11L 1s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 540763866 - Original comment: **
ArrowHead294 (talk | contribs)
mNo edit summary
 
(25 intermediate revisions by 11 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox MOS
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name =  
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-02-12 11:33:38 UTC</tt>.<br>
| Periods = 1
: The original revision id was <tt>540763866</tt>.<br>
| nLargeSteps = 11
: The revision comment was: <tt></tt><br>
| nSmallSteps = 1
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| Equalized = 1
<h4>Original Wikitext content:</h4>
| Collapsed = 1
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">&lt;span style="background-color: #ffffff; font-size: 12.8000001907349px;"&gt;This MOS, with its diatonic minor second generator, is the dodecatonic scale of Ripple (9:8=+2 generators) and Passion (6:5=+3 generators) temperaments. However, it feels markedly more hendecatonic to listeners used to the equally divided chromatic scale because of its unbroken chain of eleven equal steps–never mind that the 12th degree is actually less than the octave. This hendecatonic feel is especially pronounced above 2/23edo, where the octave feels like a comma shift of the 12th degree rather than an independent note.&lt;/span&gt;
| Pattern = LLLLLLLLLLLs
||||~ Generator ||~ Cents ||~ 2g ||~ 3g ||
}}
|| 1/12 ||  || 100 || 200 || 300 ||
{{MOS intro}}
|| 5/59 ||  || 101 41/59 || 203 23/59 || 305 5/59 ||
The 11L 1s [[MOS scale]], with its diatonic minor second generator, is the dodecatonic scale of [[ripple]] (9:8 = +2 generators-6:5 = +3 generators) temperaments. However, it feels markedly more hendecatonic to listeners used to the equally divided chromatic scale because of its unbroken chain of eleven equal steps–never mind that the 12th degree is actually less than the octave. This hendecatonic feel is especially pronounced above 2\23, where the octave feels like a comma shift of the 12th degree rather than an independent note.
||  || 9/106 || 101 47/53 || 203 41/53 || 305 35/53 ||
||  || 13/153 || 101 49/51 || 203 47/51 || 305 15/17 ||
||  || 17/200 || 102 || 204 || 306 ||
|| 4/47 ||  || 102 6/47 || 204 12/47 || 306 18/47 ||
||  || 7/82 || 102 18/41 || 204 36/41 || 307 13/41 ||
||  || 10/117 || 102 22/39 || 205 5/39 || 307 9/13 ||
||  || 13/152 || 102 12/19 || 205 5/19 || 307 17/19 ||
||  || 16/187 || 102 126/187 || 205 65/187 || 308 4/187 ||
||  || 19/222 || 102 31/37 || 205 25/37 || 308 19/37 ||
|| 3/35 ||  || 102 6/7 || 205 5/7 || 308 4/7 ||
||  || 20/233 || 103 1/233 || 206 2/233 || 309 3/233 ||
||  || 17/198 || 103 1/33 || 206 2/33 || 309 1/11 ||
||  || 14/163 || 103 11/163 || 206 22/163 || 309 33/163 ||
||  || 11/128 || 103.125 || 206.25 || 309.375 ||
||  || 8/93 || 103 7/31 || 206 14/31 || 309 21/31 ||
||  || 5/58 || 103 13/29 || 206 26/29 || 310 10/29 ||
||  || 7/81 || 103 19/27 || 206 11/27 || 311 1/9 ||
||  || 9/104 || 103 11/13 || 207 9/13 || 311 7/13 ||
||  || 11/127 || 103 119/127 || 207 111/127 || 311 123/127 ||
||  || 13/150 || 104 || 208 || 312 ||
|| 2/23 ||  || 104 8/23 || 208 16/23 || 313 1/23 ||
||  || 11/126 || 104 16/21 || 209 11/21 || 314 2/7 ||
||  || 9/103 || 104 88/103 || 209 73/103 || 314 58/103 ||
||  || 7/80 || 105 || 210 || 315 ||
||  || 5/57 || 105 5/19 || 210 10/19 || 315 15/19 ||
||  || 8/91 || 105 45/91 || 210 90/91 || 316 44/91 ||
||  || 11/125 || 105.6 || 211.2 || 316.8 ||
||  ||  || 105.853446 || 211.7068925 || 317.560339 ||
|| 3/34 ||  || 105 15/17 || 211 13/17 || 317 11/17 ||
||  ||  || 105.911009 || 211.822019 || 317.733028 ||
||  || 28/317 || 105 315/317 || 211 313/317 || 317 311/317 ||
||  || 25/283 || 106 2/283 || 212 4/283 || 318 6/283 ||
||  || 22/249 || 106 2/83 || 212 4/83 || 318 6/83 ||
||  || 19/215 || 106 2/43 || 212 4/43 || 318 6/43 ||
||  || 16/181 || 106 14/181 || 212 28/181 || 318 42/181 ||
||  || 13/147 || 106 6&lt;span style="font-size: 12.8000001907349px;"&gt;/49&lt;/span&gt; || 212 12/49 || 318 18/49 ||
||  || 10/113 || 106 22/113 || 212 44/113 || 318 66/113 ||
||  || 7/79 || 106 26/79 || 212 52/79 || 318 78/79 ||
||  || 11/124 || 106 14/31 || 212 28/31 || 319 11/31 ||
|| 4/45 ||  || 106 2/3 || 213 1/3 || 320 ||
|| 5/56 ||  || 107 1/7 || 214 2/7 || 321 3/7 ||
|| 1/11 ||  || 109 1/11 || 218 2/11 || 327 3/11 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;11L 1s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;span style="background-color: #ffffff; font-size: 12.8000001907349px;"&gt;This MOS, with its diatonic minor second generator, is the dodecatonic scale of Ripple (9:8=+2 generators) and Passion (6:5=+3 generators) temperaments. However, it feels markedly more hendecatonic to listeners used to the equally divided chromatic scale because of its unbroken chain of eleven equal steps–never mind that the 12th degree is actually less than the octave. This hendecatonic feel is especially pronounced above 2/23edo, where the octave feels like a comma shift of the 12th degree rather than an independent note.&lt;/span&gt;&lt;br /&gt;


== Modes ==
{{MOS modes}}


&lt;table class="wiki_table"&gt;
== Intervals ==
    &lt;tr&gt;
{{MOS intervals}}
        &lt;th colspan="2"&gt;Generator&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Cents&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;2g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;3g&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;100&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5/59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;101 41/59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203 23/59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305 5/59&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/106&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;101 47/53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203 41/53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305 35/53&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/153&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;101 49/51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;203 47/51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305 15/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/200&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;306&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4/47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 6/47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;204 12/47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;306 18/47&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/82&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 18/41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;204 36/41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;307 13/41&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/117&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 22/39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205 5/39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;307 9/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/152&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 12/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205 5/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;307 17/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/187&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 126/187&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205 65/187&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;308 4/187&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/222&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 31/37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205 25/37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;308 19/37&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3/35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;102 6/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;205 5/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;308 4/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/233&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 1/233&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206 2/233&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;309 3/233&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/198&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 1/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206 2/33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;309 1/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/163&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 11/163&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206 22/163&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;309 33/163&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/128&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103.125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206.25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;309.375&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/93&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 7/31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206 14/31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;309 21/31&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 13/29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206 26/29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;310 10/29&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/81&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 19/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;206 11/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;311 1/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/104&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 11/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;207 9/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;311 7/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/127&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;103 119/127&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;207 111/127&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;311 123/127&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;208&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;312&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104 8/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;208 16/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;313 1/23&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/126&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104 16/21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;209 11/21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;314 2/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/103&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104 88/103&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;209 73/103&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;314 58/103&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105 5/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210 10/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315 15/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/91&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105 45/91&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210 90/91&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;316 44/91&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105.6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;316.8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105.853446&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.7068925&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;317.560339&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3/34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105 15/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211 13/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;317 11/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105.911009&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.822019&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;317.733028&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/317&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105 315/317&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211 313/317&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;317 311/317&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/283&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 2/283&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 4/283&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 6/283&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/249&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 2/83&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 4/83&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 6/83&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/215&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 2/43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 4/43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 6/43&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/181&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 14/181&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 28/181&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 42/181&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/147&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 6&lt;span style="font-size: 12.8000001907349px;"&gt;/49&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 12/49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 18/49&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/113&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 22/113&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 44/113&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 66/113&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 26/79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 52/79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318 78/79&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/124&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 14/31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;212 28/31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;319 11/31&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4/45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;106 2/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;213 1/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;320&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5/56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;107 1/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;214 2/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;321 3/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;109 1/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218 2/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;327 3/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
== Scale tree ==
{{MOS tuning spectrum
| 1/1 = [[Ripple]] (100.838¢)
}}
 
[[Category:12-tone scales]]

Latest revision as of 16:38, 28 February 2025

← 10L 1s 11L 1s 12L 1s →
↙ 10L 2s ↓ 11L 2s 12L 2s ↘
┌╥╥╥╥╥╥╥╥╥╥╥┬┐
│║║║║║║║║║║║││
││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLLLLLLLLs
sLLLLLLLLLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 1\12 to 1\11 (100.0 ¢ to 109.1 ¢)
Dark 10\11 to 11\12 (1090.9 ¢ to 1100.0 ¢)
TAMNAMS information
Related to 1L 9s (antisinatonic)
With tunings 2:1 to 3:1 (hypohard)
Related MOS scales
Parent 1L 10s
Sister 1L 11s
Daughters 12L 11s, 11L 12s
Neutralized 10L 2s
2-Flought 23L 1s, 11L 13s
Equal tunings
Equalized (L:s = 1:1) 1\12 (100.0 ¢)
Supersoft (L:s = 4:3) 4\47 (102.1 ¢)
Soft (L:s = 3:2) 3\35 (102.9 ¢)
Semisoft (L:s = 5:3) 5\58 (103.4 ¢)
Basic (L:s = 2:1) 2\23 (104.3 ¢)
Semihard (L:s = 5:2) 5\57 (105.3 ¢)
Hard (L:s = 3:1) 3\34 (105.9 ¢)
Superhard (L:s = 4:1) 4\45 (106.7 ¢)
Collapsed (L:s = 1:0) 1\11 (109.1 ¢)

11L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 11 large steps and 1 small step, repeating every octave. 11L 1s is a grandchild scale of 1L 9s, expanding it by 2 tones. Generators that produce this scale range from 100 ¢ to 109.1 ¢, or from 1090.9 ¢ to 1100 ¢. Scales of this form are always proper because there is only one small step. The 11L 1s MOS scale, with its diatonic minor second generator, is the dodecatonic scale of ripple (9:8 = +2 generators-6:5 = +3 generators) temperaments. However, it feels markedly more hendecatonic to listeners used to the equally divided chromatic scale because of its unbroken chain of eleven equal steps–never mind that the 12th degree is actually less than the octave. This hendecatonic feel is especially pronounced above 2\23, where the octave feels like a comma shift of the 12th degree rather than an independent note.

Modes

Modes of 11L 1s
UDP Cyclic
order
Step
pattern
11|0 1 LLLLLLLLLLLs
10|1 2 LLLLLLLLLLsL
9|2 3 LLLLLLLLLsLL
8|3 4 LLLLLLLLsLLL
7|4 5 LLLLLLLsLLLL
6|5 6 LLLLLLsLLLLL
5|6 7 LLLLLsLLLLLL
4|7 8 LLLLsLLLLLLL
3|8 9 LLLsLLLLLLLL
2|9 10 LLsLLLLLLLLL
1|10 11 LsLLLLLLLLLL
0|11 12 sLLLLLLLLLLL

Intervals

Intervals of 11L 1s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0 ¢
1-mosstep Diminished 1-mosstep d1ms s 0.0 ¢ to 100.0 ¢
Perfect 1-mosstep P1ms L 100.0 ¢ to 109.1 ¢
2-mosstep Minor 2-mosstep m2ms L + s 109.1 ¢ to 200.0 ¢
Major 2-mosstep M2ms 2L 200.0 ¢ to 218.2 ¢
3-mosstep Minor 3-mosstep m3ms 2L + s 218.2 ¢ to 300.0 ¢
Major 3-mosstep M3ms 3L 300.0 ¢ to 327.3 ¢
4-mosstep Minor 4-mosstep m4ms 3L + s 327.3 ¢ to 400.0 ¢
Major 4-mosstep M4ms 4L 400.0 ¢ to 436.4 ¢
5-mosstep Minor 5-mosstep m5ms 4L + s 436.4 ¢ to 500.0 ¢
Major 5-mosstep M5ms 5L 500.0 ¢ to 545.5 ¢
6-mosstep Minor 6-mosstep m6ms 5L + s 545.5 ¢ to 600.0 ¢
Major 6-mosstep M6ms 6L 600.0 ¢ to 654.5 ¢
7-mosstep Minor 7-mosstep m7ms 6L + s 654.5 ¢ to 700.0 ¢
Major 7-mosstep M7ms 7L 700.0 ¢ to 763.6 ¢
8-mosstep Minor 8-mosstep m8ms 7L + s 763.6 ¢ to 800.0 ¢
Major 8-mosstep M8ms 8L 800.0 ¢ to 872.7 ¢
9-mosstep Minor 9-mosstep m9ms 8L + s 872.7 ¢ to 900.0 ¢
Major 9-mosstep M9ms 9L 900.0 ¢ to 981.8 ¢
10-mosstep Minor 10-mosstep m10ms 9L + s 981.8 ¢ to 1000.0 ¢
Major 10-mosstep M10ms 10L 1000.0 ¢ to 1090.9 ¢
11-mosstep Perfect 11-mosstep P11ms 10L + s 1090.9 ¢ to 1100.0 ¢
Augmented 11-mosstep A11ms 11L 1100.0 ¢ to 1200.0 ¢
12-mosstep Perfect 12-mosstep P12ms 11L + s 1200.0 ¢

Scale tree

Scale tree and tuning spectrum of 11L 1s
Generator(edo) Cents Step ratio Comments(always proper)
Bright Dark L:s Hardness
1\12 100.000 1100.000 1:1 1.000 Equalized 11L 1s
Ripple (100.838¢)
6\71 101.408 1098.592 6:5 1.200
5\59 101.695 1098.305 5:4 1.250
9\106 101.887 1098.113 9:7 1.286
4\47 102.128 1097.872 4:3 1.333 Supersoft 11L 1s
11\129 102.326 1097.674 11:8 1.375
7\82 102.439 1097.561 7:5 1.400
10\117 102.564 1097.436 10:7 1.429
3\35 102.857 1097.143 3:2 1.500 Soft 11L 1s
11\128 103.125 1096.875 11:7 1.571
8\93 103.226 1096.774 8:5 1.600
13\151 103.311 1096.689 13:8 1.625
5\58 103.448 1096.552 5:3 1.667 Semisoft 11L 1s
12\139 103.597 1096.403 12:7 1.714
7\81 103.704 1096.296 7:4 1.750
9\104 103.846 1096.154 9:5 1.800
2\23 104.348 1095.652 2:1 2.000 Basic 11L 1s
9\103 104.854 1095.146 9:4 2.250
7\80 105.000 1095.000 7:3 2.333
12\137 105.109 1094.891 12:5 2.400
5\57 105.263 1094.737 5:2 2.500 Semihard 11L 1s
13\148 105.405 1094.595 13:5 2.600
8\91 105.495 1094.505 8:3 2.667
11\125 105.600 1094.400 11:4 2.750
3\34 105.882 1094.118 3:1 3.000 Hard 11L 1s
10\113 106.195 1093.805 10:3 3.333
7\79 106.329 1093.671 7:2 3.500
11\124 106.452 1093.548 11:3 3.667
4\45 106.667 1093.333 4:1 4.000 Superhard 11L 1s
9\101 106.931 1093.069 9:2 4.500
5\56 107.143 1092.857 5:1 5.000
6\67 107.463 1092.537 6:1 6.000
1\11 109.091 1090.909 1:0 → ∞ Collapsed 11L 1s