|
|
(6 intermediate revisions by 3 users not shown) |
Line 8: |
Line 8: |
| | Pattern = LLLLsLLLLsLLLs | | | Pattern = LLLLsLLLLsLLLs |
| }} | | }} |
| {{MOS intro|Other Names=the Ketradektriatoh scale}} | | {{MOS intro|Other Names=}} |
|
| |
|
| The '''11L 3s''' [[MOS scale]] was named the "Ketradektriatoh scale" by [[Osmiorisbendi]]
| | == Name == |
| | Vector Graphics proposes '''ketradekic''' as a name for this scale, based on the name "Ketradektriatoh scale" proposed by [[Osmiorisbendi]], adapted to fit scale naming conventions. |
|
| |
|
| This is a type of scale which denotes the use of a scale placed between [[11edo]] and [[14edo]].
| | == Modes == |
| | {{MOS modes}} |
|
| |
|
| It employs a ratio generator between [[41/32]] and [[9/7]] ([[25edo]] being the middle size of the Ketradektriatoh spectrum, in the 2:1 relation).
| | == Intervals == |
| | {{MOS intervals}} |
|
| |
|
| This results in a variant of tetradecatonic scale which conforms by this scheme: LLLLsLLLLsLLLs.
| |
| == Scale tree == | | == Scale tree == |
| The table below shows an extension of [[edo]]s which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes:
| | {{MOS tuning spectrum}} |
| {| class="wikitable" | |
| |-
| |
| | 4\[[11edo|11]]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 436.364
| |
| | 109.091
| |
| | 0
| |
| | style="text-align:center;" |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 29\[[80edo|80]]
| |
| | 435
| |
| | 105
| |
| | 15
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 25\[[69edo|69]]
| |
| |
| |
| | 434.783
| |
| | 104.348
| |
| | 17.391
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 21\[[58edo|58]]
| |
| |
| |
| |
| |
| | 434.483
| |
| | 103.448
| |
| | 20.69
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| | 17\[[47edo|47]]
| |
| |
| |
| |
| |
| |
| |
| | 434.043
| |
| | 102.128
| |
| | 25.532
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 30\[[83edo|83]]
| |
| |
| |
| |
| |
| | 433.735
| |
| | 101.208
| |
| | 28.916
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 73\[[202edo|202]]
| |
| | 433.663
| |
| | 100.990
| |
| | 29.703
| |
| | Since here are the optimal range Lufsur mode (?)
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 43\[[119edo|119]]
| |
| |
| |
| | 433.613
| |
| | 100.840
| |
| | 30.252
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 433.459
| |
| | 100.377
| |
| | 31.95
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| | 13\[[36edo|36]]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 433.333
| |
| | 100
| |
| | 33.333
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 433.048
| |
| | 99.144
| |
| | 36.473
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 35\97
| |
| |
| |
| |
| |
| | 432.99
| |
| | 98.969
| |
| | 37.113
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 432.933
| |
| | 98.799
| |
| | 37.738
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| | 22\[[61edo|61]]
| |
| |
| |
| |
| |
| |
| |
| | 432.787
| |
| | 98.361
| |
| | 39.344
| |
| |
| |
| |-
| |
| |
| |
| | 9\[[25edo|25]]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 432
| |
| | 96
| |
| | 48
| |
| | style="text-align:center;" | Boundary of propriety;
| |
|
| |
|
| generators smaller than this are proper
| | {{todo|expand}} |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 431.417
| |
| | 94.25
| |
| | 54.4155
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| | 23\[[64edo|64]]
| |
| |
| |
| |
| |
| |
| |
| | 431.25
| |
| | 93.75
| |
| | 56.25
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 431.1185
| |
| | 93.355
| |
| | 57.697
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 37\103
| |
| |
| |
| |
| |
| | 431.068
| |
| | 93.204
| |
| | 58.25
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 430.984
| |
| | 92.952
| |
| | 58.175
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| | 14\[[39edo|39]]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 430.769
| |
| | 92.308
| |
| | 61.538
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 47\[[131edo|131]]
| |
| |
| |
| | 430.534
| |
| | 91.603
| |
| | 64.122
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 80\[[223edo|223]]
| |
| | 430.493
| |
| | 91.480
| |
| | 64.575
| |
| | Until here are the optimal range Fuslur mode (?)
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 33\[[92edo|92]]
| |
| |
| |
| |
| |
| | 430.435
| |
| | 91.304
| |
| | 65.217
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| | 19\[[53edo|53]]
| |
| |
| |
| |
| |
| |
| |
| | 430.189
| |
| | 90.566
| |
| | 67.925
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 24\[[67edo|67]]
| |
| |
| |
| |
| |
| | 429.851
| |
| | 89.552
| |
| | 71.642
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 29\[[81edo|81]]
| |
| |
| |
| | 429.63
| |
| | 88.889
| |
| | 74.074
| |
| |
| |
| |-
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 34\[[95edo|95]]
| |
| | 429.474
| |
| | 88.421
| |
| | 75.7895
| |
| |
| |
| |-
| |
| | 5\[[14edo|14]]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | 428.571
| |
| | 85.714
| |
| | 85.714
| |
| | style="text-align:center;" |
| |
| |} | |
|
| |
|
| == As an EDO subset ==
| |
| {| class="wikitable sortable"
| |
| |EDO
| |
| |Subset
| |
| |Special properties
| |
| |-
| |
| |[[25edo|25]]
| |
| |2 2 2 1 2 2 2 2 1 2 2 2 2 1
| |
| |Middle range
| |
| |-
| |
| |[[36edo|36]]
| |
| |3 3 3 1 3 3 3 3 1 3 3 3 3 1
| |
| |Lusfur range
| |
| |-
| |
| |[[39edo|39]]
| |
| |3 3 3 2 3 3 3 3 2 3 3 3 3 2
| |
| |Fuslur range
| |
| |-
| |
| |[[47edo|47]]
| |
| |4 4 4 1 4 4 4 4 1 4 4 4 4 1
| |
| |
| |
| |-
| |
| |[[50edo|50]]
| |
| |4 4 4 2 4 4 4 4 2 4 4 4 4 2
| |
| |
| |
| |-
| |
| |[[53edo|53]]
| |
| |4 4 4 3 4 4 4 4 3 4 4 4 4 3
| |
| |
| |
| |-
| |
| |[[58edo|58]]
| |
| |5 5 5 1 5 5 5 5 1 5 5 5 5 1
| |
| |
| |
| |-
| |
| |[[61edo|61]]
| |
| |5 5 5 2 5 5 5 5 2 5 5 5 5 2
| |
| |Split-φ
| |
| |-
| |
| |[[64edo|64]]
| |
| |5 5 5 3 5 5 5 5 3 5 5 5 5 3
| |
| |φ
| |
| |-
| |
| |[[67edo|67]]
| |
| |5 5 5 4 5 5 5 5 4 5 5 5 5 4
| |
| |
| |
| |-
| |
| |[[69edo|69]]
| |
| |6 6 6 1 6 6 6 6 1 6 6 6 6 1
| |
| |
| |
| |-
| |
| |[[81edo|81]]
| |
| |6 6 6 5 6 6 6 6 5 6 6 6 6 5
| |
| |
| |
| |-
| |
| |[[80edo|80]]
| |
| |7 7 7 1 7 7 7 7 1 7 7 7 7 1
| |
| |
| |
| |-
| |
| |[[83-limit|83]]
| |
| |7 7 7 2 7 7 7 7 2 7 7 7 7 2
| |
| |
| |
| |-
| |
| |[[86edo|86]]
| |
| |7 7 7 3 7 7 7 7 3 7 7 7 7 3
| |
| |
| |
| |-
| |
| |[[89edo|89]]
| |
| |7 7 7 4 7 7 7 7 4 7 7 7 7 4
| |
| |
| |
| |-
| |
| |[[92edo|92]]
| |
| |7 7 7 5 7 7 7 7 5 7 7 7 7 5
| |
| |
| |
| |-
| |
| |[[95edo|95]]
| |
| |7 7 7 6 7 7 7 7 6 7 7 7 7 6
| |
| |
| |
| |-
| |
| |[[91edo|91]]
| |
| |8 8 8 1 8 8 8 8 1 8 8 8 8 1
| |
| |
| |
| |-
| |
| |[[97edo|97]]
| |
| |8 8 8 3 8 8 8 8 3 8 8 8 8 3
| |
| |Split-φ
| |
| |-
| |
| |[[103edo|103]]
| |
| |8 8 8 5 8 8 8 8 5 8 8 8 8 5
| |
| |φ
| |
| |-
| |
| |[[109edo|109]]
| |
| |8 8 8 7 8 8 8 8 7 8 8 8 8 7
| |
| |
| |
| |-
| |
| |[[102edo|102]]
| |
| |9 9 9 1 9 9 9 9 1 9 9 9 9 1
| |
| |
| |
| |-
| |
| |[[105edo|105]]
| |
| |9 9 9 2 9 9 9 9 2 9 9 9 9 2
| |
| |
| |
| |-
| |
| |[[111edo|111]]
| |
| |9 9 9 4 9 9 9 9 4 9 9 9 9 4
| |
| |
| |
| |-
| |
| |[[114edo|114]]
| |
| |9 9 9 5 9 9 9 9 5 9 9 9 9 5
| |
| |
| |
| |-
| |
| |[[120edo|120]]
| |
| |9 9 9 7 9 9 9 9 7 9 9 9 9 7
| |
| |
| |
| |-
| |
| |[[123edo|123]]
| |
| |9 9 9 8 9 9 9 9 8 9 9 9 9 8
| |
| |
| |
| |-
| |
| |[[113edo|113]]
| |
| |10 10 10 1 10 10 10 10 1 10 10 10 10 1
| |
| |
| |
| |-
| |
| |[[119edo|119]]
| |
| |10 10 10 3 10 10 10 10 3 10 10 10 10 3
| |
| |
| |
| |-
| |
| |[[131edo|131]]
| |
| |10 10 10 7 10 10 10 10 7 10 10 10 10 7
| |
| |
| |
| |-
| |
| |[[137edo|137]]
| |
| |10 10 10 9 10 10 10 10 9 10 10 10 10 9
| |
| |
| |
| |-
| |
| |[[124edo|124]]
| |
| |11 11 11 1 11 11 11 11 1 11 11 11 11 1
| |
| |
| |
| |-
| |
| |[[127edo|127]]
| |
| |11 11 11 2 11 11 11 11 2 11 11 11 11 2
| |
| |
| |
| |-
| |
| |[[130edo|130]]
| |
| |11 11 11 3 11 11 11 11 3 11 11 11 11 3
| |
| |
| |
| |-
| |
| |[[133edo|133]]
| |
| |11 11 11 4 11 11 11 11 4 11 11 11 11 4
| |
| |
| |
| |-
| |
| |[[136edo|136]]
| |
| |11 11 11 5 11 11 11 11 5 11 11 11 11 5
| |
| |
| |
| |-
| |
| |[[139edo|139]]
| |
| |11 11 11 6 11 11 11 11 6 11 11 11 11 6
| |
| |
| |
| |-
| |
| |[[142edo|142]]
| |
| |11 11 11 7 11 11 11 11 7 11 11 11 11 7
| |
| |
| |
| |-
| |
| |[[145edo|145]]
| |
| |11 11 11 8 11 11 11 11 8 11 11 11 11 8
| |
| |
| |
| |-
| |
| |[[148edo|148]]
| |
| |11 11 11 9 11 11 11 11 9 11 11 11 11 9
| |
| |
| |
| |-
| |
| |[[151edo|151]]
| |
| |11 11 11 10 11 11 11 11 10 11 11 11 11 10
| |
| |
| |
| |-
| |
| |[[135edo|135]]
| |
| |12 12 12 1 12 12 12 12 1 12 12 12 12 1
| |
| |
| |
| |-
| |
| |[[147edo|147]]
| |
| |12 12 12 5 12 12 12 12 5 12 12 12 12 5
| |
| |
| |
| |-
| |
| |[[153edo|153]]
| |
| |12 12 12 7 12 12 12 12 7 12 12 12 12 7
| |
| |
| |
| |-
| |
| |[[165edo|165]]
| |
| |12 12 12 11 12 12 12 12 11 12 12 12 12 11
| |
| |
| |
| |-
| |
| |[[146edo|146]]
| |
| |13 13 13 1 13 13 13 13 1 13 13 13 13 1
| |
| |
| |
| |-
| |
| |[[149edo|149]]
| |
| |13 13 13 2 13 13 13 13 2 13 13 13 13 2
| |
| |
| |
| |-
| |
| |[[152edo|152]]
| |
| |13 13 13 3 13 13 13 13 3 13 13 13 13 3
| |
| |
| |
| |-
| |
| |[[155edo|155]]
| |
| |13 13 13 4 13 13 13 13 4 13 13 13 13 4
| |
| |
| |
| |-
| |
| |[[158edo|158]]
| |
| |13 13 13 5 13 13 13 13 5 13 13 13 13 5
| |
| |Split-φ
| |
| |-
| |
| |[[161edo|161]]
| |
| |13 13 13 6 13 13 13 13 6 13 13 13 13 6
| |
| |
| |
| |-
| |
| |[[164edo|164]]
| |
| |13 13 13 7 13 13 13 13 7 13 13 13 13 7
| |
| |
| |
| |-
| |
| |[[167edo|167]]
| |
| |13 13 13 8 13 13 13 13 8 13 13 13 13 8
| |
| |φ
| |
| |-
| |
| |[[170edo|170]]
| |
| |13 13 13 9 13 13 13 13 9 13 13 13 13 9
| |
| |
| |
| |-
| |
| |[[173edo|173]]
| |
| |13 13 13 10 13 13 13 13 10 13 13 13 13 10
| |
| |
| |
| |-
| |
| |[[176edo|176]]
| |
| |13 13 13 11 13 13 13 13 11 13 13 13 13 11
| |
| |
| |
| |-
| |
| |[[179edo|179]]
| |
| |13 13 13 12 13 13 13 13 12 13 13 13 13 12
| |
| |
| |
| |-
| |
| |[[157edo|157]]
| |
| |14 14 14 1 14 14 14 14 1 14 14 14 14 1
| |
| |
| |
| |-
| |
| |[[163edo|163]]
| |
| |14 14 14 3 14 14 14 14 3 14 14 14 14 3
| |
| |
| |
| |-
| |
| |[[169edo|169]]
| |
| |14 14 14 5 14 14 14 14 5 14 14 14 14 5
| |
| |
| |
| |-
| |
| |[[181edo|181]]
| |
| |14 14 14 9 14 14 14 14 9 14 14 14 14 9
| |
| |
| |
| |-
| |
| |[[187edo|187]]
| |
| |14 14 14 11 14 14 14 14 11 14 14 14 14 11
| |
| |
| |
| |-
| |
| |[[193edo|193]]
| |
| |14 14 14 13 14 14 14 14 13 14 14 14 14 13
| |
| |
| |
| |-
| |
| |[[168edo|168]]
| |
| |15 15 15 1 15 15 15 15 1 15 15 15 15 1
| |
| |
| |
| |-
| |
| |[[171edo|171]]
| |
| |15 15 15 2 15 15 15 15 2 15 15 15 15 2
| |
| |
| |
| |-
| |
| |[[177edo|177]]
| |
| |15 15 15 4 15 15 15 15 4 15 15 15 15 4
| |
| |
| |
| |-
| |
| |[[186edo|186]]
| |
| |15 15 15 7 15 15 15 15 7 15 15 15 15 7
| |
| |
| |
| |-
| |
| |[[189edo|189]]
| |
| |15 15 15 8 15 15 15 15 8 15 15 15 15 8
| |
| |
| |
| |-
| |
| |[[198edo|198]]
| |
| |15 15 15 11 15 15 15 15 11 15 15 15 15 11
| |
| |
| |
| |-
| |
| |[[204edo|204]]
| |
| |15 15 15 13 15 15 15 15 13 15 15 15 15 13
| |
| |
| |
| |-
| |
| |[[207edo|207]]
| |
| |15 15 15 14 15 15 15 15 14 15 15 15 15 14
| |
| |
| |
| |-
| |
| |[[179edo|179]]
| |
| |16 16 16 1 16 16 16 16 1 16 16 16 16 1
| |
| |
| |
| |-
| |
| |[[185edo|185]]
| |
| |16 16 16 3 16 16 16 16 3 16 16 16 16 3
| |
| |
| |
| |-
| |
| |[[191edo|191]]
| |
| |16 16 16 5 16 16 16 16 5 16 16 16 16 5
| |
| |
| |
| |-
| |
| |[[197edo|197]]
| |
| |16 16 16 7 16 16 16 16 7 16 16 16 16 7
| |
| |
| |
| |-
| |
| |[[203edo|203]]
| |
| |16 16 16 9 16 16 16 16 9 16 16 16 16 9
| |
| |
| |
| |-
| |
| |[[209edo|209]]
| |
| |16 16 16 11 16 16 16 16 11 16 16 16 16 11
| |
| |
| |
| |-
| |
| |[[215edo|215]]
| |
| |16 16 16 13 16 16 16 16 13 16 16 16 16 13
| |
| |
| |
| |-
| |
| |[[221edo|221]]
| |
| |16 16 16 15 16 16 16 16 15 16 16 16 16 15
| |
| |
| |
| |-
| |
| |[[190edo|190]]
| |
| |17 17 17 1 17 17 17 17 1 17 17 17 17 1
| |
| |
| |
| |-
| |
| |[[193edo|193]]
| |
| |17 17 17 2 17 17 17 17 2 17 17 17 17 2
| |
| |
| |
| |-
| |
| |[[196edo|196]]
| |
| |17 17 17 3 17 17 17 17 3 17 17 17 17 3
| |
| |
| |
| |-
| |
| |[[199edo|199]]
| |
| |17 17 17 4 17 17 17 17 4 17 17 17 17 4
| |
| |
| |
| |-
| |
| |[[202edo|202]]
| |
| |17 17 17 5 17 17 17 17 5 17 17 17 17 5
| |
| |Top limit for Lusfur range
| |
| |-
| |
| |[[205edo|205]]
| |
| |17 17 17 6 17 17 17 17 6 17 17 17 17 6
| |
| |
| |
| |-
| |
| |[[208edo|208]]
| |
| |17 17 17 7 17 17 17 17 7 17 17 17 17 7
| |
| |
| |
| |-
| |
| |[[211edo|211]]
| |
| |17 17 17 8 17 17 17 17 8 17 17 17 17 8
| |
| |
| |
| |-
| |
| |[[214edo|214]]
| |
| |17 17 17 9 17 17 17 17 9 17 17 17 17 9
| |
| |
| |
| |-
| |
| |[[217edo|217]]
| |
| |17 17 17 10 17 17 17 17 10 17 17 17 17 10
| |
| |
| |
| |-
| |
| |[[220edo|220]]
| |
| |17 17 17 11 17 17 17 17 11 17 17 17 17 11
| |
| |
| |
| |-
| |
| |[[223edo|223]]
| |
| |17 17 17 12 17 17 17 17 12 17 17 17 17 12
| |
| |Top limit for Fuslur range
| |
| |-
| |
| |[[226edo|226]]
| |
| |17 17 17 13 17 17 17 17 13 17 17 17 17 13
| |
| |
| |
| |-
| |
| |[[229edo|229]]
| |
| |17 17 17 14 17 17 17 17 14 17 17 17 17 14
| |
| |
| |
| |-
| |
| |[[232edo|232]]
| |
| |17 17 17 15 17 17 17 17 15 17 17 17 17 15
| |
| |
| |
| |-
| |
| |[[235edo|235]]
| |
| |17 17 17 16 17 17 17 17 16 17 17 17 17 16
| |
| |
| |
| |}
| |
| [[Category:14-tone scales]] | | [[Category:14-tone scales]] |
11L 3s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 11 large steps and 3 small steps, repeating every octave. 11L 3s is a grandchild scale of 3L 5s, expanding it by 6 tones. Generators that produce this scale range from 428.6 ¢ to 436.4 ¢, or from 763.6 ¢ to 771.4 ¢.
Name
Vector Graphics proposes ketradekic as a name for this scale, based on the name "Ketradektriatoh scale" proposed by Osmiorisbendi, adapted to fit scale naming conventions.
Modes
Modes of 11L 3s
UDP |
Cyclic order |
Step pattern
|
13|0 |
1 |
LLLLsLLLLsLLLs
|
12|1 |
6 |
LLLLsLLLsLLLLs
|
11|2 |
11 |
LLLsLLLLsLLLLs
|
10|3 |
2 |
LLLsLLLLsLLLsL
|
9|4 |
7 |
LLLsLLLsLLLLsL
|
8|5 |
12 |
LLsLLLLsLLLLsL
|
7|6 |
3 |
LLsLLLLsLLLsLL
|
6|7 |
8 |
LLsLLLsLLLLsLL
|
5|8 |
13 |
LsLLLLsLLLLsLL
|
4|9 |
4 |
LsLLLLsLLLsLLL
|
3|10 |
9 |
LsLLLsLLLLsLLL
|
2|11 |
14 |
sLLLLsLLLLsLLL
|
1|12 |
5 |
sLLLLsLLLsLLLL
|
0|13 |
10 |
sLLLsLLLLsLLLL
|
Intervals
Intervals of 11L 3s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 85.7 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
85.7 ¢ to 109.1 ¢
|
2-mosstep
|
Minor 2-mosstep
|
m2ms
|
L + s
|
109.1 ¢ to 171.4 ¢
|
Major 2-mosstep
|
M2ms
|
2L
|
171.4 ¢ to 218.2 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
2L + s
|
218.2 ¢ to 257.1 ¢
|
Major 3-mosstep
|
M3ms
|
3L
|
257.1 ¢ to 327.3 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
3L + s
|
327.3 ¢ to 342.9 ¢
|
Major 4-mosstep
|
M4ms
|
4L
|
342.9 ¢ to 436.4 ¢
|
5-mosstep
|
Diminished 5-mosstep
|
d5ms
|
3L + 2s
|
327.3 ¢ to 428.6 ¢
|
Perfect 5-mosstep
|
P5ms
|
4L + s
|
428.6 ¢ to 436.4 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
4L + 2s
|
436.4 ¢ to 514.3 ¢
|
Major 6-mosstep
|
M6ms
|
5L + s
|
514.3 ¢ to 545.5 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
5L + 2s
|
545.5 ¢ to 600.0 ¢
|
Major 7-mosstep
|
M7ms
|
6L + s
|
600.0 ¢ to 654.5 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
6L + 2s
|
654.5 ¢ to 685.7 ¢
|
Major 8-mosstep
|
M8ms
|
7L + s
|
685.7 ¢ to 763.6 ¢
|
9-mosstep
|
Perfect 9-mosstep
|
P9ms
|
7L + 2s
|
763.6 ¢ to 771.4 ¢
|
Augmented 9-mosstep
|
A9ms
|
8L + s
|
771.4 ¢ to 872.7 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
7L + 3s
|
763.6 ¢ to 857.1 ¢
|
Major 10-mosstep
|
M10ms
|
8L + 2s
|
857.1 ¢ to 872.7 ¢
|
11-mosstep
|
Minor 11-mosstep
|
m11ms
|
8L + 3s
|
872.7 ¢ to 942.9 ¢
|
Major 11-mosstep
|
M11ms
|
9L + 2s
|
942.9 ¢ to 981.8 ¢
|
12-mosstep
|
Minor 12-mosstep
|
m12ms
|
9L + 3s
|
981.8 ¢ to 1028.6 ¢
|
Major 12-mosstep
|
M12ms
|
10L + 2s
|
1028.6 ¢ to 1090.9 ¢
|
13-mosstep
|
Minor 13-mosstep
|
m13ms
|
10L + 3s
|
1090.9 ¢ to 1114.3 ¢
|
Major 13-mosstep
|
M13ms
|
11L + 2s
|
1114.3 ¢ to 1200.0 ¢
|
14-mosstep
|
Perfect 14-mosstep
|
P14ms
|
11L + 3s
|
1200.0 ¢
|
Scale tree
Scale tree and tuning spectrum of 11L 3s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\14
|
|
|
|
|
|
428.571
|
771.429
|
1:1
|
1.000
|
Equalized 11L 3s
|
|
|
|
|
|
29\81
|
429.630
|
770.370
|
6:5
|
1.200
|
|
|
|
|
|
24\67
|
|
429.851
|
770.149
|
5:4
|
1.250
|
|
|
|
|
|
|
43\120
|
430.000
|
770.000
|
9:7
|
1.286
|
|
|
|
|
19\53
|
|
|
430.189
|
769.811
|
4:3
|
1.333
|
Supersoft 11L 3s
|
|
|
|
|
|
52\145
|
430.345
|
769.655
|
11:8
|
1.375
|
|
|
|
|
|
33\92
|
|
430.435
|
769.565
|
7:5
|
1.400
|
|
|
|
|
|
|
47\131
|
430.534
|
769.466
|
10:7
|
1.429
|
|
|
|
14\39
|
|
|
|
430.769
|
769.231
|
3:2
|
1.500
|
Soft 11L 3s
|
|
|
|
|
|
51\142
|
430.986
|
769.014
|
11:7
|
1.571
|
|
|
|
|
|
37\103
|
|
431.068
|
768.932
|
8:5
|
1.600
|
|
|
|
|
|
|
60\167
|
431.138
|
768.862
|
13:8
|
1.625
|
|
|
|
|
23\64
|
|
|
431.250
|
768.750
|
5:3
|
1.667
|
Semisoft 11L 3s
|
|
|
|
|
|
55\153
|
431.373
|
768.627
|
12:7
|
1.714
|
|
|
|
|
|
32\89
|
|
431.461
|
768.539
|
7:4
|
1.750
|
|
|
|
|
|
|
41\114
|
431.579
|
768.421
|
9:5
|
1.800
|
|
|
9\25
|
|
|
|
|
432.000
|
768.000
|
2:1
|
2.000
|
Basic 11L 3s Scales with tunings softer than this are proper
|
|
|
|
|
|
40\111
|
432.432
|
767.568
|
9:4
|
2.250
|
|
|
|
|
|
31\86
|
|
432.558
|
767.442
|
7:3
|
2.333
|
|
|
|
|
|
|
53\147
|
432.653
|
767.347
|
12:5
|
2.400
|
|
|
|
|
22\61
|
|
|
432.787
|
767.213
|
5:2
|
2.500
|
Semihard 11L 3s
|
|
|
|
|
|
57\158
|
432.911
|
767.089
|
13:5
|
2.600
|
|
|
|
|
|
35\97
|
|
432.990
|
767.010
|
8:3
|
2.667
|
|
|
|
|
|
|
48\133
|
433.083
|
766.917
|
11:4
|
2.750
|
|
|
|
13\36
|
|
|
|
433.333
|
766.667
|
3:1
|
3.000
|
Hard 11L 3s
|
|
|
|
|
|
43\119
|
433.613
|
766.387
|
10:3
|
3.333
|
|
|
|
|
|
30\83
|
|
433.735
|
766.265
|
7:2
|
3.500
|
|
|
|
|
|
|
47\130
|
433.846
|
766.154
|
11:3
|
3.667
|
|
|
|
|
17\47
|
|
|
434.043
|
765.957
|
4:1
|
4.000
|
Superhard 11L 3s
|
|
|
|
|
|
38\105
|
434.286
|
765.714
|
9:2
|
4.500
|
|
|
|
|
|
21\58
|
|
434.483
|
765.517
|
5:1
|
5.000
|
|
|
|
|
|
|
25\69
|
434.783
|
765.217
|
6:1
|
6.000
|
|
4\11
|
|
|
|
|
|
436.364
|
763.636
|
1:0
|
→ ∞
|
Collapsed 11L 3s
|