98
| 593.{{overline|93}}
| 593.{{overline|93}}
| ?
|
| 343/243, 800/567
| ''[[45/32]]''
| 512/363
| 343/243
| ?
| 484/343
| 55/39
|-
|-
| 99
| 99
| 600.00
| 600.00
|
|  
|  
|  
|  
| [[99/70]], [[140/99]]
| [[99/70]], [[140/99]]
| ?
| "
|-
|-
| 100
| 100
| 606.{{overline|06}}
| 606.{{overline|06}}
| ?
|
| 486/343, 567/400
| ''[[64/45]]''
| 363/256
| 486/343
| ?
| 343/242
| 78/55
|-
|-
| 101
| 101
| 612.{{overline|12}}
| 612.{{overline|12}}
|
|  
|  
|  
|  
| 77/54, 768/539
| 77/54
| ?
| "
|-
|-
| 102
| 102
| 618.{{overline|18}}
| 618.{{overline|18}}
| A4
| ?
| ?
| [[10/7]], 343/240
| [[10/7]]
| 864/605
| "
| ?
| "
|-
|-
| 103
| 103
| 624.{{overline|24}}
| 624.{{overline|24}}
|
|  
|  
|  
|  
| 63/44, 275/192
| 63/44
| ?
| 56/39
|-
|-
| 104
| 104
| 630.{{overline|30}}
| 630.{{overline|30}}
|
| [[36/25]]
| [[36/25]]
| 350/243
| "
| 121/84
| "
| ?
| "
|-
|-
| 105
| 105
| 636.{{overline|36}}
| 636.{{overline|36}}
|
|  
|  
|  
|  
Line 759: Line 860:
| 106
| 106
| 642.{{overline|42}}
| 642.{{overline|42}}
| ?
|
| 640/441
| ''625/432''
| ?
| ''[[81/56]]''
| ?
| "
| 132/91
|-
|-
| 107
| 107
| 648.{{overline|48}}
| 648.{{overline|48}}
|
|  
|  
|  
|  
| '''[[16/11]]'''
| '''[[16/11]]'''
| ?
| "
|-
|-
| 108
| 108
| 654.{{overline|54}}
| 654.{{overline|54}}
|
| 729/500
| 729/500
| [[35/24]], 500/343
| [[35/24]]
| ?
| "
| ?
| "
|-
|-
| 109
| 109
| 660.{{overline|60}}
| 660.{{overline|60}}
|
|  
|  
|  
|  
| [[22/15]]
| [[22/15]]
| ?
| "
|-
|-
| 110
| 110
| 666.{{overline|66}}
| 666.{{overline|66}}
| ?
|
| [[72/49]], 147/100
| ''375/256''
| ?
| [[72/49]]
| ?
| "
| "
|-
|-
| 111
| 111
| 672.{{overline|72}}
| 672.{{overline|72}}
|
|  
|  
|  
|  
| 81/55, 165/112
| 81/55
| ?
| 96/65
|-
|-
| 112
| 112
| 678.{{overline|78}}
| 678.{{overline|78}}
|
| [[40/27]]
| [[40/27]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 113
| 113
| 684.{{overline|84}}
| 684.{{overline|84}}
|
|  
|  
|  
|  
| 49/33, 297/200
| 49/33
| ?
| 52/35
|-
|-
| 114
| 114
| 690.{{overline|90}}
| 690.{{overline|90}}
|
| ?
| ?
| 125/84, 512/343
| ''[[112/75]]'', 125/84
| ?
| "
| ?
| "
|-
|-
| 115
| 115
| 696.{{overline|96}}
| 696.{{overline|96}}
|
|  
|  
|  
|  
| 576/385
| 220/147
| ?
| 175/117
|-
|-
| 116
| 116
| 703.{{overline|03}}
| 703.{{overline|03}}
| P5
| '''[[3/2]]'''
| '''[[3/2]]'''
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 117
| 117
| 709.{{overline|09}}
| 709.{{overline|09}}
|
|  
|  
|  
|  
| 385/256, 448/297
| 264/175
| ?
| 98/65
|-
|-
| 118
| 118
| 715.{{overline|15}}
| 715.{{overline|15}}
|
| ?
| ?
| 189/125, 245/162
| 189/125
| 121/80
| 121/80
| ?
| 169/112, 216/143, 286/189
|-
|-
| 119
| 119
| 721.{{overline|21}}
| 721.{{overline|21}}
|
|  
|  
|  
|  
| [[50/33]], 297/196
| [[50/33]]
| ?
| "
|-
|-
| 120
| 120
| 727.{{overline|27}}
| 727.{{overline|27}}
| ?
|
| [[32/21]], 343/225
| ''243/160''
| ?
| [[32/21]]
| ?
| "
| "
|-
|-
| 121
| 121
| 733.{{overline|33}}
| 733.{{overline|33}}
|
|  
|  
|  
|  
| 55/36, 84/55
| 55/36, 84/55
| ?
| "
|-
|-
| 122
| 122
| 739.{{overline|39}}
| 739.{{overline|39}}
| ?
|
| [[49/32]], 75/49
| ''192/125''
| ?
| [[49/32]]
| ?
| "
| "
|-
|-
| 123
| 123
| 745.{{overline|45}}
| 745.{{overline|45}}
|
|  
|  
|  
|  
| ?
| 77/50
| [[20/13]]
| [[20/13]]
|-
|-
| 124
| 124
| 751.{{overline|51}}
| 751.{{overline|51}}
|
| 125/81
| 125/81
| [[54/35]]
| [[54/35]]
| ?
| "
| ?
| "
|-
|-
| 125
| 125
| 757.{{overline|57}}
| 757.{{overline|57}}
|
|  
|  
|  
|  
| [[99/64]], 256/165
| [[99/64]]
| ?
| 65/42
|-
|-
| 126
| 126
| 763.{{overline|63}}
| 763.{{overline|63}}
|
| 972/625
| 972/625
| [[14/9]]
| [[14/9]]
| ?
| "
| ?
| "
|-
|-
| 127
| 127
| 769.{{overline|69}}
| 769.{{overline|69}}
|
|  
|  
|  
|  
| 120/77
| 120/77
| ?
| 39/25
|-
|-
| 128
| 128
| 775.{{overline|75}}
| 775.{{overline|75}}
| ?
|
| 196/125, 384/245
| ''[[25/16]]''
| ?
| 196/125
| ?
| "
| "
|-
|-
| 129
| 129
| 781.{{overline|81}}
| 781.{{overline|81}}
|
|  
|  
|  
|  
| [[11/7]], 432/275
| [[11/7]]
| ?
| "
|-
|-
| 130
| 130
| 787.{{overline|87}}
| 787.{{overline|87}}
| ?
| m6
| [[63/40]], 540/343
| ''[[128/81]]''
| 605/384
| [[63/40]]
| "
| [[52/33]]
| [[52/33]]
|-
|-
| 131
| 131
| 793.{{overline|93}}
| 793.{{overline|93}}
|
|  
|  
|  
|  
| 385/243
| 198/125
| ?
| 144/91
|-
|-
| 132
| 132
| 800.00
| 800.00
| ?
|
| [[100/63]], 343/216
| ''405/256''
| [[192/121]]
| [[100/63]]
| ?
| "
| "
|-
|-
| 133
| 133
| 806.{{overline|06}}
| 806.{{overline|06}}
|
|  
|  
|  
|  
| [[35/22]]
| [[35/22]]
| ?
| "
|-
|-
| 134
| 134
| 812.{{overline|12}}
| 812.{{overline|12}}
|
| '''[[8/5]]'''
| '''[[8/5]]'''
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 135
| 135
| 818.{{overline|18}}
| 818.{{overline|18}}
|
|  
|  
|  
|  
| 77/48, 864/539
| 77/48
| ?
| 125/78, 130/81
|-
|-
| 136
| 136
| 824.{{overline|24}}
| 824.{{overline|24}}
|
| ?
| ?
| [[45/28]]
| [[45/28]]
| ?
| "
| ?
| "
|-
|-
| 137
| 137
| 830.{{overline|30}}
| 830.{{overline|30}}
|
|  
|  
|  
|  
| 160/99
| [[160/99]]
| [[21/13]]
| [[21/13]]
|-
|-
| 138
| 138
| 836.{{overline|36}}
| 836.{{overline|36}}
|
| 81/50
| 81/50
| 175/108
| 175/108
| 363/224
| 196/121
| ?
| "
|-
|-
| 139
| 139
| 842.{{overline|42}}
| 842.{{overline|42}}
|
|  
|  
|  
|  
Line 997: Line 1,132:
| 140
| 140
| 848.{{overline|48}}
| 848.{{overline|48}}
| ?
|
| ''625/384''
| [[49/30]], [[80/49]]
| [[49/30]], [[80/49]]
| ?
| "
| ?
| "
|-
|-
| 141
| 141
| 854.{{overline|54}}
| 854.{{overline|54}}
|
|  
|  
|  
|  
Line 1,011: Line 1,148:
| 142
| 142
| 860.{{overline|60}}
| 860.{{overline|60}}
|
| 400/243
| 400/243
| 288/175
| 288/175
| ?
| 242/147
| ?
| "
|-
|-
| 143
| 143
| 866.{{overline|66}}
| 866.{{overline|66}}
|
|  
|  
|  
|  
Line 1,025: Line 1,164:
| 144
| 144
| 872.{{overline|72}}
| 872.{{overline|72}}
|
| ?
| ?
| [[81/49]], 625/378
| [[81/49]]
| ?
| "
| ?
| "
|-
|-
| 145
| 145
| 878.{{overline|78}}
| 878.{{overline|78}}
|
|  
|  
|  
|  
| 128/77, 539/324
| 128/77
| ?
| 108/65
|-
|-
| 146
| 146
| 884.{{overline|84}}
| 884.{{overline|84}}
|
| [[5/3]]
| [[5/3]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 147
| 147
| 890.{{overline|90}}
| 890.{{overline|90}}
|
|  
|  
|  
|  
| 147/88
| 147/88
| ?
| 117/70, 196/117
|-
|-
| 148
| 148
| 896.{{overline|96}}
| 896.{{overline|96}}
|
| ?
| ?
| [[42/25]], 576/343
| [[42/25]]
| [[121/72]]
| "
| ?
| "
|-
|-
| 149
| 149
| 903.{{overline|03}}
| 903.{{overline|03}}
|
|  
|  
|  
|  
| 648/385
| 165/98
| ?
| 91/54
|-
|-
| 150
| 150
| 909.{{overline|09}}
| 909.{{overline|09}}
| ?
| M6
| ''[[27/16]]''
| [[320/189]]
| [[320/189]]
| 1024/605
| "
| [[22/13]]
| [[22/13]]
|-
|-
| 151
| 151
| 915.{{overline|15}}
| 915.{{overline|15}}
|
|  
|  
|  
|  
| [[56/33]], 275/162
| [[56/33]]
| ?
| "
|-
|-
| 152
| 152
| 921.{{overline|21}}
| 921.{{overline|21}}
| ?
|
| ''[[128/75]]''
| 245/144, 250/147
| 245/144, 250/147
| ?
| "
| ?
| 143/84
|-
|-
| 153
| 153
| 927.{{overline|27}}
| 927.{{overline|27}}
|
|  
|  
|  
|  
| 77/45
| 77/45
| ?
| "
|-
|-
| 154
| 154
| 933.{{overline|33}}
| 933.{{overline|33}}
|
| ?
| ?
| [[12/7]], 343/200
| [[12/7]]
| ?
| "
| ?
| "
|-
|-
| 155
| 155
| 939.{{overline|39}}
| 939.{{overline|39}}
|
|  
|  
|  
|  
| [[55/32]], 189/110
| [[55/32]]
| ?
| "
|-
|-
| 156
| 156
| 945.{{overline|45}}
| 945.{{overline|45}}
|
| 216/125
| 216/125
| [[140/81]]
| [[140/81]]
| [[121/70]]
| [[121/70]]
| ?
| "
|-
|-
| 157
| 157
| 951.{{overline|51}}
| 951.{{overline|51}}
|
|  
|  
|  
|  
| ?
| 343/198, 400/231
| [[26/15]]
| [[26/15]]
|-
|-
| 158
| 158
| 957.{{overline|57}}
| 957.{{overline|57}}
| 125/72
|
| 243/140, 256/147
| [[125/72]]
| ?
| "
| ?
| "
| "
|-
|-
| 159
| 159
| 963.{{overline|63}}
| 963.{{overline|63}}
|
|  
|  
|  
|  
| [[96/55]], 110/63
| [[96/55]]
| ?
| "
|-
|-
| 160
| 160
| 969.{{overline|69}}
| 969.{{overline|69}}
| ?
|
| '''[[7/4]]''', 600/343
| ''1280/729''
| ?
| '''[[7/4]]'''
| ?
| "
| "
|-
|-
| 161
| 161
| 975.{{overline|75}}
| 975.{{overline|75}}
|
|  
|  
|  
|  
| [[44/25]]
| [[44/25]]
| [[160/91]]
| "
|-
|-
| 162
| 162
| 981.{{overline|81}}
| 981.{{overline|81}}
| ?
|
| 432/245, 441/250
| ''[[225/128]]''
| 640/363
| 432/245
| ?
| "
| 143/81, 252/143
|-
|-
| 163
| 163
| 987.{{overline|87}}
| 987.{{overline|87}}
|
|  
|  
|  
|  
| 99/56, 486/275
| 99/56
| ?
| "
|-
|-
| 164
| 164
| 993.{{overline|93}}
| 993.{{overline|93}}
| m7
| [[16/9]]
| [[16/9]]
| ?
| "
| ?
| "
| [[39/22]]
| "
|-
|-
| 165
| 165
| 1000.00
| 1000.00
|
|  
|  
|  
|  
| [[98/55]], 385/216
| [[98/55]]
| [[162/91]]
| "
|-
|-
| 166
| 166
| 1006.{{overline|06}}
| 1006.{{overline|06}}
|
| ?
| ?
| [[25/14]], 343/192
| [[25/14]]
| 216/121
| "
| ?
| "
|-
|-
| 167
| 167
| 1012.{{overline|12}}
| 1012.{{overline|12}}
|
|  
|  
|  
|  
| 88/49
| 88/49
| ?
| 70/39
|-
|-
| 168
| 168
| 1018.{{overline|18}}
| 1018.{{overline|18}}
|
| [[9/5]]
| [[9/5]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 169
| 169
| 1024.{{overline|24}}
| 1024.{{overline|24}}
|
|  
|  
|  
|  
| 231/128
| 231/128
| ?
| 65/36
|-
|-
| 170
| 170
| 1030.{{overline|30}}
| 1030.{{overline|30}}
|
| ?
| ?
| [[49/27]], 800/441
| [[49/27]]
| ?
| "
| ?
| "
|-
|-
| 171
| 171
| 1036.{{overline|36}}
| 1036.{{overline|36}}
|
|  
|  
|  
|  
| [[20/11]]
| [[20/11]]
| ?
| "
|-
|-
| 172
| 172
| 1042.{{overline|42}}
| 1042.{{overline|42}}
| ?
|
| [[64/35]], 175/96
| ''729/400''
| ?
| [[64/35]]
| ?
| "
| "
|-
|-
| 173
| 173
| 1048.{{overline|48}}
| 1048.{{overline|48}}
|
|  
|  
|  
|  
| [[11/6]]
| [[11/6]]
| ?
| "
|-
|-
| 174
| 174
| 1054.{{overline|54}}
| 1054.{{overline|54}}
| ?
|
| [[90/49]], 147/80
| ''1152/625''
| ?
| [[90/49]]
| ?
| "
| "
|-
|-
| 175
| 175
| 1060.{{overline|60}}
| 1060.{{overline|60}}
|
|  
|  
|  
|  
| 1280/693
| 231/125
| [[24/13]]
| [[24/13]]
|-
|-
| 176
| 176
| 1066.{{overline|66}}
| 1066.{{overline|66}}
|
| [[50/27]]
| [[50/27]]
| 324/175
| "
| 224/121
| "
| ?
| "
|-
|-
| 177
| 177
| 1072.{{overline|72}}
| 1072.{{overline|72}}
|
|  
|  
|  
|  
| 297/160
| 245/132
| [[13/7]]
| [[13/7]]
|-
|-
| 178
| 178
| 1078.{{overline|78}}
| 1078.{{overline|78}}
|
| ?
| ?
| [[28/15]], 640/343
| [[28/15]]
| 605/324
| "
| ?
| "
|-
|-
| 179
| 179
| 1084.{{overline|84}}
| 1084.{{overline|84}}
|
|  
|  
|  
|  
| 144/77, 539/288
| [[144/77]]
| ?
| "
|-
|-
| 180
| 180
| 1090.{{overline|90}}
| 1090.{{overline|90}}
|
| [[15/8]]
| [[15/8]]
| ?
| "
| ?
| "
| ?
| "
|-
|-
| 181
| 181
| 1096.{{overline|96}}
| 1096.{{overline|96}}
|
|  
|  
|  
|  
| [[66/35]], 560/297
| [[66/35]]
| ?
| 49/26
|-
|-
| 182
| 182
| 1103.{{overline|03}}
| 1103.{{overline|03}}
| ?
|
| 189/100, 648/343
| ''256/135''
| 189/100
| [[121/64]]
| [[121/64]]
| ?
| 104/55
|-
|-
| 183
| 183
| 1109.{{overline|09}}
| 1109.{{overline|09}}
|
|  
|  
|  
|  
Line 1,305: Line 1,484:
| 184
| 184
| 1115.{{overline|15}}
| 1115.{{overline|15}}
| ?
| M7
| [[40/21]], 343/180
| ''[[243/128]]''
| 1152/605
| [[40/21]]
| ?
| "
| "
|-
|-
| 185
| 185
| 1121.{{overline|21}}
| 1121.{{overline|21}}
|
|  
|  
|  
|  
| [[21/11]], 275/144
| [[21/11]]
| ?
| "
|-
|-
| 186
| 186
| 1127.{{overline|27}}
| 1127.{{overline|27}}
|
| [[48/25]]
| [[48/25]]
| 1400/729
| "
| 121/63
| "
| ?
| "
|-
|-
| 187
| 187
| 1133.{{overline|33}}
| 1133.{{overline|33}}
|
|  
|  
|  
|  
Line 1,333: Line 1,516:
| 188
| 188
| 1139.{{overline|39}}
| 1139.{{overline|39}}
|
| 625/324
| 625/324
| [[27/14]]
| [[27/14]]
| ?
| "
| ?
| "
|-
|-
| 189
| 189
| 1145.{{overline|45}}
| 1145.{{overline|45}}
|
|  
|  
|  
|  
| [[64/33]]
| [[64/33]]
| [[126/65]]
| "
|-
|-
| 190
| 190
| 1151.{{overline|51}}
| 1151.{{overline|51}}
|
| 243/125
| 243/125
| [[35/18]]
| [[35/18]]
| ?
| "
| ?
| "
|-
|-
| 191
| 191
| 1157.{{overline|57}}
| 1157.{{overline|57}}
|
|  
|  
|  
|  
| ?
| ''88/45''
| [[39/20]]
| [[39/20]]
|-
|-
| 192
| 192
| 1163.{{overline|63}}
| 1163.{{overline|63}}
| ?
|
| 96/49, 49/25
| ''125/64''
| ?
| 49/25, 96/49
| ?
| "
| "
|-
|-
| 193
| 193
| 1169.{{overline|69}}
| 1169.{{overline|69}}
|
|  
|  
|  
|  
| 108/55, 55/27
| 55/28, 108/55
| ?
| "
|-
|-
| 194
| 194
| 1175.{{overline|75}}
| 1175.{{overline|75}}
|
| 160/81
| 160/81
| 63/32
| 63/32
| 484/245
| "
| 65/33, 77/39
| 65/33, 77/39
|-
|-
| 195
| 195
| 1181.{{overline|81}}
| 1181.{{overline|81}}
|
|  
|  
|  
|  
| 196/99, 99/50
| 99/50, 196/99
| ?
| 180/91, 208/105
|-
|-
| 196
| 196
| 1187.{{overline|87}}
| 1187.{{overline|87}}
|
| ?
| ?
| 125/63, 486/245
| 125/63
| 240/121
| 175/88, 240/121
| 143/72, 336/169
| 143/72
|-
|-
| 197
| 197
| 1193.{{overline|93}}
| 1193.{{overline|93}}
|
|  
|  
|  
|  
| 768/385, 880/441, 539/270
| 539/270, 768/385, 880/441
| 195/98, 648/325, 700/351, 363/182
| 195/98, 363/182, 648/325
|-
|-
| 198
| 198
| 1200.00
| 1200.00
| P8
| colspan="4" | '''[[2/1]]'''
| colspan="4" | '''[[2/1]]'''
|-
|-
Line 1,408: Line 1,602:


[[Category:198edo]]
[[Category:198edo]]
[[Category:Interval collection]]
[[Category:Tables of edo intervals]]

Latest revision as of 10:53, 21 January 2024

This table of 198edo intervals assumes 13-limit patent val 198 314 460 556 685 733].

Intervals highlighted in bold are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. Intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in italic. Intervals that differ by more than 100%, or with odd limit over 729 are not shown. For clarity, an entry can contain multiple intervals if they are of comparable complexity.

# Cents Marks 5-limit 7-limit 11-limit 13-limit
0 0.00 P1 1/1
1 6.06 385/384, 441/440, 540/539 196/195, 325/324, 364/363
2 12.12 ? 126/125 121/120, 176/175 144/143
3 18.18 99/98, 100/99 91/90, 105/104
4 24.24 81/80 64/63 " 66/65, 78/77
5 30.30 55/54, 56/55 "
6 36.36 128/125 49/48, 50/49 " "
7 42.42 45/44 40/39
8 48.48 250/243 36/35 " "
9 54.54 33/32 "
10 60.60 648/625 28/27 " "
11 66.66 80/77 26/25, 27/26
12 72.72 25/24 " " "
13 78.78 22/21 "
14 84.84 m2 256/243 21/20 " "
15 90.90 539/512 96/91
16 96.96 135/128 200/189 128/121 55/52
17 103.03 35/33 52/49
18 109.09 16/15 " " "
19 115.15 77/72 "
20 121.21 ? 15/14 " "
21 127.27 264/245, 320/297 14/13
22 133.33 27/25 " " "
23 139.39 88/81 13/12
24 145.45 625/576 49/45 " "
25 151.51 12/11 "
26 157.57 800/729 35/32 " "
27 163.63 11/10 "
28 169.69 ? 54/49 " "
29 175.75 256/231 72/65
30 181.81 10/9 " " "
31 187.87 49/44 39/35
32 193.93 ? 28/25 " "
33 200.00 55/49 "
34 206.06 M2 9/8 " " "
35 212.12 112/99 "
36 218.18 256/225 245/216 " 143/126, 162/143
37 224.24 25/22 "
38 230.30 729/640 8/7 " "
39 236.36 55/48 "
40 242.42 144/125 " " "
41 248.48 231/200 15/13
42 254.54 125/108 81/70 " "
43 260.60 64/55 "
44 266.66 ? 7/6 " "
45 272.72 90/77 "
46 278.78 75/64 147/125, 288/245 " 168/143
47 284.84 33/28 "
48 290.90 m3 32/27 189/160 " 13/11
49 296.96 196/165 108/91
50 303.03 ? 25/21 " "
51 309.09 176/147 117/98, 140/117
52 315.15 6/5 " " "
53 321.21 77/64 65/54
54 327.27 ? 98/81 " "
55 333.33 40/33 63/52
56 339.39 243/200 175/144 147/121 "
57 345.45 11/9 39/32
58 351.51 768/625 49/40, 60/49 " "
59 357.57 27/22 16/13
60 363.63 100/81 216/175 121/98 "
61 369.69 99/80 26/21
62 375.75 ? 56/45 " "
63 381.81 96/77 81/65, 125/78
64 387.87 5/4 " " "
65 393.93 44/35 49/39
66 400.00 512/405 63/50 " "
67 406.06 125/99 91/72
68 412.12 M3 81/64 80/63 " 33/26
69 418.18 14/11 "
70 424.24 32/25 125/98 " "
71 430.30 77/60 50/39
72 436.36 625/486 9/7 " "
73 442.42 128/99 84/65
74 448.48 162/125 35/27 " "
75 454.54 100/77 13/10
76 460.60 125/96 64/49 " "
77 466.66 55/42, 72/55 "
78 472.72 320/243 21/16 " "
79 478.78 33/25 "
80 484.84 ? 250/189 160/121 143/108, 189/143, 224/169
81 490.90 175/132 65/49
82 496.96 P4 4/3 " " "
83 503.03 147/110 234/175
84 509.09 ? 75/56, 168/125 " "
85 515.15 66/49 35/26
86 521.21 27/20 " " "
87 527.27 110/81 65/48
88 533.33 512/375 49/36 " "
89 539.39 15/11 "
90 545.45 1000/729 48/35 " "
91 551.51 11/8 "
92 557.57 864/625 112/81 " 91/66
93 563.63 320/231 18/13
94 569.69 25/18 " " "
95 575.75 88/63 39/28
96 581.81 d5 ? 7/5 " "
97 587.87 108/77 "
98 593.93 45/32 343/243 484/343 55/39
99 600.00 99/70, 140/99 "
100 606.06 64/45 486/343 343/242 78/55
101 612.12 77/54 "
102 618.18 A4 ? 10/7 " "
103 624.24 63/44 56/39
104 630.30 36/25 " " "
105 636.36 231/160 13/9
106 642.42 625/432 81/56 " 132/91
107 648.48 16/11 "
108 654.54 729/500 35/24 " "
109 660.60 22/15 "
110 666.66 375/256 72/49 " "
111 672.72 81/55 96/65
112 678.78 40/27 " " "
113 684.84 49/33 52/35
114 690.90 ? 112/75, 125/84 " "
115 696.96 220/147 175/117
116 703.03 P5 3/2 " " "
117 709.09 264/175 98/65
118 715.15 ? 189/125 121/80 169/112, 216/143, 286/189
119 721.21 50/33 "
120 727.27 243/160 32/21 " "
121 733.33 55/36, 84/55 "
122 739.39 192/125 49/32 " "
123 745.45 77/50 20/13
124 751.51 125/81 54/35 " "
125 757.57 99/64 65/42
126 763.63 972/625 14/9 " "
127 769.69 120/77 39/25
128 775.75 25/16 196/125 " "
129 781.81 11/7 "
130 787.87 m6 128/81 63/40 " 52/33
131 793.93 198/125 144/91
132 800.00 405/256 100/63 " "
133 806.06 35/22 "
134 812.12 8/5 " " "
135 818.18 77/48 125/78, 130/81
136 824.24 ? 45/28 " "
137 830.30 160/99 21/13
138 836.36 81/50 175/108 196/121 "
139 842.42 44/27 13/8
140 848.48 625/384 49/30, 80/49 " "
141 854.54 18/11 64/39
142 860.60 400/243 288/175 242/147 "
143 866.66 33/20 104/63
144 872.72 ? 81/49 " "
145 878.78 128/77 108/65
146 884.84 5/3 " " "
147 890.90 147/88 117/70, 196/117
148 896.96 ? 42/25 " "
149 903.03 165/98 91/54
150 909.09 M6 27/16 320/189 " 22/13
151 915.15 56/33 "
152 921.21 128/75 245/144, 250/147 " 143/84
153 927.27 77/45 "
154 933.33 ? 12/7 " "
155 939.39 55/32 "
156 945.45 216/125 140/81 121/70 "
157 951.51 343/198, 400/231 26/15
158 957.57 125/72 " " "
159 963.63 96/55 "
160 969.69 1280/729 7/4 " "
161 975.75 44/25 "
162 981.81 225/128 432/245 " 143/81, 252/143
163 987.87 99/56 "
164 993.93 m7 16/9 " " "
165 1000.00 98/55 "
166 1006.06 ? 25/14 " "
167 1012.12 88/49 70/39
168 1018.18 9/5 " " "
169 1024.24 231/128 65/36
170 1030.30 ? 49/27 " "
171 1036.36 20/11 "
172 1042.42 729/400 64/35 " "
173 1048.48 11/6 "
174 1054.54 1152/625 90/49 " "
175 1060.60 231/125 24/13
176 1066.66 50/27 " " "
177 1072.72 245/132 13/7
178 1078.78 ? 28/15 " "
179 1084.84 144/77 "
180 1090.90 15/8 " " "
181 1096.96 66/35 49/26
182 1103.03 256/135 189/100 121/64 104/55
183 1109.09 1024/539 91/48
184 1115.15 M7 243/128 40/21 " "
185 1121.21 21/11 "
186 1127.27 48/25 " " "
187 1133.33 77/40 25/13, 52/27
188 1139.39 625/324 27/14 " "
189 1145.45 64/33 "
190 1151.51 243/125 35/18 " "
191 1157.57 88/45 39/20
192 1163.63 125/64 49/25, 96/49 " "
193 1169.69 55/28, 108/55 "
194 1175.75 160/81 63/32 " 65/33, 77/39
195 1181.81 99/50, 196/99 180/91, 208/105
196 1187.87 ? 125/63 175/88, 240/121 143/72
197 1193.93 539/270, 768/385, 880/441 195/98, 363/182, 648/325
198 1200.00 P8 2/1