Table of 198edo intervals: Difference between revisions
Jump to navigation
Jump to search
4 decimal places should be enough |
|||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
This '''table of [[198edo]] intervals''' assumes [[13-limit]] [[patent val]] {{val| 198 314 460 556 685 733 }}. | |||
Intervals highlighted in '''bold''' are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. Intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in ''italic''. Intervals that differ by more than 100%, or with odd limit over 729 are not shown. For clarity, an entry can contain multiple intervals if they are of comparable complexity. | |||
{| class="wikitable center-1 right-2 center-3" | |||
{| class="wikitable center-1 right-2" | |||
|- | |- | ||
! # | ! # | ||
! Cents | ! Cents | ||
! 5 limit | ! Marks | ||
! 7 limit | ! 5-limit | ||
! 11 limit | ! 7-limit | ||
! 13 limit | ! 11-limit | ||
! 13-limit | |||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.00 | ||
| colspan="4"| '''[[1/1]]''' | | P1 | ||
| colspan="4" | '''[[1/1]]''' | |||
|- | |- | ||
| 1 | | 1 | ||
| 6. | | 6.{{overline|06}} | ||
| | |||
| | | | ||
| | | | ||
| [[385/384]], [[441/440]], [[540/539]] | | [[385/384]], [[441/440]], [[540/539]] | ||
| [[196/195]], [[325/324 | | [[196/195]], [[325/324]], [[364/363]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 12. | | 12.{{overline|12}} | ||
| | |||
| ? | | ? | ||
| [[126/125]] | | [[126/125]] | ||
| [[121/120]], [[176/175]] | |||
| [[144/143 | | [[144/143]] | ||
|- | |- | ||
| 3 | | 3 | ||
| 18. | | 18.{{overline|18}} | ||
| | |||
| | | | ||
| | | | ||
| [[99/98]], [[100/99]] | | [[99/98]], [[100/99]] | ||
| | | [[91/90]], [[105/104]] | ||
|- | |- | ||
| 4 | | 4 | ||
| 24. | | 24.{{overline|24}} | ||
| | |||
| [[81/80]] | | [[81/80]] | ||
| [[64/63]] | | [[64/63]] | ||
| | | " | ||
| [[66/65]], [[78/77]] | | [[66/65]], [[78/77]] | ||
|- | |- | ||
| 5 | | 5 | ||
| 30. | | 30.{{overline|30}} | ||
| | |||
| | | | ||
| | | | ||
| [[55/54]], [[56/55]] | | [[55/54]], [[56/55]] | ||
| | | " | ||
|- | |- | ||
| 6 | | 6 | ||
| 36. | | 36.{{overline|36}} | ||
| | | | ||
| ''[[128/125]]'' | |||
| [[49/48]], [[50/49]] | | [[49/48]], [[50/49]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 7 | | 7 | ||
| 42. | | 42.{{overline|42}} | ||
| | |||
| | | | ||
| | | | ||
| | | ''[[45/44]]'' | ||
| [[40/39]] | | [[40/39]] | ||
|- | |- | ||
| 8 | | 8 | ||
| 48. | | 48.{{overline|48}} | ||
| | | | ||
| [[250/243]] | |||
| [[36/35]] | | [[36/35]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 9 | | 9 | ||
| 54. | | 54.{{overline|54}} | ||
| | |||
| | | | ||
| | | | ||
| [[33/32]] | | [[33/32]] | ||
| | | " | ||
|- | |- | ||
| 10 | | 10 | ||
| 60. | | 60.{{overline|60}} | ||
| | | | ||
| [[648/625]] | |||
| [[28/27]] | | [[28/27]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 11 | | 11 | ||
| 66. | | 66.{{overline|66}} | ||
| | |||
| | | | ||
| | | | ||
Line 96: | Line 107: | ||
|- | |- | ||
| 12 | | 12 | ||
| 72. | | 72.{{overline|72}} | ||
| | |||
| [[25/24]] | | [[25/24]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 13 | | 13 | ||
| 78. | | 78.{{overline|78}} | ||
| | |||
| | | | ||
| | | | ||
| [[22/21]] | | [[22/21]] | ||
| | | " | ||
|- | |- | ||
| 14 | | 14 | ||
| 84. | | 84.{{overline|84}} | ||
| | | m2 | ||
| ''[[256/243]]'' | |||
| [[21/20]] | | [[21/20]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 15 | | 15 | ||
| 90. | | 90.{{overline|90}} | ||
| | |||
| | | | ||
| | | | ||
| | | 539/512 | ||
| | | 96/91 | ||
|- | |- | ||
| 16 | | 16 | ||
| 96. | | 96.{{overline|96}} | ||
| | | | ||
| [[200/189 | | ''[[135/128]]'' | ||
| 200/189 | |||
| [[128/121]] | | [[128/121]] | ||
| | | [[55/52]] | ||
|- | |- | ||
| 17 | | 17 | ||
| 103. | | 103.{{overline|03}} | ||
| | |||
| | | | ||
| | | | ||
| [[35/33]] | | [[35/33]] | ||
| | | [[52/49]] | ||
|- | |- | ||
| 18 | | 18 | ||
| 109. | | 109.{{overline|09}} | ||
| | |||
| [[16/15]] | | [[16/15]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 19 | | 19 | ||
| 115. | | 115.{{overline|15}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[77/72]] | ||
| | | " | ||
|- | |- | ||
| 20 | | 20 | ||
| 121. | | 121.{{overline|21}} | ||
| | |||
| ? | | ? | ||
| [[15/14]] | | [[15/14]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 21 | | 21 | ||
| 127. | | 127.{{overline|27}} | ||
| | |||
| | | | ||
| | | | ||
| | | 264/245, 320/297 | ||
| [[14/13]] | | [[14/13]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 133. | | 133.{{overline|33}} | ||
| | |||
| [[27/25]] | | [[27/25]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 23 | | 23 | ||
| 139. | | 139.{{overline|39}} | ||
| | |||
| | | | ||
| | | | ||
| | | ''[[88/81]]'' | ||
| [[13/12]] | | [[13/12]] | ||
|- | |- | ||
| 24 | | 24 | ||
| 145. | | 145.{{overline|45}} | ||
| | | | ||
| [[49/45 | | ''625/576'' | ||
| | | [[49/45]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 25 | | 25 | ||
| 151. | | 151.{{overline|51}} | ||
| | |||
| | | | ||
| | | | ||
| [[12/11]] | | [[12/11]] | ||
| | | " | ||
|- | |- | ||
| 26 | | 26 | ||
| 157. | | 157.{{overline|57}} | ||
| | | | ||
| ''800/729'' | |||
| [[35/32]] | | [[35/32]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 27 | | 27 | ||
| 163. | | 163.{{overline|63}} | ||
| | |||
| | | | ||
| | | | ||
| [[11/10]] | | [[11/10]] | ||
| | | " | ||
|- | |- | ||
| 28 | | 28 | ||
| 169. | | 169.{{overline|69}} | ||
| | |||
| ? | | ? | ||
| [[54/49]] | | [[54/49]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 29 | | 29 | ||
| 175. | | 175.{{overline|75}} | ||
| | |||
| | | | ||
| | | | ||
| | | 256/231 | ||
| | | 72/65 | ||
|- | |- | ||
| 30 | | 30 | ||
| 181. | | 181.{{overline|81}} | ||
| | |||
| [[10/9]] | | [[10/9]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 31 | | 31 | ||
| 187. | | 187.{{overline|87}} | ||
| | |||
| | | | ||
| | | | ||
| | | 49/44 | ||
| | | 39/35 | ||
|- | |- | ||
| 32 | | 32 | ||
| 193. | | 193.{{overline|93}} | ||
| | |||
| ? | | ? | ||
| [[28/25]] | | [[28/25]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 33 | | 33 | ||
| 200. | | 200.00 | ||
| | |||
| | | | ||
| | | | ||
| [[55/49]] | |||
| [[ | | " | ||
|- | |- | ||
| 34 | | 34 | ||
| 206. | | 206.{{overline|06}} | ||
| M2 | |||
| [[9/8]] | | [[9/8]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 35 | | 35 | ||
| 212. | | 212.{{overline|12}} | ||
| | |||
| | | | ||
| | | | ||
| | | 112/99 | ||
| | | " | ||
|- | |- | ||
| 36 | | 36 | ||
| 218. | | 218.{{overline|18}} | ||
| | | | ||
| | | ''[[256/225]]'' | ||
| | | 245/216 | ||
| | | " | ||
| 143/126, 162/143 | |||
|- | |- | ||
| 37 | | 37 | ||
| 224. | | 224.{{overline|24}} | ||
| | |||
| | | | ||
| | | | ||
| [[25/22]] | |||
| [[ | | " | ||
|- | |- | ||
| 38 | | 38 | ||
| 230. | | 230.{{overline|30}} | ||
| | | | ||
| ''729/640'' | |||
| '''[[8/7]]''' | | '''[[8/7]]''' | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 39 | | 39 | ||
| 236. | | 236.{{overline|36}} | ||
| | |||
| | | | ||
| | | | ||
| [[55/48]] | | [[55/48]] | ||
| | | " | ||
|- | |- | ||
| 40 | | 40 | ||
| 242. | | 242.{{overline|42}} | ||
| | | | ||
| [[ | | [[144/125]] | ||
| | | " | ||
| | | " | ||
| " | |||
|- | |- | ||
| 41 | | 41 | ||
| 248. | | 248.{{overline|48}} | ||
| | |||
| | | | ||
| | | | ||
| | | 231/200 | ||
| [[15/13]] | | [[15/13]] | ||
|- | |- | ||
| 42 | | 42 | ||
| 254. | | 254.{{overline|54}} | ||
| | | | ||
| 125/108 | |||
| [[81/70]] | | [[81/70]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 43 | | 43 | ||
| 260. | | 260.{{overline|60}} | ||
| | |||
| | | | ||
| | | | ||
| [[64/55]] | | [[64/55]] | ||
| | | " | ||
|- | |- | ||
| 44 | | 44 | ||
| 266. | | 266.{{overline|66}} | ||
| | |||
| ? | | ? | ||
| [[7/6]] | | [[7/6]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 45 | | 45 | ||
| 272. | | 272.{{overline|72}} | ||
| | |||
| | | | ||
| | | | ||
| | | 90/77 | ||
| | | " | ||
|- | |- | ||
| 46 | | 46 | ||
| 278. | | 278.{{overline|78}} | ||
| | | | ||
| | | ''[[75/64]]'' | ||
| | | 147/125, 288/245 | ||
| | | " | ||
| 168/143 | |||
|- | |- | ||
| 47 | | 47 | ||
| 284. | | 284.{{overline|84}} | ||
| | |||
| | | | ||
| | | | ||
| [[33/28]] | | [[33/28]] | ||
| | | " | ||
|- | |- | ||
| 48 | | 48 | ||
| 290. | | 290.{{overline|90}} | ||
| | | m3 | ||
| ''[[32/27]]'' | |||
| [[189/160]] | | [[189/160]] | ||
| | | " | ||
| [[13/11]] | | [[13/11]] | ||
|- | |- | ||
| 49 | | 49 | ||
| 296. | | 296.{{overline|96}} | ||
| | |||
| | | | ||
| | | | ||
| | | 196/165 | ||
| | | 108/91 | ||
|- | |- | ||
| 50 | | 50 | ||
| 303. | | 303.{{overline|03}} | ||
| | |||
| ? | | ? | ||
| [[25/21]] | | [[25/21]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 51 | | 51 | ||
| 309. | | 309.{{overline|09}} | ||
| | |||
| | | | ||
| | | | ||
| | | 176/147 | ||
| | | 117/98, 140/117 | ||
|- | |- | ||
| 52 | | 52 | ||
| 315. | | 315.{{overline|15}} | ||
| | |||
| [[6/5]] | | [[6/5]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 53 | | 53 | ||
| 321. | | 321.{{overline|21}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/64 | ||
| | | 65/54 | ||
|- | |- | ||
| 54 | | 54 | ||
| 327. | | 327.{{overline|27}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| 98/81 | |||
| " | |||
| " | |||
|- | |- | ||
| 55 | | 55 | ||
| 333. | | 333.{{overline|33}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[40/33]] | ||
| [[63/52]] | | [[63/52]] | ||
|- | |- | ||
| 56 | | 56 | ||
| 339. | | 339.{{overline|39}} | ||
| | | | ||
| | | 243/200 | ||
| | | 175/144 | ||
| | | 147/121 | ||
| " | |||
|- | |- | ||
| 57 | | 57 | ||
| 345. | | 345.{{overline|45}} | ||
| | |||
| | | | ||
| | | | ||
Line 418: | Line 475: | ||
|- | |- | ||
| 58 | | 58 | ||
| 351. | | 351.{{overline|51}} | ||
| | | | ||
| ''768/625'' | |||
| [[49/40]], [[60/49]] | | [[49/40]], [[60/49]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 59 | | 59 | ||
| 357. | | 357.{{overline|57}} | ||
| | |||
| | | | ||
| | | | ||
Line 432: | Line 491: | ||
|- | |- | ||
| 60 | | 60 | ||
| 363. | | 363.{{overline|63}} | ||
| | | | ||
| | | 100/81 | ||
| | | 216/175 | ||
| | | 121/98 | ||
| " | |||
|- | |- | ||
| 61 | | 61 | ||
| 369. | | 369.{{overline|69}} | ||
| | |||
| | | | ||
| | | | ||
| | | 99/80 | ||
| [[26/21]] | | [[26/21]] | ||
|- | |- | ||
| 62 | | 62 | ||
| 375. | | 375.{{overline|75}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| [[56/45]] | |||
| " | |||
| " | |||
|- | |- | ||
| 63 | | 63 | ||
| 381. | | 381.{{overline|81}} | ||
| | |||
| | | | ||
| | | | ||
| | | 96/77 | ||
| | | 81/65, 125/78 | ||
|- | |- | ||
| 64 | | 64 | ||
| 387. | | 387.{{overline|87}} | ||
| | |||
| '''[[5/4]]''' | | '''[[5/4]]''' | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 65 | | 65 | ||
| 393. | | 393.{{overline|93}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[44/35]] | ||
| | | 49/39 | ||
|- | |- | ||
| 66 | | 66 | ||
| 400. | | 400.00 | ||
| | | | ||
| ''512/405'' | |||
| [[63/50]] | | [[63/50]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 67 | | 67 | ||
| 406. | | 406.{{overline|06}} | ||
| | |||
| | | | ||
| | | | ||
| | | 125/99 | ||
| | | 91/72 | ||
|- | |- | ||
| 68 | | 68 | ||
| 412. | | 412.{{overline|12}} | ||
| | | M3 | ||
| ''[[81/64]]'' | |||
| [[80/63]] | | [[80/63]] | ||
| | | " | ||
| [[33/26]] | | [[33/26]] | ||
|- | |- | ||
| 69 | | 69 | ||
| 418. | | 418.{{overline|18}} | ||
| | |||
| | | | ||
| | | | ||
| [[14/11]] | | [[14/11]] | ||
| | | " | ||
|- | |- | ||
| 70 | | 70 | ||
| 424. | | 424.{{overline|24}} | ||
| | | | ||
| | | ''[[32/25]]'' | ||
| | | 125/98 | ||
| | | " | ||
| " | |||
|- | |- | ||
| 71 | | 71 | ||
| 430. | | 430.{{overline|30}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/60 | ||
| | | 50/39 | ||
|- | |- | ||
| 72 | | 72 | ||
| 436. | | 436.{{overline|36}} | ||
| | | | ||
| 625/486 | |||
| [[9/7]] | | [[9/7]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 73 | | 73 | ||
| 442. | | 442.{{overline|42}} | ||
| | |||
| | | | ||
| | | | ||
| [[128/99]] | | [[128/99]] | ||
| | | 84/65 | ||
|- | |- | ||
| 74 | | 74 | ||
| 448. | | 448.{{overline|48}} | ||
| | | | ||
| 162/125 | |||
| [[35/27]] | | [[35/27]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 75 | | 75 | ||
| 454. | | 454.{{overline|54}} | ||
| | |||
| | | | ||
| | | | ||
| | | 100/77 | ||
| [[13/10]] | | [[13/10]] | ||
|- | |- | ||
| 76 | | 76 | ||
| 460. | | 460.{{overline|60}} | ||
| | | | ||
| | | ''125/96'' | ||
| | | [[64/49]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 77 | | 77 | ||
| 466. | | 466.{{overline|66}} | ||
| | |||
| | | | ||
| | | | ||
| | | 55/42, 72/55 | ||
| | | " | ||
|- | |- | ||
| 78 | | 78 | ||
| 472. | | 472.{{overline|72}} | ||
| | | | ||
| ''320/243'' | |||
| [[21/16]] | | [[21/16]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 79 | | 79 | ||
| 478. | | 478.{{overline|78}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[33/25]] | ||
| | | " | ||
|- | |- | ||
| 80 | | 80 | ||
| 484. | | 484.{{overline|84}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| 250/189 | |||
| 160/121 | |||
| 143/108, 189/143, 224/169 | |||
|- | |- | ||
| 81 | | 81 | ||
| 490. | | 490.{{overline|90}} | ||
| | |||
| | | | ||
| | | | ||
| | | 175/132 | ||
| | | 65/49 | ||
|- | |- | ||
| 82 | | 82 | ||
| 496. | | 496.{{overline|96}} | ||
| P4 | |||
| '''[[4/3]]''' | | '''[[4/3]]''' | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 83 | | 83 | ||
| 503. | | 503.{{overline|03}} | ||
| | |||
| | | | ||
| | | | ||
| | | 147/110 | ||
| | | 234/175 | ||
|- | |- | ||
| 84 | | 84 | ||
| 509. | | 509.{{overline|09}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| ''[[75/56]]'', 168/125 | |||
| " | |||
| " | |||
|- | |- | ||
| 85 | | 85 | ||
| 515. | | 515.{{overline|15}} | ||
| | |||
| | | | ||
| | | | ||
| | | 66/49 | ||
| | | 35/26 | ||
|- | |- | ||
| 86 | | 86 | ||
| 521. | | 521.{{overline|21}} | ||
| | |||
| [[27/20]] | | [[27/20]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 87 | | 87 | ||
| 527. | | 527.{{overline|27}} | ||
| | |||
| | | | ||
| | | | ||
| | | 110/81 | ||
| | | 65/48 | ||
|- | |- | ||
| 88 | | 88 | ||
| 533. | | 533.{{overline|33}} | ||
| | | | ||
| ''512/375'' | |||
| [[49/36]] | | [[49/36]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 89 | | 89 | ||
| 539. | | 539.{{overline|39}} | ||
| | |||
| | | | ||
| | | | ||
| [[15/11]] | | [[15/11]] | ||
| | | " | ||
|- | |- | ||
| 90 | | 90 | ||
| 545. | | 545.{{overline|45}} | ||
| | | | ||
| 1000/729 | |||
| [[48/35]] | | [[48/35]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 91 | | 91 | ||
| 551. | | 551.{{overline|51}} | ||
| | |||
| | | | ||
| | | | ||
| '''[[11/8]]''' | | '''[[11/8]]''' | ||
| | | " | ||
|- | |- | ||
| 92 | | 92 | ||
| 557. | | 557.{{overline|57}} | ||
| | | | ||
| [[ | | ''864/625'' | ||
| | | ''[[112/81]]'' | ||
| | | " | ||
| 91/66 | |||
|- | |- | ||
| 93 | | 93 | ||
| 563. | | 563.{{overline|63}} | ||
| | |||
| | | | ||
| | | | ||
| | | 320/231 | ||
| [[18/13]] | | [[18/13]] | ||
|- | |- | ||
| 94 | | 94 | ||
| 569. | | 569.{{overline|69}} | ||
| | |||
| [[25/18]] | | [[25/18]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 95 | | 95 | ||
| 575. | | 575.{{overline|75}} | ||
| | |||
| | | | ||
| | | | ||
| | | 88/63 | ||
| | | 39/28 | ||
|- | |- | ||
| 96 | | 96 | ||
| 581. | | 581.{{overline|81}} | ||
| d5 | |||
| ? | | ? | ||
| [[7/5]] | | [[7/5]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 97 | | 97 | ||
| 587. | | 587.{{overline|87}} | ||
| | |||
| | | | ||
| | | | ||
| | | 108/77 | ||
| | | " | ||
|- | |- | ||
| 98 | | 98 | ||
| 593. | | 593.{{overline|93}} | ||
| | | | ||
| | | ''[[45/32]]'' | ||
| | | 343/243 | ||
| | | 484/343 | ||
| 55/39 | |||
|- | |- | ||
| 99 | | 99 | ||
| 600. | | 600.00 | ||
| | |||
| | | | ||
| | | | ||
| [[99/70]], [[140/99]] | | [[99/70]], [[140/99]] | ||
| | | " | ||
|- | |- | ||
| 100 | | 100 | ||
| 606. | | 606.{{overline|06}} | ||
| | | | ||
| | | ''[[64/45]]'' | ||
| | | 486/343 | ||
| | | 343/242 | ||
| 78/55 | |||
|- | |- | ||
| 101 | | 101 | ||
| 612. | | 612.{{overline|12}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/54 | ||
| | | " | ||
|- | |- | ||
| 102 | | 102 | ||
| 618. | | 618.{{overline|18}} | ||
| A4 | |||
| ? | | ? | ||
| [[10/7]] | | [[10/7]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 103 | | 103 | ||
| 624. | | 624.{{overline|24}} | ||
| | |||
| | | | ||
| | | | ||
| | | 63/44 | ||
| | | 56/39 | ||
|- | |- | ||
| 104 | | 104 | ||
| 630. | | 630.{{overline|30}} | ||
| | |||
| [[36/25]] | | [[36/25]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 105 | | 105 | ||
| 636. | | 636.{{overline|36}} | ||
| | |||
| | | | ||
| | | | ||
| | | 231/160 | ||
| [[13/9]] | | [[13/9]] | ||
|- | |- | ||
| 106 | | 106 | ||
| 642. | | 642.{{overline|42}} | ||
| | | | ||
| | | ''625/432'' | ||
| | | ''[[81/56]]'' | ||
| | | " | ||
| 132/91 | |||
|- | |- | ||
| 107 | | 107 | ||
| 648. | | 648.{{overline|48}} | ||
| | |||
| | | | ||
| | | | ||
| '''[[16/11]]''' | | '''[[16/11]]''' | ||
| | | " | ||
|- | |- | ||
| 108 | | 108 | ||
| 654. | | 654.{{overline|54}} | ||
| | | | ||
| [[ | | 729/500 | ||
| | | [[35/24]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 109 | | 109 | ||
| 660. | | 660.{{overline|60}} | ||
| | |||
| | | | ||
| | | | ||
| [[22/15]] | | [[22/15]] | ||
| | | " | ||
|- | |- | ||
| 110 | | 110 | ||
| 666. | | 666.{{overline|66}} | ||
| | | | ||
| | | ''375/256'' | ||
| | | [[72/49]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 111 | | 111 | ||
| 672. | | 672.{{overline|72}} | ||
| | |||
| | | | ||
| | | | ||
| | | 81/55 | ||
| | | 96/65 | ||
|- | |- | ||
| 112 | | 112 | ||
| 678. | | 678.{{overline|78}} | ||
| | |||
| [[40/27]] | | [[40/27]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 113 | | 113 | ||
| 684. | | 684.{{overline|84}} | ||
| | |||
| | | | ||
| | | | ||
| | | 49/33 | ||
| | | 52/35 | ||
|- | |- | ||
| 114 | | 114 | ||
| 690. | | 690.{{overline|90}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| ''[[112/75]]'', 125/84 | |||
| " | |||
| " | |||
|- | |- | ||
| 115 | | 115 | ||
| 696. | | 696.{{overline|96}} | ||
| | |||
| | | | ||
| | | | ||
| | | 220/147 | ||
| | | 175/117 | ||
|- | |- | ||
| 116 | | 116 | ||
| 703. | | 703.{{overline|03}} | ||
| [[3/2]] | | P5 | ||
| | | '''[[3/2]]''' | ||
| | | " | ||
| | | " | ||
| " | |||
|- | |- | ||
| 117 | | 117 | ||
| 709. | | 709.{{overline|09}} | ||
| | |||
| | | | ||
| | | | ||
| | | 264/175 | ||
| | | 98/65 | ||
|- | |- | ||
| 118 | | 118 | ||
| 715. | | 715.{{overline|15}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| 189/125 | |||
| 121/80 | |||
| 169/112, 216/143, 286/189 | |||
|- | |- | ||
| 119 | | 119 | ||
| 721. | | 721.{{overline|21}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[50/33]] | ||
| | | " | ||
|- | |- | ||
| 120 | | 120 | ||
| 727. | | 727.{{overline|27}} | ||
| | | | ||
| ''243/160'' | |||
| [[32/21]] | | [[32/21]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 121 | | 121 | ||
| 733. | | 733.{{overline|33}} | ||
| | |||
| | | | ||
| | | | ||
| | | 55/36, 84/55 | ||
| | | " | ||
|- | |- | ||
| 122 | | 122 | ||
| 739. | | 739.{{overline|39}} | ||
| | | | ||
| | | ''192/125'' | ||
| | | [[49/32]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 123 | | 123 | ||
| 745. | | 745.{{overline|45}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/50 | ||
| [[20/13]] | | [[20/13]] | ||
|- | |- | ||
| 124 | | 124 | ||
| 751. | | 751.{{overline|51}} | ||
| | | | ||
| 125/81 | |||
| [[54/35]] | | [[54/35]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 125 | | 125 | ||
| 757. | | 757.{{overline|57}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[99/64]] | ||
| | | 65/42 | ||
|- | |- | ||
| 126 | | 126 | ||
| 763. | | 763.{{overline|63}} | ||
| | | | ||
| 972/625 | |||
| [[14/9]] | | [[14/9]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 127 | | 127 | ||
| 769. | | 769.{{overline|69}} | ||
| | |||
| | | | ||
| | | | ||
| | | 120/77 | ||
| | | 39/25 | ||
|- | |- | ||
| 128 | | 128 | ||
| 775. | | 775.{{overline|75}} | ||
| | | | ||
| | | ''[[25/16]]'' | ||
| | | 196/125 | ||
| | | " | ||
| " | |||
|- | |- | ||
| 129 | | 129 | ||
| 781. | | 781.{{overline|81}} | ||
| | |||
| | | | ||
| | | | ||
| [[11/7]] | | [[11/7]] | ||
| | | " | ||
|- | |- | ||
| 130 | | 130 | ||
| 787. | | 787.{{overline|87}} | ||
| | | m6 | ||
| ''[[128/81]]'' | |||
| [[63/40]] | | [[63/40]] | ||
| | | " | ||
| [[52/33]] | | [[52/33]] | ||
|- | |- | ||
| 131 | | 131 | ||
| 793. | | 793.{{overline|93}} | ||
| | |||
| | | | ||
| | | | ||
| | | 198/125 | ||
| | | 144/91 | ||
|- | |- | ||
| 132 | | 132 | ||
| 800. | | 800.00 | ||
| | | | ||
| ''405/256'' | |||
| [[100/63]] | | [[100/63]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 133 | | 133 | ||
| 806. | | 806.{{overline|06}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[35/22]] | ||
| | | " | ||
|- | |- | ||
| 134 | | 134 | ||
| 812. | | 812.{{overline|12}} | ||
| | |||
| '''[[8/5]]''' | | '''[[8/5]]''' | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 135 | | 135 | ||
| 818. | | 818.{{overline|18}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/48 | ||
| | | 125/78, 130/81 | ||
|- | |- | ||
| 136 | | 136 | ||
| 824. | | 824.{{overline|24}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| [[45/28]] | |||
| " | |||
| " | |||
|- | |- | ||
| 137 | | 137 | ||
| 830. | | 830.{{overline|30}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[160/99]] | ||
| [[21/13]] | | [[21/13]] | ||
|- | |- | ||
| 138 | | 138 | ||
| 836. | | 836.{{overline|36}} | ||
| | | | ||
| | | 81/50 | ||
| | | 175/108 | ||
| | | 196/121 | ||
| " | |||
|- | |- | ||
| 139 | | 139 | ||
| 842. | | 842.{{overline|42}} | ||
| | |||
| | | | ||
| | | | ||
Line 992: | Line 1,131: | ||
|- | |- | ||
| 140 | | 140 | ||
| 848. | | 848.{{overline|48}} | ||
| | | | ||
| ''625/384'' | |||
| [[49/30]], [[80/49]] | | [[49/30]], [[80/49]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 141 | | 141 | ||
| 854. | | 854.{{overline|54}} | ||
| | |||
| | | | ||
| | | | ||
Line 1,006: | Line 1,147: | ||
|- | |- | ||
| 142 | | 142 | ||
| 860. | | 860.{{overline|60}} | ||
| | | | ||
| | | 400/243 | ||
| | | 288/175 | ||
| | | 242/147 | ||
| " | |||
|- | |- | ||
| 143 | | 143 | ||
| 866. | | 866.{{overline|66}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[33/20]] | ||
| [[104/63]] | | [[104/63]] | ||
|- | |- | ||
| 144 | | 144 | ||
| 872. | | 872.{{overline|72}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| [[81/49]] | |||
| " | |||
| " | |||
|- | |- | ||
| 145 | | 145 | ||
| 878. | | 878.{{overline|78}} | ||
| | |||
| | | | ||
| | | | ||
| | | 128/77 | ||
| | | 108/65 | ||
|- | |- | ||
| 146 | | 146 | ||
| 884. | | 884.{{overline|84}} | ||
| | |||
| [[5/3]] | | [[5/3]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 147 | | 147 | ||
| 890. | | 890.{{overline|90}} | ||
| | |||
| | | | ||
| | | | ||
| | | 147/88 | ||
| | | 117/70, 196/117 | ||
|- | |- | ||
| 148 | | 148 | ||
| 896. | | 896.{{overline|96}} | ||
| | |||
| ? | | ? | ||
| [[42/25]] | | [[42/25]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 149 | | 149 | ||
| 903. | | 903.{{overline|03}} | ||
| | |||
| | | | ||
| | | | ||
| | | 165/98 | ||
| | | 91/54 | ||
|- | |- | ||
| 150 | | 150 | ||
| 909. | | 909.{{overline|09}} | ||
| | | M6 | ||
| ''[[27/16]]'' | |||
| [[320/189]] | | [[320/189]] | ||
| | | " | ||
| [[22/13]] | | [[22/13]] | ||
|- | |- | ||
| 151 | | 151 | ||
| 915. | | 915.{{overline|15}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[56/33]] | ||
| | | " | ||
|- | |- | ||
| 152 | | 152 | ||
| 921. | | 921.{{overline|21}} | ||
| | | | ||
| | | ''[[128/75]]'' | ||
| | | 245/144, 250/147 | ||
| | | " | ||
| 143/84 | |||
|- | |- | ||
| 153 | | 153 | ||
| 927. | | 927.{{overline|27}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/45 | ||
| | | " | ||
|- | |- | ||
| 154 | | 154 | ||
| 933. | | 933.{{overline|33}} | ||
| | |||
| ? | | ? | ||
| [[12/7]] | | [[12/7]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 155 | | 155 | ||
| 939. | | 939.{{overline|39}} | ||
| | |||
| | | | ||
| | | | ||
| [[55/32]] | | [[55/32]] | ||
| | | " | ||
|- | |- | ||
| 156 | | 156 | ||
| 945. | | 945.{{overline|45}} | ||
| | | | ||
| 216/125 | |||
| [[140/81]] | | [[140/81]] | ||
| [[121/70]] | | [[121/70]] | ||
| | | " | ||
|- | |- | ||
| 157 | | 157 | ||
| 951. | | 951.{{overline|51}} | ||
| | |||
| | | | ||
| | | | ||
| | | 343/198, 400/231 | ||
| [[26/15]] | | [[26/15]] | ||
|- | |- | ||
| 158 | | 158 | ||
| 957. | | 957.{{overline|57}} | ||
| | | | ||
| [[ | | [[125/72]] | ||
| | | " | ||
| | | " | ||
| " | |||
|- | |- | ||
| 159 | | 159 | ||
| 963. | | 963.{{overline|63}} | ||
| | |||
| | | | ||
| | | | ||
| [[96/55]] | | [[96/55]] | ||
| | | " | ||
|- | |- | ||
| 160 | | 160 | ||
| 969. | | 969.{{overline|69}} | ||
| | | | ||
| ''1280/729'' | |||
| '''[[7/4]]''' | | '''[[7/4]]''' | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 161 | | 161 | ||
| 975. | | 975.{{overline|75}} | ||
| | |||
| | | | ||
| | | | ||
| [[44/25]] | |||
| [[ | | " | ||
|- | |- | ||
| 162 | | 162 | ||
| 981. | | 981.{{overline|81}} | ||
| | | | ||
| | | ''[[225/128]]'' | ||
| | | 432/245 | ||
| | | " | ||
| 143/81, 252/143 | |||
|- | |- | ||
| 163 | | 163 | ||
| 987. | | 987.{{overline|87}} | ||
| | |||
| | | | ||
| | | | ||
| | | 99/56 | ||
| | | " | ||
|- | |- | ||
| 164 | | 164 | ||
| 993. | | 993.{{overline|93}} | ||
| m7 | |||
| [[16/9]] | | [[16/9]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 165 | | 165 | ||
| 1000. | | 1000.00 | ||
| | |||
| | | | ||
| | | | ||
| [[98/55]] | |||
| [[ | | " | ||
|- | |- | ||
| 166 | | 166 | ||
| 1006. | | 1006.{{overline|06}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| [[25/14]] | |||
| " | |||
| " | |||
|- | |- | ||
| 167 | | 167 | ||
| 1012. | | 1012.{{overline|12}} | ||
| | |||
| | | | ||
| | | | ||
| | | 88/49 | ||
| | | 70/39 | ||
|- | |- | ||
| 168 | | 168 | ||
| 1018. | | 1018.{{overline|18}} | ||
| | |||
| [[9/5]] | | [[9/5]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 169 | | 169 | ||
| 1024. | | 1024.{{overline|24}} | ||
| | |||
| | | | ||
| | | | ||
| | | 231/128 | ||
| | | 65/36 | ||
|- | |- | ||
| 170 | | 170 | ||
| 1030. | | 1030.{{overline|30}} | ||
| | |||
| | |||
| | |||
| ? | | ? | ||
| [[49/27]] | |||
| " | |||
| " | |||
|- | |- | ||
| 171 | | 171 | ||
| 1036. | | 1036.{{overline|36}} | ||
| | |||
| | | | ||
| | | | ||
| [[20/11]] | | [[20/11]] | ||
| | | " | ||
|- | |- | ||
| 172 | | 172 | ||
| 1042. | | 1042.{{overline|42}} | ||
| | | | ||
| | | ''729/400'' | ||
| | | [[64/35]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 173 | | 173 | ||
| 1048. | | 1048.{{overline|48}} | ||
| | |||
| | | | ||
| | | | ||
| [[11/6]] | | [[11/6]] | ||
| | | " | ||
|- | |- | ||
| 174 | | 174 | ||
| 1054. | | 1054.{{overline|54}} | ||
| | | | ||
| | | ''1152/625'' | ||
| | | [[90/49]] | ||
| | | " | ||
| " | |||
|- | |- | ||
| 175 | | 175 | ||
| 1060. | | 1060.{{overline|60}} | ||
| | |||
| | | | ||
| | | | ||
| | | 231/125 | ||
| [[24/13]] | | [[24/13]] | ||
|- | |- | ||
| 176 | | 176 | ||
| 1066. | | 1066.{{overline|66}} | ||
| | |||
| [[50/27]] | | [[50/27]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 177 | | 177 | ||
| 1072. | | 1072.{{overline|72}} | ||
| | |||
| | | | ||
| | | | ||
| | | 245/132 | ||
| [[13/7]] | | [[13/7]] | ||
|- | |- | ||
| 178 | | 178 | ||
| 1078. | | 1078.{{overline|78}} | ||
| | |||
| ? | | ? | ||
| [[28/15]] | | [[28/15]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 179 | | 179 | ||
| 1084. | | 1084.{{overline|84}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[144/77]] | ||
| | | " | ||
|- | |- | ||
| 180 | | 180 | ||
| 1090. | | 1090.{{overline|90}} | ||
| | |||
| [[15/8]] | | [[15/8]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 181 | | 181 | ||
| 1096. | | 1096.{{overline|96}} | ||
| | |||
| | | | ||
| | | | ||
| | | [[66/35]] | ||
| | | 49/26 | ||
|- | |- | ||
| 182 | | 182 | ||
| 1103. | | 1103.{{overline|03}} | ||
| | | | ||
| | | ''256/135'' | ||
| | | 189/100 | ||
| | | [[121/64]] | ||
| 104/55 | |||
|- | |- | ||
| 183 | | 183 | ||
| 1109. | | 1109.{{overline|09}} | ||
| | |||
| | | | ||
| | | | ||
| | | 1024/539 | ||
| | | 91/48 | ||
|- | |- | ||
| 184 | | 184 | ||
| 1115. | | 1115.{{overline|15}} | ||
| | | M7 | ||
| ''[[243/128]]'' | |||
| [[40/21]] | | [[40/21]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 185 | | 185 | ||
| 1121. | | 1121.{{overline|21}} | ||
| | |||
| | | | ||
| | | | ||
| [[21/11]] | | [[21/11]] | ||
| | | " | ||
|- | |- | ||
| 186 | | 186 | ||
| 1127. | | 1127.{{overline|27}} | ||
| | |||
| [[48/25]] | | [[48/25]] | ||
| | | " | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 187 | | 187 | ||
| 1133. | | 1133.{{overline|33}} | ||
| | |||
| | | | ||
| | | | ||
| | | 77/40 | ||
| [[25/13]], [[52/27]] | | [[25/13]], [[52/27]] | ||
|- | |- | ||
| 188 | | 188 | ||
| 1139. | | 1139.{{overline|39}} | ||
| | | | ||
| 625/324 | |||
| [[27/14]] | | [[27/14]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 189 | | 189 | ||
| 1145. | | 1145.{{overline|45}} | ||
| | |||
| | | | ||
| | | | ||
| [[64/33]] | | [[64/33]] | ||
| | | " | ||
|- | |- | ||
| 190 | | 190 | ||
| 1151. | | 1151.{{overline|51}} | ||
| | | | ||
| 243/125 | |||
| [[35/18]] | | [[35/18]] | ||
| | | " | ||
| | | " | ||
|- | |- | ||
| 191 | | 191 | ||
| 1157. | | 1157.{{overline|57}} | ||
| | |||
| | | | ||
| | | | ||
| | | ''88/45'' | ||
| [[39/20]] | | [[39/20]] | ||
|- | |- | ||
| 192 | | 192 | ||
| 1163. | | 1163.{{overline|63}} | ||
| | | | ||
| | | ''125/64'' | ||
| | | 49/25, 96/49 | ||
| | | " | ||
| " | |||
|- | |- | ||
| 193 | | 193 | ||
| 1169. | | 1169.{{overline|69}} | ||
| | |||
| | | | ||
| | | | ||
| 108/55 | | 55/28, 108/55 | ||
| | | " | ||
|- | |- | ||
| 194 | | 194 | ||
| 1175. | | 1175.{{overline|75}} | ||
| | |||
| 160/81 | | 160/81 | ||
| 63/32 | | 63/32 | ||
| | | " | ||
| 65/33, 77/39 | | 65/33, 77/39 | ||
|- | |- | ||
| 195 | | 195 | ||
| 1181. | | 1181.{{overline|81}} | ||
| | |||
| | | | ||
| | | | ||
| 196/99, | | 99/50, 196/99 | ||
| 180/91, 208/105 | |||
|- | |- | ||
| 196 | | 196 | ||
| 1187. | | 1187.{{overline|87}} | ||
| | |||
| ? | | ? | ||
| 125/63 | | 125/63 | ||
| 240/121 | | 175/88, 240/121 | ||
| 143/72 | | 143/72 | ||
|- | |- | ||
| 197 | | 197 | ||
| 1193. | | 1193.{{overline|93}} | ||
| | |||
| | | | ||
| | | | ||
| 768/385, 880/441 | | 539/270, 768/385, 880/441 | ||
| 195/98, 648/325 | | 195/98, 363/182, 648/325 | ||
|- | |- | ||
| 198 | | 198 | ||
| 1200. | | 1200.00 | ||
| colspan="4"| '''[[2/1]]''' | | P8 | ||
| colspan="4" | '''[[2/1]]''' | |||
|- | |- | ||
|} | |} | ||
[[Category:198edo]] | [[Category:198edo]] | ||
[[Category: | [[Category:Tables of edo intervals]] |
Latest revision as of 10:53, 21 January 2024
This table of 198edo intervals assumes 13-limit patent val ⟨198 314 460 556 685 733].
Intervals highlighted in bold are prime harmonics or subharmonics. Note that no 7-limit interval can be represented by odd degrees, so those entries are left blank. Intervals that differ from their assigned steps by more than 50%, but no more than 100%, are shown in italic. Intervals that differ by more than 100%, or with odd limit over 729 are not shown. For clarity, an entry can contain multiple intervals if they are of comparable complexity.
# | Cents | Marks | 5-limit | 7-limit | 11-limit | 13-limit |
---|---|---|---|---|---|---|
0 | 0.00 | P1 | 1/1 | |||
1 | 6.06 | 385/384, 441/440, 540/539 | 196/195, 325/324, 364/363 | |||
2 | 12.12 | ? | 126/125 | 121/120, 176/175 | 144/143 | |
3 | 18.18 | 99/98, 100/99 | 91/90, 105/104 | |||
4 | 24.24 | 81/80 | 64/63 | " | 66/65, 78/77 | |
5 | 30.30 | 55/54, 56/55 | " | |||
6 | 36.36 | 128/125 | 49/48, 50/49 | " | " | |
7 | 42.42 | 45/44 | 40/39 | |||
8 | 48.48 | 250/243 | 36/35 | " | " | |
9 | 54.54 | 33/32 | " | |||
10 | 60.60 | 648/625 | 28/27 | " | " | |
11 | 66.66 | 80/77 | 26/25, 27/26 | |||
12 | 72.72 | 25/24 | " | " | " | |
13 | 78.78 | 22/21 | " | |||
14 | 84.84 | m2 | 256/243 | 21/20 | " | " |
15 | 90.90 | 539/512 | 96/91 | |||
16 | 96.96 | 135/128 | 200/189 | 128/121 | 55/52 | |
17 | 103.03 | 35/33 | 52/49 | |||
18 | 109.09 | 16/15 | " | " | " | |
19 | 115.15 | 77/72 | " | |||
20 | 121.21 | ? | 15/14 | " | " | |
21 | 127.27 | 264/245, 320/297 | 14/13 | |||
22 | 133.33 | 27/25 | " | " | " | |
23 | 139.39 | 88/81 | 13/12 | |||
24 | 145.45 | 625/576 | 49/45 | " | " | |
25 | 151.51 | 12/11 | " | |||
26 | 157.57 | 800/729 | 35/32 | " | " | |
27 | 163.63 | 11/10 | " | |||
28 | 169.69 | ? | 54/49 | " | " | |
29 | 175.75 | 256/231 | 72/65 | |||
30 | 181.81 | 10/9 | " | " | " | |
31 | 187.87 | 49/44 | 39/35 | |||
32 | 193.93 | ? | 28/25 | " | " | |
33 | 200.00 | 55/49 | " | |||
34 | 206.06 | M2 | 9/8 | " | " | " |
35 | 212.12 | 112/99 | " | |||
36 | 218.18 | 256/225 | 245/216 | " | 143/126, 162/143 | |
37 | 224.24 | 25/22 | " | |||
38 | 230.30 | 729/640 | 8/7 | " | " | |
39 | 236.36 | 55/48 | " | |||
40 | 242.42 | 144/125 | " | " | " | |
41 | 248.48 | 231/200 | 15/13 | |||
42 | 254.54 | 125/108 | 81/70 | " | " | |
43 | 260.60 | 64/55 | " | |||
44 | 266.66 | ? | 7/6 | " | " | |
45 | 272.72 | 90/77 | " | |||
46 | 278.78 | 75/64 | 147/125, 288/245 | " | 168/143 | |
47 | 284.84 | 33/28 | " | |||
48 | 290.90 | m3 | 32/27 | 189/160 | " | 13/11 |
49 | 296.96 | 196/165 | 108/91 | |||
50 | 303.03 | ? | 25/21 | " | " | |
51 | 309.09 | 176/147 | 117/98, 140/117 | |||
52 | 315.15 | 6/5 | " | " | " | |
53 | 321.21 | 77/64 | 65/54 | |||
54 | 327.27 | ? | 98/81 | " | " | |
55 | 333.33 | 40/33 | 63/52 | |||
56 | 339.39 | 243/200 | 175/144 | 147/121 | " | |
57 | 345.45 | 11/9 | 39/32 | |||
58 | 351.51 | 768/625 | 49/40, 60/49 | " | " | |
59 | 357.57 | 27/22 | 16/13 | |||
60 | 363.63 | 100/81 | 216/175 | 121/98 | " | |
61 | 369.69 | 99/80 | 26/21 | |||
62 | 375.75 | ? | 56/45 | " | " | |
63 | 381.81 | 96/77 | 81/65, 125/78 | |||
64 | 387.87 | 5/4 | " | " | " | |
65 | 393.93 | 44/35 | 49/39 | |||
66 | 400.00 | 512/405 | 63/50 | " | " | |
67 | 406.06 | 125/99 | 91/72 | |||
68 | 412.12 | M3 | 81/64 | 80/63 | " | 33/26 |
69 | 418.18 | 14/11 | " | |||
70 | 424.24 | 32/25 | 125/98 | " | " | |
71 | 430.30 | 77/60 | 50/39 | |||
72 | 436.36 | 625/486 | 9/7 | " | " | |
73 | 442.42 | 128/99 | 84/65 | |||
74 | 448.48 | 162/125 | 35/27 | " | " | |
75 | 454.54 | 100/77 | 13/10 | |||
76 | 460.60 | 125/96 | 64/49 | " | " | |
77 | 466.66 | 55/42, 72/55 | " | |||
78 | 472.72 | 320/243 | 21/16 | " | " | |
79 | 478.78 | 33/25 | " | |||
80 | 484.84 | ? | 250/189 | 160/121 | 143/108, 189/143, 224/169 | |
81 | 490.90 | 175/132 | 65/49 | |||
82 | 496.96 | P4 | 4/3 | " | " | " |
83 | 503.03 | 147/110 | 234/175 | |||
84 | 509.09 | ? | 75/56, 168/125 | " | " | |
85 | 515.15 | 66/49 | 35/26 | |||
86 | 521.21 | 27/20 | " | " | " | |
87 | 527.27 | 110/81 | 65/48 | |||
88 | 533.33 | 512/375 | 49/36 | " | " | |
89 | 539.39 | 15/11 | " | |||
90 | 545.45 | 1000/729 | 48/35 | " | " | |
91 | 551.51 | 11/8 | " | |||
92 | 557.57 | 864/625 | 112/81 | " | 91/66 | |
93 | 563.63 | 320/231 | 18/13 | |||
94 | 569.69 | 25/18 | " | " | " | |
95 | 575.75 | 88/63 | 39/28 | |||
96 | 581.81 | d5 | ? | 7/5 | " | " |
97 | 587.87 | 108/77 | " | |||
98 | 593.93 | 45/32 | 343/243 | 484/343 | 55/39 | |
99 | 600.00 | 99/70, 140/99 | " | |||
100 | 606.06 | 64/45 | 486/343 | 343/242 | 78/55 | |
101 | 612.12 | 77/54 | " | |||
102 | 618.18 | A4 | ? | 10/7 | " | " |
103 | 624.24 | 63/44 | 56/39 | |||
104 | 630.30 | 36/25 | " | " | " | |
105 | 636.36 | 231/160 | 13/9 | |||
106 | 642.42 | 625/432 | 81/56 | " | 132/91 | |
107 | 648.48 | 16/11 | " | |||
108 | 654.54 | 729/500 | 35/24 | " | " | |
109 | 660.60 | 22/15 | " | |||
110 | 666.66 | 375/256 | 72/49 | " | " | |
111 | 672.72 | 81/55 | 96/65 | |||
112 | 678.78 | 40/27 | " | " | " | |
113 | 684.84 | 49/33 | 52/35 | |||
114 | 690.90 | ? | 112/75, 125/84 | " | " | |
115 | 696.96 | 220/147 | 175/117 | |||
116 | 703.03 | P5 | 3/2 | " | " | " |
117 | 709.09 | 264/175 | 98/65 | |||
118 | 715.15 | ? | 189/125 | 121/80 | 169/112, 216/143, 286/189 | |
119 | 721.21 | 50/33 | " | |||
120 | 727.27 | 243/160 | 32/21 | " | " | |
121 | 733.33 | 55/36, 84/55 | " | |||
122 | 739.39 | 192/125 | 49/32 | " | " | |
123 | 745.45 | 77/50 | 20/13 | |||
124 | 751.51 | 125/81 | 54/35 | " | " | |
125 | 757.57 | 99/64 | 65/42 | |||
126 | 763.63 | 972/625 | 14/9 | " | " | |
127 | 769.69 | 120/77 | 39/25 | |||
128 | 775.75 | 25/16 | 196/125 | " | " | |
129 | 781.81 | 11/7 | " | |||
130 | 787.87 | m6 | 128/81 | 63/40 | " | 52/33 |
131 | 793.93 | 198/125 | 144/91 | |||
132 | 800.00 | 405/256 | 100/63 | " | " | |
133 | 806.06 | 35/22 | " | |||
134 | 812.12 | 8/5 | " | " | " | |
135 | 818.18 | 77/48 | 125/78, 130/81 | |||
136 | 824.24 | ? | 45/28 | " | " | |
137 | 830.30 | 160/99 | 21/13 | |||
138 | 836.36 | 81/50 | 175/108 | 196/121 | " | |
139 | 842.42 | 44/27 | 13/8 | |||
140 | 848.48 | 625/384 | 49/30, 80/49 | " | " | |
141 | 854.54 | 18/11 | 64/39 | |||
142 | 860.60 | 400/243 | 288/175 | 242/147 | " | |
143 | 866.66 | 33/20 | 104/63 | |||
144 | 872.72 | ? | 81/49 | " | " | |
145 | 878.78 | 128/77 | 108/65 | |||
146 | 884.84 | 5/3 | " | " | " | |
147 | 890.90 | 147/88 | 117/70, 196/117 | |||
148 | 896.96 | ? | 42/25 | " | " | |
149 | 903.03 | 165/98 | 91/54 | |||
150 | 909.09 | M6 | 27/16 | 320/189 | " | 22/13 |
151 | 915.15 | 56/33 | " | |||
152 | 921.21 | 128/75 | 245/144, 250/147 | " | 143/84 | |
153 | 927.27 | 77/45 | " | |||
154 | 933.33 | ? | 12/7 | " | " | |
155 | 939.39 | 55/32 | " | |||
156 | 945.45 | 216/125 | 140/81 | 121/70 | " | |
157 | 951.51 | 343/198, 400/231 | 26/15 | |||
158 | 957.57 | 125/72 | " | " | " | |
159 | 963.63 | 96/55 | " | |||
160 | 969.69 | 1280/729 | 7/4 | " | " | |
161 | 975.75 | 44/25 | " | |||
162 | 981.81 | 225/128 | 432/245 | " | 143/81, 252/143 | |
163 | 987.87 | 99/56 | " | |||
164 | 993.93 | m7 | 16/9 | " | " | " |
165 | 1000.00 | 98/55 | " | |||
166 | 1006.06 | ? | 25/14 | " | " | |
167 | 1012.12 | 88/49 | 70/39 | |||
168 | 1018.18 | 9/5 | " | " | " | |
169 | 1024.24 | 231/128 | 65/36 | |||
170 | 1030.30 | ? | 49/27 | " | " | |
171 | 1036.36 | 20/11 | " | |||
172 | 1042.42 | 729/400 | 64/35 | " | " | |
173 | 1048.48 | 11/6 | " | |||
174 | 1054.54 | 1152/625 | 90/49 | " | " | |
175 | 1060.60 | 231/125 | 24/13 | |||
176 | 1066.66 | 50/27 | " | " | " | |
177 | 1072.72 | 245/132 | 13/7 | |||
178 | 1078.78 | ? | 28/15 | " | " | |
179 | 1084.84 | 144/77 | " | |||
180 | 1090.90 | 15/8 | " | " | " | |
181 | 1096.96 | 66/35 | 49/26 | |||
182 | 1103.03 | 256/135 | 189/100 | 121/64 | 104/55 | |
183 | 1109.09 | 1024/539 | 91/48 | |||
184 | 1115.15 | M7 | 243/128 | 40/21 | " | " |
185 | 1121.21 | 21/11 | " | |||
186 | 1127.27 | 48/25 | " | " | " | |
187 | 1133.33 | 77/40 | 25/13, 52/27 | |||
188 | 1139.39 | 625/324 | 27/14 | " | " | |
189 | 1145.45 | 64/33 | " | |||
190 | 1151.51 | 243/125 | 35/18 | " | " | |
191 | 1157.57 | 88/45 | 39/20 | |||
192 | 1163.63 | 125/64 | 49/25, 96/49 | " | " | |
193 | 1169.69 | 55/28, 108/55 | " | |||
194 | 1175.75 | 160/81 | 63/32 | " | 65/33, 77/39 | |
195 | 1181.81 | 99/50, 196/99 | 180/91, 208/105 | |||
196 | 1187.87 | ? | 125/63 | 175/88, 240/121 | 143/72 | |
197 | 1193.93 | 539/270, 768/385, 880/441 | 195/98, 363/182, 648/325 | |||
198 | 1200.00 | P8 | 2/1 |