186zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(58 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''186 zeta peak index''' (abbreviated '''186zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 186st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | '''186 zeta peak index''' (abbreviated '''186zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 186st [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{ | {{ZPI | ||
| zpi = 186 | |||
| steps = 41.3438354846780 | |||
| step size = 29.0248832971658 | |||
| height = 1.876590 | |||
| integral = 0.241233 | |||
| gap = 11.567493 | |||
| edo = 41edo | |||
| octave = 1190.02021518380 | |||
| consistent = 2 | |||
| distinct = 2 | |||
}} | |||
| 29.0248832971658 | |||
| 1.876590 | |||
| 0.241233 | |||
| 11.567493 | |||
| | |||
| 1190.02021518380 | |||
| 2 | |||
| 2 | |||
== Theory == | == Theory == | ||
'''186zpi''' sets a height record on the Riemann zeta function with primes 2 and 3 removed. The | === Record on the Riemann zeta function with primes 2 and 3 removed === | ||
'''186zpi''' sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is [[125zpi]] and the next one is [[565zpi]]. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function. | |||
{| class="wikitable" | {| class="wikitable" | ||
! colspan="6" |Unmodified Riemann zeta function | |- | ||
! colspan="5" |Riemann zeta function with primes 2 and 3 removed | ! colspan="6" | Unmodified Riemann zeta function | ||
! colspan="5" | Riemann zeta function with primes 2 and 3 removed | |||
|- | |- | ||
! colspan="3" | Tuning | ! colspan="3" | Tuning | ||
! colspan="1" | | ! colspan="1" | Strength | ||
! colspan="2" | Closest EDO | ! colspan="2" | Closest EDO | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning | ||
! colspan="1" | | ! colspan="1" | Strength | ||
! colspan="2" | Closest EDO | ! colspan="2" | Closest EDO | ||
|- | |- | ||
Line 47: | Line 33: | ||
! Steps per octave | ! Steps per octave | ||
! Step size (cents) | ! Step size (cents) | ||
! | ! colspan="1" | Height | ||
! EDO | ! EDO | ||
! Octave (cents) | ! Octave (cents) | ||
! Steps per octave | ! Steps per octave | ||
! Step size (cents) | ! Step size (cents) | ||
! | ! colspan="1" |Height | ||
! EDO | ! EDO | ||
! Octave (cents) | ! Octave (cents) | ||
|- | |||
| [[125zpi]] | |||
| 30.6006474885974 | |||
| 39.2148564976330 | |||
| 1.468164 | |||
| [[31edo]] | |||
| 1215.66055142662 | |||
| 30.5974484926723 | |||
| 39.2189564527704 | |||
| 3.769318 | |||
| [[31edo]] | |||
| 1215.78765003588 | |||
|- | |- | ||
| [[186zpi]] | | [[186zpi]] | ||
| 41.3438354846780 | | 41.3438354846780 | ||
| 29.0248832971658 | | 29.0248832971658 | ||
| | | 1.876590 | ||
| [[41edo]] | | [[41edo]] | ||
| 1190.02021518380 | | 1190.02021518380 | ||
| 41.3477989230936 | | 41.3477989230936 | ||
| 29.0221010852836 | | 29.0221010852836 | ||
| | | 4.469823 | ||
| [[41edo]] | | [[41edo]] | ||
| 1189.90614449663 | | 1189.90614449663 | ||
|- | |||
| [[565zpi]] | |||
| 98.6209462564991 | |||
| 12.1678005084130 | |||
| 2.305330 | |||
| [[99edo]] | |||
| 1204.61225033289 | |||
| 98.6257548378926 | |||
| 12.1672072570942 | |||
| 4.883729 | |||
| [[99edo]] | |||
| 1204.55351845233 | |||
|} | |||
=== Harmonic series === | |||
As a non-octave, non-tritave scale, [[186zpi]] features a well-balanced [[harmonic series segment]] from 5 to 9, and performs exceptionally well across all [[prime harmonics]] from 5 to 23, with the exception of 19.{{Harmonics in cet|29.0248832971658|columns=15|title=Approximation of harmonics in 186zpi}} | |||
{{Harmonics in cet|29.0248832971658|columns=16|start=16|title=Approximation of harmonics in 186zpi}} | |||
=== Approximation of [[Edonoi|EDONOIs]] === | |||
Based on harmonics with less than 1 cent of error, [[186zpi]] can be approximated by [[96ed5]], [[124ed8]] (or every 3 steps of [[124edo]]), [[143ed11]], [[153ed13]], [[169ed17]], [[187ed23]], and [[192ed25]]. | |||
== Intervals and notation == | |||
There are several ways to approach notation. The simplest method involves using the notations from [[41edo]]. However, this method does not preserve octave compression when rendered by [[List of music software|notation software]]. To address this issue, consider using the [[ups and downs notation]] from [[124edo]] at every 3-degree step (i.e., the [[edonoi]] [[124ed8]]). | |||
It is important to note that [[124edo]] provides two possible [[3/2|fifths (3/2)]]. The closest one, from the [[val]] <124 197] (i.e. the [[patent val]]), is the [[3/2|fifth]] mapped to 73 steps of [[124edo]] with a [[relative error]] of +46.465%. The second closest, from the [[val]] <124 196] (i.e. the [[val]] 124b), is mapped to 72 steps of [[124edo]] with a [[relative error]] of -53.535%. This second [[3/2|fifth]], which appears in [[124ed8]], also corresponds to the [[3/2|fifth]] of [[31edo]]. Therefore, we choose to use the [[ups and downs notation]] of the 124b temperament, denoted as <124 196]. | |||
{| class="wikitable center-1 right-2 left-3 center-4 center-5" | |||
|+ style="font-size: 105%; white-space: nowrap;" | Intervals in 186zpi | |||
|- | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of [[32-integer-limit]] ratios,<br>and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | |||
* '''Bold:''' relative error < 16.667 % | |||
* Normal: relative error < 25 % | |||
* <small>Small:</small> relative error < 33.333 % | |||
* <small><small>Small Small:</small></small> relative error < 41.667 % | |||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | |||
| colspan="2" style="text-align:right;" | <center>'''⟨124 196] at every 3 steps'''</center><br>[[9/8|Whole tone]] = 20 steps<br>[[256/243|Limma]] = 12 steps<br>[[2187/2048|Apotome]] = 8 steps | |||
|- | |||
! Degree | |||
! Cents | |||
! Ratios | |||
! Ups and downs notation | |||
! Step | |||
|- | |||
| 0 | |||
| 0.000 | |||
| | |||
| P1 | |||
| 0 | |||
|- | |||
| 1 | |||
| 29.025 | |||
| | |||
| ^^^1 | |||
| 3 | |||
|- | |||
| 2 | |||
| 58.050 | |||
| '''[[32/31]]''', '''<u>[[31/30]]'''</u>, '''<u>[[30/29]]'''</u>, '''[[29/28]]''', [[28/27]], <small>[[27/26]]</small>, <small><small>[[26/25]]</small></small>, <small><small><small>[[25/24]]</small></small></small> | |||
| vvA1, ^^d2 | |||
| 6 | |||
|- | |||
| 3 | |||
| 87.075 | |||
| <small><small><small>[[24/23]]</small></small></small>, <small><small>[[23/22]]</small></small>, [[22/21]], '''[[21/20]]''', '''<u>[[20/19]]'''</u>, [[19/18]], <small><small>[[18/17]]</small></small> | |||
| vvvm2 | |||
| 9 | |||
|- | |||
| 4 | |||
| 116.100 | |||
| <small><small>[[17/16]]</small></small>, '''[[16/15]]''', '''<u>[[31/29]]'''</u>, '''[[15/14]]''', <small>[[29/27]]</small>, <small><small><small>[[14/13]]</small></small></small> | |||
| m2 | |||
| 12 | |||
|- | |||
| 5 | |||
| 145.124 | |||
| <small><small>[[27/25]]</small></small>, [[13/12]], '''<u>[[25/23]]'''</u>, [[12/11]], <small><small><small>[[23/21]]</small></small></small> | |||
| ^^^m2 | |||
| 15 | |||
|- | |||
| 6 | |||
| 174.149 | |||
| <small>[[11/10]]</small>, '''[[32/29]]''', '''<u>[[21/19]]'''</u>, '''<u>[[31/28]]'''</u>, <small>[[10/9]]</small> | |||
| vvM2 | |||
| 18 | |||
|- | |||
| 7 | |||
| 203.174 | |||
| <small><small><small>[[29/26]]</small></small></small>, <small><small>[[19/17]]</small></small>, [[28/25]], '''<u>[[9/8]]'''</u>, <small>[[26/23]]</small>, <small><small><small>[[17/15]]</small></small></small> | |||
| ^M2 | |||
| 21 | |||
|- | |||
| 8 | |||
| 232.199 | |||
| <small><small>[[25/22]]</small></small>, '''<u>[[8/7]]'''</u>, [[31/27]], <small><small>[[23/20]]</small></small> | |||
| ^<sup>4</sup>M2 | |||
| 24 | |||
|- | |||
| 9 | |||
| 261.224 | |||
| <small><small><small>[[15/13]]</small></small></small>, <small>[[22/19]]</small>, '''[[29/25]]''', [[7/6]] | |||
| ^^^d3 | |||
| 27 | |||
|- | |||
| 10 | |||
| 290.249 | |||
| <small><small><small>[[27/23]]</small></small></small>, <small>[[20/17]]</small>, '''<u>[[13/11]]'''</u>, '''[[32/27]]''', <small>[[19/16]]</small>, <small><small>[[25/21]]</small></small>, <small><small><small>[[31/26]]</small></small></small> | |||
| vvm3 | |||
| 30 | |||
|- | |||
| 11 | |||
| 319.274 | |||
| '''[[6/5]]''', <small>[[29/24]]</small>, <small><small>[[23/19]]</small></small> | |||
| ^m3 | |||
| 33 | |||
|- | |||
| 12 | |||
| 348.299 | |||
| <small><small><small>[[17/14]]</small></small></small>, <small>[[28/23]]</small>, '''<u>[[11/9]]'''</u>, [[27/22]], <small><small>[[16/13]]</small></small> | |||
| ~3 | |||
| 36 | |||
|- | |||
| 13 | |||
| 377.323 | |||
| <small><small>[[21/17]]</small></small>, <small>[[26/21]]</small>, [[31/25]], <small>[[5/4]]</small> | |||
| vM3 | |||
| 39 | |||
|- | |||
| 14 | |||
| 406.348 | |||
| [[29/23]], '''<u>[[24/19]]'''</u>, '''[[19/15]]''', <small><small>[[14/11]]</small></small> | |||
| ^^M3 | |||
| 42 | |||
|- | |||
| 15 | |||
| 435.373 | |||
| <small><small>[[23/18]]</small></small>, <small>[[32/25]]</small>, '''<u>[[9/7]]'''</u>, <small>[[31/24]]</small>, <small><small>[[22/17]]</small></small> | |||
| vvvA3 | |||
| 45 | |||
|- | |||
| 16 | |||
| 464.398 | |||
| <small><small>[[13/10]]</small></small>, '''[[30/23]]''', '''<u>[[17/13]]'''</u>, [[21/16]], <small><small>[[25/19]]</small></small>, <small><small><small>[[29/22]]</small></small></small> | |||
| v<sup>4</sup>4 | |||
| 48 | |||
|- | |||
| 17 | |||
| 493.423 | |||
| '''[[4/3]]''' | |||
| v4 | |||
| 51 | |||
|- | |||
| 18 | |||
| 522.448 | |||
| [[31/23]], '''[[27/20]]''', '''<u>[[23/17]]'''</u>, [[19/14]], <small><small><small>[[15/11]]</small></small></small> | |||
| ^^4 | |||
| 54 | |||
|- | |||
| 19 | |||
| 551.473 | |||
| <small>[[26/19]]</small>, '''<u>[[11/8]]'''</u>, <small>[[29/21]]</small>, <small><small>[[18/13]]</small></small> | |||
| vvvA4 | |||
| 57 | |||
|- | |||
| 20 | |||
| 580.498 | |||
| <small><small>[[25/18]]</small></small>, <small>[[32/23]]</small>, '''<u>[[7/5]]'''</u>, <small><small><small>[[31/22]]</small></small></small> | |||
| A4 | |||
| 60 | |||
|- | |||
| 21 | |||
| 609.523 | |||
| <small><small><small>[[24/17]]</small></small></small>, [[17/12]], '''<u>[[27/19]]'''</u>, <small>[[10/7]]</small> | |||
| vd5 | |||
| 63 | |||
|- | |||
| 22 | |||
| 638.547 | |||
| <small><small>[[23/16]]</small></small>, '''<u>[[13/9]]'''</u>, '''[[29/20]]''', <small><small>[[16/11]]</small></small> | |||
| ^^d5 | |||
| 66 | |||
|- | |||
| 23 | |||
| 667.572 | |||
| <small><small>[[19/13]]</small></small>, '''[[22/15]]''', '''<u>[[25/17]]'''</u>, '''[[28/19]]''', [[31/21]] | |||
| vvv5 | |||
| 69 | |||
|- | |||
| 24 | |||
| 696.597 | |||
| [[3/2]] | |||
| P5 | |||
| 72 | |||
|- | |||
| 25 | |||
| 725.622 | |||
| '''[[32/21]]''', [[29/19]], <small><small>[[26/17]]</small></small>, <small><small><small>[[23/15]]</small></small></small> | |||
| ^^^5 | |||
| 75 | |||
|- | |||
| 26 | |||
| 754.647 | |||
| <small>[[20/13]]</small>, '''<u>[[17/11]]'''</u>, '''[[31/20]]''', <small><small>[[14/9]]</small></small> | |||
| vvA5, ^^d6 | |||
| 78 | |||
|- | |||
| 27 | |||
| 783.672 | |||
| <small><small>[[25/16]]</small></small>, '''<u>[[11/7]]'''</u>, [[30/19]], <small><small>[[19/12]]</small></small> | |||
| vvvm6 | |||
| 81 | |||
|- | |||
| 28 | |||
| 812.697 | |||
| <small><small>[[27/17]]</small></small>, '''<u>[[8/5]]'''</u>, <small><small><small>[[29/18]]</small></small></small> | |||
| m6 | |||
| 84 | |||
|- | |||
| 29 | |||
| 841.722 | |||
| <small><small>[[21/13]]</small></small>, '''<u>[[13/8]]'''</u>, [[31/19]], <small><small>[[18/11]]</small></small> | |||
| ^^^m6 | |||
| 87 | |||
|- | |||
| 30 | |||
| 870.746 | |||
| <small><small>[[23/14]]</small></small>, [[28/17]], <small><small><small>[[5/3]]</small></small></small> | |||
| vvM6 | |||
| 90 | |||
|- | |||
| 31 | |||
| 899.771 | |||
| '''[[32/19]]''', [[27/16]], <small><small>[[22/13]]</small></small> | |||
| ^M6 | |||
| 93 | |||
|- | |||
| 32 | |||
| 928.796 | |||
| <small><small>[[17/10]]</small></small>, '''[[29/17]]''', '''[[12/7]]''', <small><small><small>[[31/18]]</small></small></small> | |||
| ^<sup>4</sup>M6 | |||
| 96 | |||
|- | |||
| 33 | |||
| 957.821 | |||
| <small><small>[[19/11]]</small></small>, [[26/15]], <small><small>[[7/4]]</small></small> | |||
| ^^^d7 | |||
| 99 | |||
|- | |||
| 34 | |||
| 986.846 | |||
| '''[[30/17]]''', '''<u>[[23/13]]'''</u>, <small>[[16/9]]</small> | |||
| vvm7 | |||
| 102 | |||
|- | |||
| 35 | |||
| 1015.871 | |||
| <small><small>[[25/14]]</small></small>, '''<u>[[9/5]]'''</u>, <small><small><small>[[29/16]]</small></small></small> | |||
| ^m7 | |||
| 105 | |||
|- | |||
| 36 | |||
| 1044.896 | |||
| <small><small>[[20/11]]</small></small>, '''[[31/17]]''', '''[[11/6]]''' | |||
| ~7 | |||
| 108 | |||
|- | |||
| 37 | |||
| 1073.921 | |||
| <small><small><small>[[24/13]]</small></small></small>, '''<u>[[13/7]]'''</u>, [[28/15]], <small><small><small>[[15/8]]</small></small></small> | |||
| vM7 | |||
| 111 | |||
|- | |||
| 38 | |||
| 1102.946 | |||
| <small>[[32/17]]</small>, '''<u>[[17/9]]'''</u>, <small>[[19/10]]</small> | |||
| ^^M7 | |||
| 114 | |||
|- | |||
| 39 | |||
| 1131.970 | |||
| <small><small><small>[[21/11]]</small></small></small>, [[23/12]], '''<u>[[25/13]]'''</u>, [[27/14]], <small>[[29/15]]</small>, <small><small><small>[[31/16]]</small></small></small> | |||
| vvvA7 | |||
| 117 | |||
|- | |||
| 40 | |||
| 1160.995 | |||
| | |||
| v<sup>4</sup>1 +1 oct | |||
| 120 | |||
|- | |||
| 41 | |||
| 1190.020 | |||
| <small><small>[[2/1]]</small></small> | |||
| v1 +1 oct | |||
| 123 | |||
|- | |||
| 42 | |||
| 1219.045 | |||
| | |||
| ^^1 +1 oct | |||
| 126 | |||
|- | |||
| 43 | |||
| 1248.070 | |||
| <small>[[31/15]]</small>, <small><small><small>[[29/14]]</small></small></small> | |||
| vvvA1 +1 oct | |||
| 129 | |||
|- | |||
| 44 | |||
| 1277.095 | |||
| <small><small>[[27/13]]</small></small>, [[25/12]], '''<u>[[23/11]]'''</u>, <small>[[21/10]]</small> | |||
| v<sup>4</sup>m2 +1 oct | |||
| 132 | |||
|- | |||
| 45 | |||
| 1306.120 | |||
| <small><small><small>[[19/9]]</small></small></small>, '''<u>[[17/8]]'''</u>, [[32/15]], <small><small><small>[[15/7]]</small></small></small> | |||
| vm2 +1 oct | |||
| 135 | |||
|- | |||
| 46 | |||
| 1335.145 | |||
| [[28/13]], '''[[13/6]]''' | |||
| ^^m2 +1 oct | |||
| 138 | |||
|- | |||
| 47 | |||
| 1364.170 | |||
| <small><small><small>[[24/11]]</small></small></small>, '''<u>[[11/5]]'''</u>, <small><small>[[31/14]]</small></small> | |||
| vvvM2 +1 oct | |||
| 141 | |||
|- | |||
| 48 | |||
| 1393.194 | |||
| <small><small>[[20/9]]</small></small>, '''[[29/13]]''', <small><small>[[9/4]]</small></small> | |||
| M2 +1 oct | |||
| 144 | |||
|- | |||
| 49 | |||
| 1422.219 | |||
| '''<u>[[25/11]]'''</u>, <small>[[16/7]]</small> | |||
| ^^^M2 +1 oct | |||
| 147 | |||
|- | |||
| 50 | |||
| 1451.244 | |||
| <small>[[23/10]]</small>, '''[[30/13]]''' | |||
| vvA2 +1 oct, ^^d3 +1 oct | |||
| 150 | |||
|- | |||
| 51 | |||
| 1480.269 | |||
| <small><small><small>[[7/3]]</small></small></small>, <small>[[26/11]]</small> | |||
| vvvm3 +1 oct | |||
| 153 | |||
|- | |||
| 52 | |||
| 1509.294 | |||
| <small><small>[[19/8]]</small></small>, '''[[31/13]]''', [[12/5]] | |||
| m3 +1 oct | |||
| 156 | |||
|- | |||
| 53 | |||
| 1538.319 | |||
| <small><small>[[29/12]]</small></small>, '''<u>[[17/7]]'''</u>, <small>[[22/9]]</small> | |||
| ^^^m3 +1 oct | |||
| 159 | |||
|- | |||
| 54 | |||
| 1567.344 | |||
| <small><small><small>[[27/11]]</small></small></small>, <small>[[32/13]]</small> | |||
| vvM3 +1 oct | |||
| 162 | |||
|- | |||
| 55 | |||
| 1596.369 | |||
| <small><small>[[5/2]]</small></small> | |||
| ^M3 +1 oct | |||
| 165 | |||
|- | |||
| 56 | |||
| 1625.393 | |||
| <small>[[28/11]]</small>, '''<u>[[23/9]]'''</u>, <small><small>[[18/7]]</small></small> | |||
| ^<sup>4</sup>M3 +1 oct | |||
| 168 | |||
|- | |||
| 57 | |||
| 1654.418 | |||
| <small><small>[[31/12]]</small></small>, '''<u>[[13/5]]'''</u> | |||
| ^^^d4 +1 oct | |||
| 171 | |||
|- | |||
| 58 | |||
| 1683.443 | |||
| <small><small><small>[[21/8]]</small></small></small>, [[29/11]] | |||
| vv4 +1 oct | |||
| 174 | |||
|- | |||
| 59 | |||
| 1712.468 | |||
| <small><small><small>[[8/3]]</small></small></small>, [[27/10]] | |||
| ^4 +1 oct | |||
| 177 | |||
|- | |||
| 60 | |||
| 1741.493 | |||
| <small><small><small>[[19/7]]</small></small></small>, '''[[30/11]]''', <small><small>[[11/4]]</small></small> | |||
| ~4 +1 oct | |||
| 180 | |||
|- | |||
| 61 | |||
| 1770.518 | |||
| '''<u>[[25/9]]'''</u>, <small><small>[[14/5]]</small></small> | |||
| vA4 +1 oct | |||
| 183 | |||
|- | |||
| 62 | |||
| 1799.543 | |||
| [[31/11]], '''[[17/6]]''' | |||
| ^^A4 +1 oct, vvd5 +1 oct | |||
| 186 | |||
|- | |||
| 63 | |||
| 1828.568 | |||
| <small><small>[[20/7]]</small></small>, '''<u>[[23/8]]'''</u>, <small>[[26/9]]</small> | |||
| ^d5 +1 oct | |||
| 189 | |||
|- | |||
| 64 | |||
| 1857.593 | |||
| <small><small><small>[[29/10]]</small></small></small>, <small>[[32/11]]</small> | |||
| ~5 +1 oct | |||
| 192 | |||
|- | |||
| 65 | |||
| 1886.617 | |||
| | |||
| v5 +1 oct | |||
| 195 | |||
|- | |||
| 66 | |||
| 1915.642 | |||
| <small><small><small>[[3/1]]</small></small></small> | |||
| ^^5 +1 oct | |||
| 198 | |||
|- | |||
| 67 | |||
| 1944.667 | |||
| <small><small><small>[[31/10]]</small></small></small> | |||
| vvvA5 +1 oct | |||
| 201 | |||
|- | |||
| 68 | |||
| 1973.692 | |||
| <small>[[28/9]]</small>, '''<u>[[25/8]]'''</u>, <small>[[22/7]]</small> | |||
| v<sup>4</sup>m6 +1 oct | |||
| 204 | |||
|- | |||
| 69 | |||
| 2002.717 | |||
| [[19/6]], <small><small>[[16/5]]</small></small> | |||
| vm6 +1 oct | |||
| 207 | |||
|- | |||
| 70 | |||
| 2031.742 | |||
| [[29/9]], <small>[[13/4]]</small> | |||
| ^^m6 +1 oct | |||
| 210 | |||
|- | |||
| 71 | |||
| 2060.767 | |||
| '''<u>[[23/7]]'''</u> | |||
| vvvM6 +1 oct | |||
| 213 | |||
|- | |||
| 72 | |||
| 2089.792 | |||
| [[10/3]] | |||
| M6 +1 oct | |||
| 216 | |||
|- | |||
| 73 | |||
| 2118.816 | |||
| <small><small><small>[[27/8]]</small></small></small>, '''<u>[[17/5]]'''</u>, <small><small><small>[[24/7]]</small></small></small> | |||
| ^^^M6 +1 oct | |||
| 219 | |||
|- | |||
| 74 | |||
| 2147.841 | |||
| [[31/9]] | |||
| vvA6 +1 oct, ^^d7 +1 oct | |||
| 222 | |||
|- | |||
| 75 | |||
| 2176.866 | |||
| <small>[[7/2]]</small> | |||
| vvvm7 +1 oct | |||
| 225 | |||
|- | |||
| 76 | |||
| 2205.891 | |||
| <small><small>[[32/9]]</small></small>, '''<u>[[25/7]]'''</u>, <small><small>[[18/5]]</small></small> | |||
| m7 +1 oct | |||
| 228 | |||
|- | |||
| 77 | |||
| 2234.916 | |||
| [[29/8]], <small><small><small>[[11/3]]</small></small></small> | |||
| ^^^m7 +1 oct | |||
| 231 | |||
|- | |||
| 78 | |||
| 2263.941 | |||
| <small>[[26/7]]</small> | |||
| vvM7 +1 oct | |||
| 234 | |||
|- | |||
| 79 | |||
| 2292.966 | |||
| '''[[15/4]]''' | |||
| ^M7 +1 oct | |||
| 237 | |||
|- | |||
| 80 | |||
| 2321.991 | |||
| <small><small>[[19/5]]</small></small>, '''[[23/6]]''' | |||
| ^<sup>4</sup>M7 +1 oct | |||
| 240 | |||
|- | |||
| 81 | |||
| 2351.016 | |||
| <small><small><small>[[27/7]]</small></small></small>, [[31/8]] | |||
| ^^^d1 +2 oct | |||
| 243 | |||
|- | |||
| 82 | |||
| 2380.040 | |||
| | |||
| vv1 +2 oct | |||
| 246 | |||
|- | |||
| 83 | |||
| 2409.065 | |||
| <small>[[4/1]]</small> | |||
| ^1 +2 oct | |||
| 249 | |||
|- | |||
| 84 | |||
| 2438.090 | |||
| | |||
| ^<sup>4</sup>1 +2 oct | |||
| 252 | |||
|- | |||
| 85 | |||
| 2467.115 | |||
| [[29/7]], '''[[25/6]]''' | |||
| ^^^d2 +2 oct | |||
| 255 | |||
|- | |||
| 86 | |||
| 2496.140 | |||
| <small><small>[[21/5]]</small></small>, <small>[[17/4]]</small> | |||
| vvm2 +2 oct | |||
| 258 | |||
|- | |||
| 87 | |||
| 2525.165 | |||
| [[30/7]], <small><small><small>[[13/3]]</small></small></small> | |||
| ^m2 +2 oct | |||
| 261 | |||
|- | |||
| 88 | |||
| 2554.190 | |||
| <small><small>[[22/5]]</small></small> | |||
| ~2 +2 oct | |||
| 264 | |||
|- | |||
| 89 | |||
| 2583.215 | |||
| [[31/7]] | |||
| vM2 +2 oct | |||
| 267 | |||
|- | |||
| 90 | |||
| 2612.239 | |||
| <small>[[9/2]]</small> | |||
| ^^M2 +2 oct | |||
| 270 | |||
|- | |||
| 91 | |||
| 2641.264 | |||
| <small><small>[[32/7]]</small></small>, '''<u>[[23/5]]'''</u> | |||
| vvvA2 +2 oct | |||
| 273 | |||
|- | |||
| 92 | |||
| 2670.289 | |||
| '''[[14/3]]''' | |||
| v<sup>4</sup>m3 +2 oct | |||
| 276 | |||
|- | |||
| 93 | |||
| 2699.314 | |||
| '''<u>[[19/4]]'''</u> | |||
| vm3 +2 oct | |||
| 279 | |||
|- | |||
| 94 | |||
| 2728.339 | |||
| <small><small><small>[[24/5]]</small></small></small>, '''<u>[[29/6]]'''</u> | |||
| ^^m3 +2 oct | |||
| 282 | |||
|- | |||
| 95 | |||
| 2757.364 | |||
| | |||
| vvvM3 +2 oct | |||
| 285 | |||
|- | |||
| 96 | |||
| 2786.389 | |||
| '''<u>[[5/1]]'''</u> | |||
| M3 +2 oct | |||
| 288 | |||
|- | |||
| 97 | |||
| 2815.414 | |||
| | |||
| ^^^M3 +2 oct | |||
| 291 | |||
|- | |||
| 98 | |||
| 2844.439 | |||
| '''<u>[[31/6]]'''</u>, <small><small>[[26/5]]</small></small> | |||
| vvA3 +2 oct, ^^d4 +2 oct | |||
| 294 | |||
|- | |||
| 99 | |||
| 2873.463 | |||
| '''[[21/4]]''' | |||
| vvv4 +2 oct | |||
| 297 | |||
|- | |||
| 100 | |||
| 2902.488 | |||
| '''[[16/3]]''' | |||
| P4 +2 oct | |||
| 300 | |||
|- | |||
| 101 | |||
| 2931.513 | |||
| <small><small>[[27/5]]</small></small> | |||
| ^^^4 +2 oct | |||
| 303 | |||
|- | |||
| 102 | |||
| 2960.538 | |||
| <small>[[11/2]]</small> | |||
| vvA4 +2 oct | |||
| 306 | |||
|- | |||
| 103 | |||
| 2989.563 | |||
| [[28/5]], <small><small><small>[[17/3]]</small></small></small> | |||
| ^A4 +2 oct | |||
| 309 | |||
|- | |||
| 104 | |||
| 3018.588 | |||
| <small><small>[[23/4]]</small></small> | |||
| d5 +2 oct | |||
| 312 | |||
|- | |||
| 105 | |||
| 3047.613 | |||
| '''[[29/5]]''' | |||
| ^^^d5 +2 oct | |||
| 315 | |||
|- | |||
| 106 | |||
| 3076.638 | |||
| | |||
| vv5 +2 oct | |||
| 318 | |||
|- | |||
| 107 | |||
| 3105.663 | |||
| '''[[6/1]]''' | |||
| ^5 +2 oct | |||
| 321 | |||
|- | |||
| 108 | |||
| 3134.687 | |||
| | |||
| ^<sup>4</sup>5 +2 oct | |||
| 324 | |||
|- | |||
| 109 | |||
| 3163.712 | |||
| [[31/5]], <small>[[25/4]]</small> | |||
| ^^^d6 +2 oct | |||
| 327 | |||
|- | |||
| 110 | |||
| 3192.737 | |||
| '''[[19/3]]''' | |||
| vvm6 +2 oct | |||
| 330 | |||
|- | |||
| 111 | |||
| 3221.762 | |||
| <small>[[32/5]]</small> | |||
| ^m6 +2 oct | |||
| 333 | |||
|- | |||
| 112 | |||
| 3250.787 | |||
| <small><small>[[13/2]]</small></small> | |||
| ~6 +2 oct | |||
| 336 | |||
|- | |||
| 113 | |||
| 3279.812 | |||
| '''[[20/3]]''' | |||
| vM6 +2 oct | |||
| 339 | |||
|- | |||
| 114 | |||
| 3308.837 | |||
| '''[[27/4]]''' | |||
| ^^M6 +2 oct | |||
| 342 | |||
|- | |||
| 115 | |||
| 3337.862 | |||
| | |||
| vvvA6 +2 oct | |||
| 345 | |||
|- | |||
| 116 | |||
| 3366.886 | |||
| '''<u>[[7/1]]'''</u> | |||
| v<sup>4</sup>m7 +2 oct | |||
| 348 | |||
|- | |||
| 117 | |||
| 3395.911 | |||
| | |||
| vm7 +2 oct | |||
| 351 | |||
|- | |||
| 118 | |||
| 3424.936 | |||
| '''[[29/4]]''' | |||
| ^^m7 +2 oct | |||
| 354 | |||
|- | |||
| 119 | |||
| 3453.961 | |||
| '''[[22/3]]''' | |||
| vvvM7 +2 oct | |||
| 357 | |||
|- | |||
| 120 | |||
| 3482.986 | |||
| [[15/2]] | |||
| M7 +2 oct | |||
| 360 | |||
|- | |||
| 121 | |||
| 3512.011 | |||
| <small><small><small>[[23/3]]</small></small></small> | |||
| ^^^M7 +2 oct | |||
| 363 | |||
|- | |||
| 122 | |||
| 3541.036 | |||
| '''[[31/4]]''' | |||
| vvA7 +2 oct, ^^d1 +3 oct | |||
| 366 | |||
|- | |||
| 123 | |||
| 3570.061 | |||
| | |||
| vvv1 +3 oct | |||
| 369 | |||
|- | |||
| 124 | |||
| 3599.086 | |||
| '''<u>[[8/1]]'''</u> | |||
| P1 +3 oct | |||
| 372 | |||
|- | |||
| 125 | |||
| 3628.110 | |||
| | |||
| ^^^1 +3 oct | |||
| 375 | |||
|- | |||
| 126 | |||
| 3657.135 | |||
| <small><small><small>[[25/3]]</small></small></small> | |||
| vvA1 +3 oct, ^^d2 +3 oct | |||
| 378 | |||
|- | |||
| 127 | |||
| 3686.160 | |||
| | |||
| vvvm2 +3 oct | |||
| 381 | |||
|- | |||
| 128 | |||
| 3715.185 | |||
| <small><small>[[17/2]]</small></small> | |||
| m2 +3 oct | |||
| 384 | |||
|- | |||
| 129 | |||
| 3744.210 | |||
| [[26/3]] | |||
| ^^^m2 +3 oct | |||
| 387 | |||
|- | |||
| 130 | |||
| 3773.235 | |||
| | |||
| vvM2 +3 oct | |||
| 390 | |||
|- | |||
| 131 | |||
| 3802.260 | |||
| '''<u>[[9/1]]'''</u> | |||
| ^M2 +3 oct | |||
| 393 | |||
|- | |||
| 132 | |||
| 3831.285 | |||
| | |||
| ^<sup>4</sup>M2 +3 oct | |||
| 396 | |||
|- | |||
| 133 | |||
| 3860.309 | |||
| [[28/3]] | |||
| ^^^d3 +3 oct | |||
| 399 | |||
|- | |||
| 134 | |||
| 3889.334 | |||
| <small>[[19/2]]</small> | |||
| vvm3 +3 oct | |||
| 402 | |||
|- | |||
| 135 | |||
| 3918.359 | |||
| <small>[[29/3]]</small> | |||
| ^m3 +3 oct | |||
| 405 | |||
|- | |||
| 136 | |||
| 3947.384 | |||
| | |||
| ~3 +3 oct | |||
| 408 | |||
|- | |||
| 137 | |||
| 3976.409 | |||
| <small><small>[[10/1]]</small></small> | |||
| vM3 +3 oct | |||
| 411 | |||
|- | |||
| 138 | |||
| 4005.434 | |||
| | |||
| ^^M3 +3 oct | |||
| 414 | |||
|- | |||
| 139 | |||
| 4034.459 | |||
| <small>[[31/3]]</small> | |||
| vvvA3 +3 oct | |||
| 417 | |||
|- | |||
| 140 | |||
| 4063.484 | |||
| <small>[[21/2]]</small> | |||
| v<sup>4</sup>4 +3 oct | |||
| 420 | |||
|- | |||
| 141 | |||
| 4092.509 | |||
| [[32/3]] | |||
| v4 +3 oct | |||
| 423 | |||
|- | |||
| 142 | |||
| 4121.533 | |||
| | |||
| ^^4 +3 oct | |||
| 426 | |||
|- | |||
| 143 | |||
| 4150.558 | |||
| '''<u>[[11/1]]'''</u> | |||
| vvvA4 +3 oct | |||
| 429 | |||
|- | |||
| 144 | |||
| 4179.583 | |||
| | |||
| A4 +3 oct | |||
| 432 | |||
|- | |||
| 145 | |||
| 4208.608 | |||
| | |||
| vd5 +3 oct | |||
| 435 | |||
|- | |||
| 146 | |||
| 4237.633 | |||
| <small>[[23/2]]</small> | |||
| ^^d5 +3 oct | |||
| 438 | |||
|- | |||
| 147 | |||
| 4266.658 | |||
| | |||
| vvv5 +3 oct | |||
| 441 | |||
|- | |||
| 148 | |||
| 4295.683 | |||
| [[12/1]] | |||
| P5 +3 oct | |||
| 444 | |||
|- | |||
| 149 | |||
| 4324.708 | |||
| | |||
| ^^^5 +3 oct | |||
| 447 | |||
|- | |||
| 150 | |||
| 4353.732 | |||
| | |||
| vvA5 +3 oct, ^^d6 +3 oct | |||
| 450 | |||
|- | |||
| 151 | |||
| 4382.757 | |||
| <small><small>[[25/2]]</small></small> | |||
| vvvm6 +3 oct | |||
| 453 | |||
|- | |||
| 152 | |||
| 4411.782 | |||
| | |||
| m6 +3 oct | |||
| 456 | |||
|- | |||
| 153 | |||
| 4440.807 | |||
| '''<u>[[13/1]]'''</u> | |||
| ^^^m6 +3 oct | |||
| 459 | |||
|- | |||
| 154 | |||
| 4469.832 | |||
| | |||
| vvM6 +3 oct | |||
| 462 | |||
|- | |||
| 155 | |||
| 4498.857 | |||
| [[27/2]] | |||
| ^M6 +3 oct | |||
| 465 | |||
|- | |||
| 156 | |||
| 4527.882 | |||
| | |||
| ^<sup>4</sup>M6 +3 oct | |||
| 468 | |||
|- | |||
| 157 | |||
| 4556.907 | |||
| <small><small>[[14/1]]</small></small> | |||
| ^^^d7 +3 oct | |||
| 471 | |||
|- | |||
| 158 | |||
| 4585.932 | |||
| | |||
| vvm7 +3 oct | |||
| 474 | |||
|- | |||
| 159 | |||
| 4614.956 | |||
| | |||
| ^m7 +3 oct | |||
| 477 | |||
|- | |||
| 160 | |||
| 4643.981 | |||
| <small><small><small>[[29/2]]</small></small></small> | |||
| ~7 +3 oct | |||
| 480 | |||
|- | |||
| 161 | |||
| 4673.006 | |||
| | |||
| vM7 +3 oct | |||
| 483 | |||
|- | |||
| 162 | |||
| 4702.031 | |||
| <small><small><small>[[15/1]]</small></small></small> | |||
| ^^M7 +3 oct | |||
| 486 | |||
|- | |||
| 163 | |||
| 4731.056 | |||
| <small><small><small>[[31/2]]</small></small></small> | |||
| vvvA7 +3 oct | |||
| 489 | |||
|- | |||
| 164 | |||
| 4760.081 | |||
| | |||
| v<sup>4</sup>1 +4 oct | |||
| 492 | |||
|- | |||
| 165 | |||
| 4789.106 | |||
| <small><small>[[16/1]]</small></small> | |||
| v1 +4 oct | |||
| 495 | |||
|- | |||
| 166 | |||
| 4818.131 | |||
| | |||
| ^^1 +4 oct | |||
| 498 | |||
|- | |||
| 167 | |||
| 4847.156 | |||
| | |||
| vvvA1 +4 oct | |||
| 501 | |||
|- | |||
| 168 | |||
| 4876.180 | |||
| | |||
| v<sup>4</sup>m2 +4 oct | |||
| 504 | |||
|- | |||
| 169 | |||
| 4905.205 | |||
| '''<u>[[17/1]]'''</u> | |||
| vm2 +4 oct | |||
| 507 | |||
|- | |||
| 170 | |||
| 4934.230 | |||
| | |||
| ^^m2 +4 oct | |||
| 510 | |||
|- | |||
| 171 | |||
| 4963.255 | |||
| | |||
| vvvM2 +4 oct | |||
| 513 | |||
|- | |||
| 172 | |||
| 4992.280 | |||
| <small><small>[[18/1]]</small></small> | |||
| M2 +4 oct | |||
| 516 | |||
|- | |||
| 173 | |||
| 5021.305 | |||
| | |||
| ^^^M2 +4 oct | |||
| 519 | |||
|- | |||
| 174 | |||
| 5050.330 | |||
| | |||
| vvA2 +4 oct, ^^d3 +4 oct | |||
| 522 | |||
|- | |||
| 175 | |||
| 5079.355 | |||
| | |||
| vvvm3 +4 oct | |||
| 525 | |||
|- | |||
| 176 | |||
| 5108.379 | |||
| <small><small>[[19/1]]</small></small> | |||
| m3 +4 oct | |||
| 528 | |||
|- | |||
| 177 | |||
| 5137.404 | |||
| | |||
| ^^^m3 +4 oct | |||
| 531 | |||
|- | |||
| 178 | |||
| 5166.429 | |||
| | |||
| vvM3 +4 oct | |||
| 534 | |||
|- | |||
| 179 | |||
| 5195.454 | |||
| <small>[[20/1]]</small> | |||
| ^M3 +4 oct | |||
| 537 | |||
|- | |||
| 180 | |||
| 5224.479 | |||
| | |||
| ^<sup>4</sup>M3 +4 oct | |||
| 540 | |||
|- | |||
| 181 | |||
| 5253.504 | |||
| | |||
| ^^^d4 +4 oct | |||
| 543 | |||
|- | |||
| 182 | |||
| 5282.529 | |||
| <small><small>[[21/1]]</small></small> | |||
| vv4 +4 oct | |||
| 546 | |||
|- | |||
| 183 | |||
| 5311.554 | |||
| | |||
| ^4 +4 oct | |||
| 549 | |||
|- | |||
| 184 | |||
| 5340.579 | |||
| <small><small>[[22/1]]</small></small> | |||
| ~4 +4 oct | |||
| 552 | |||
|- | |||
| 185 | |||
| 5369.603 | |||
| | |||
| vA4 +4 oct | |||
| 555 | |||
|- | |||
| 186 | |||
| 5398.628 | |||
| | |||
| ^^A4 +4 oct, vvd5 +4 oct | |||
| 558 | |||
|- | |||
| 187 | |||
| 5427.653 | |||
| '''<u>[[23/1]]'''</u> | |||
| ^d5 +4 oct | |||
| 561 | |||
|- | |||
| 188 | |||
| 5456.678 | |||
| | |||
| ~5 +4 oct | |||
| 564 | |||
|- | |||
| 189 | |||
| 5485.703 | |||
| | |||
| v5 +4 oct | |||
| 567 | |||
|- | |||
| 190 | |||
| 5514.728 | |||
| <small><small><small>[[24/1]]</small></small></small> | |||
| ^^5 +4 oct | |||
| 570 | |||
|- | |||
| 191 | |||
| 5543.753 | |||
| | |||
| vvvA5 +4 oct | |||
| 573 | |||
|- | |||
| 192 | |||
| 5572.778 | |||
| '''<u>[[25/1]]'''</u> | |||
| v<sup>4</sup>m6 +4 oct | |||
| 576 | |||
|- | |||
| 193 | |||
| 5601.802 | |||
| | |||
| vm6 +4 oct | |||
| 579 | |||
|- | |||
| 194 | |||
| 5630.827 | |||
| <small><small>[[26/1]]</small></small> | |||
| ^^m6 +4 oct | |||
| 582 | |||
|- | |||
| 195 | |||
| 5659.852 | |||
| | |||
| vvvM6 +4 oct | |||
| 585 | |||
|- | |||
| 196 | |||
| 5688.877 | |||
| | |||
| M6 +4 oct | |||
| 588 | |||
|- | |||
| 197 | |||
| 5717.902 | |||
| <small><small>[[27/1]]</small></small> | |||
| ^^^M6 +4 oct | |||
| 591 | |||
|- | |||
| 198 | |||
| 5746.927 | |||
| | |||
| vvA6 +4 oct, ^^d7 +4 oct | |||
| 594 | |||
|- | |||
| 199 | |||
| 5775.952 | |||
| [[28/1]] | |||
| vvvm7 +4 oct | |||
| 597 | |||
|- | |||
| 200 | |||
| 5804.977 | |||
| | |||
| m7 +4 oct | |||
| 600 | |||
|- | |||
| 201 | |||
| 5834.002 | |||
| '''[[29/1]]''' | |||
| ^^^m7 +4 oct | |||
| 603 | |||
|- | |||
| 202 | |||
| 5863.026 | |||
| | |||
| vvM7 +4 oct | |||
| 606 | |||
|- | |||
| 203 | |||
| 5892.051 | |||
| '''[[30/1]]''' | |||
| ^M7 +4 oct | |||
| 609 | |||
|- | |||
| 204 | |||
| 5921.076 | |||
| | |||
| ^<sup>4</sup>M7 +4 oct | |||
| 612 | |||
|- | |||
| 205 | |||
| 5950.101 | |||
| [[31/1]] | |||
| ^^^d1 +5 oct | |||
| 615 | |||
|- | |||
| 206 | |||
| 5979.126 | |||
| | |||
| vv1 +5 oct | |||
| 618 | |||
|- | |||
| 207 | |||
| 6008.151 | |||
| <small>[[32/1]]</small> | |||
| ^1 +5 oct | |||
| 621 | |||
|} | |} | ||
== Approximation to JI == | |||
=== Interval mappings === | |||
The following tables show how [[32-integer-limit]] intervals are represented in 186zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 32-integer-limit intervals in 186zpi (by direct approximation) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[17/13]] | |||
| -0.030 | |||
| -0.102 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+0.075''' | |||
| '''+0.259''' | |||
|- | |||
| [[25/17]] | |||
| -0.100 | |||
| -0.344 | |||
|- | |||
| [[25/13]] | |||
| -0.129 | |||
| -0.446 | |||
|- | |||
| [[23/11]] | |||
| +0.138 | |||
| +0.477 | |||
|- | |||
| [[25/1]] | |||
| +0.150 | |||
| +0.517 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+0.155'' | |||
| ''+0.533'' | |||
|- | |||
| [[17/5]] | |||
| +0.175 | |||
| +0.602 | |||
|- | |||
| [[13/5]] | |||
| +0.204 | |||
| +0.704 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+0.250''' | |||
| '''+0.861''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''+0.279''' | |||
| '''+0.963''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/7]]'' | |||
| ''+0.289'' | |||
| ''+0.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''+0.293'' | |||
| ''+1.011'' | |||
|- | |||
| '''[[23/1]]''' | |||
| '''-0.621''' | |||
| '''-2.140''' | |||
|- | |||
| [[31/29]] | |||
| +0.641 | |||
| +2.209 | |||
|- | |||
| [[30/29]] | |||
| -0.642 | |||
| -2.211 | |||
|- | |||
| [[23/5]] | |||
| -0.696 | |||
| -2.399 | |||
|- | |||
| [[29/6]] | |||
| +0.717 | |||
| +2.470 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''-0.736'' | |||
| ''-2.535'' | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-0.760''' | |||
| '''-2.617''' | |||
|- | |||
| [[25/23]] | |||
| +0.771 | |||
| +2.657 | |||
|- | |||
| [[11/5]] | |||
| -0.835 | |||
| -2.876 | |||
|- | |||
| [[23/17]] | |||
| -0.871 | |||
| -3.001 | |||
|- | |||
| [[21/19]] | |||
| +0.881 | |||
| +3.037 | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''+0.891'' | |||
| ''+3.069'' | |||
|- | |||
| [[23/13]] | |||
| -0.901 | |||
| -3.103 | |||
|- | |||
| [[25/11]] | |||
| +0.910 | |||
| +3.135 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''-0.914'' | |||
| ''-3.151'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''-0.990'' | |||
| ''-3.409'' | |||
|- | |||
| [[17/11]] | |||
| +1.009 | |||
| +3.478 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''+1.025'' | |||
| ''+3.531'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/9]]'' | |||
| ''+1.029'' | |||
| ''+3.546'' | |||
|- | |||
| [[13/11]] | |||
| +1.039 | |||
| +3.580 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+1.065'' | |||
| ''+3.668'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+1.164'' | |||
| ''+4.012'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/19]]'' | |||
| ''+1.171'' | |||
| ''+4.033'' | |||
|- | |||
| [[11/7]] | |||
| +1.180 | |||
| +4.065 | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''+1.194'' | |||
| ''+4.114'' | |||
|- | |||
| [[31/30]] | |||
| +1.283 | |||
| +4.420 | |||
|- | |||
| [[23/7]] | |||
| +1.318 | |||
| +4.542 | |||
|- | |||
| [[31/6]] | |||
| +1.358 | |||
| +4.679 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/1]]'' | |||
| ''-1.650'' | |||
| ''-5.686'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/5]]'' | |||
| ''-1.725'' | |||
| ''-5.944'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''-1.726'' | |||
| ''-5.947'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/9]]'' | |||
| ''+1.800'' | |||
| ''+6.203'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+1.801'' | |||
| ''+6.205'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''+1.900'' | |||
| ''+6.547'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''+1.906'' | |||
| ''+6.568'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/9]]'' | |||
| ''+1.930'' | |||
| ''+6.649'' | |||
|- | |||
| '''[[7/1]]''' | |||
| '''-1.939''' | |||
| '''-6.682''' | |||
|- | |||
| [[7/5]] | |||
| -2.015 | |||
| -6.941 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/28]]'' | |||
| ''-2.060'' | |||
| ''-7.099'' | |||
|- | |||
| [[25/7]] | |||
| +2.090 | |||
| +7.199 | |||
|- | |||
| [[17/7]] | |||
| +2.189 | |||
| +7.543 | |||
|- | |||
| [[13/7]] | |||
| +2.219 | |||
| +7.645 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''+2.607'' | |||
| ''+8.984'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+2.683'' | |||
| ''+9.242'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/28]]'' | |||
| ''-2.702'' | |||
| ''-9.308'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/19]]'' | |||
| ''-2.716'' | |||
| ''-9.356'' | |||
|- | |||
| [[19/3]] | |||
| -2.821 | |||
| -9.719 | |||
|- | |||
| [[19/15]] | |||
| -2.896 | |||
| -9.977 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/20]]'' | |||
| ''+2.897'' | |||
| ''+9.980'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/4]]'' | |||
| ''+2.972'' | |||
| ''+10.238'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''+3.085'' | |||
| ''+10.630'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/14]]'' | |||
| ''-3.343'' | |||
| ''-11.519'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''+3.418'' | |||
| ''+11.777'' | |||
|- | |||
| [[13/6]] | |||
| -3.428 | |||
| -11.811 | |||
|- | |||
| [[17/6]] | |||
| -3.458 | |||
| -11.913 | |||
|- | |||
| [[30/13]] | |||
| +3.503 | |||
| +12.069 | |||
|- | |||
| [[30/17]] | |||
| +3.533 | |||
| +12.171 | |||
|- | |||
| [[25/6]] | |||
| -3.557 | |||
| -12.256 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-3.597'' | |||
| ''-12.393'' | |||
|- | |||
| [[6/5]] | |||
| +3.632 | |||
| +12.515 | |||
|- | |||
| [[6/1]] | |||
| +3.708 | |||
| +12.774 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/29]]'' | |||
| ''+3.726'' | |||
| ''+12.839'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/19]]'' | |||
| ''-3.741'' | |||
| ''-12.887'' | |||
|- | |||
| [[30/1]] | |||
| +3.783 | |||
| +13.032 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/27]]'' | |||
| ''-3.886'' | |||
| ''-13.389'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/4]]'' | |||
| ''-4.000'' | |||
| ''-13.781'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/20]]'' | |||
| ''-4.075'' | |||
| ''-14.039'' | |||
|- | |||
| [[29/13]] | |||
| +4.145 | |||
| +14.280 | |||
|- | |||
| [[29/17]] | |||
| +4.174 | |||
| +14.382 | |||
|- | |||
| [[29/25]] | |||
| +4.274 | |||
| +14.726 | |||
|- | |||
| [[23/6]] | |||
| -4.329 | |||
| -14.914 | |||
|- | |||
| [[12/7]] | |||
| -4.333 | |||
| -14.928 | |||
|- | |||
| [[29/5]] | |||
| +4.349 | |||
| +14.985 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''+4.368'' | |||
| ''+15.050'' | |||
|- | |||
| [[30/23]] | |||
| +4.404 | |||
| +15.172 | |||
|- | |||
| '''[[29/1]]''' | |||
| '''+4.424''' | |||
| '''+15.243''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''+4.443'' | |||
| ''+15.309'' | |||
|- | |||
| [[11/6]] | |||
| -4.467 | |||
| -15.391 | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/15]]'' | |||
| ''+4.523'' | |||
| ''+15.583'' | |||
|- | |||
| [[30/11]] | |||
| +4.542 | |||
| +15.649 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''-4.547'' | |||
| ''-15.666'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/3]]'' | |||
| ''+4.598'' | |||
| ''+15.842'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''-4.622'' | |||
| ''-15.924'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/4]]'' | |||
| ''-4.641'' | |||
| ''-15.990'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''+4.697'' | |||
| ''+16.183'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/20]]'' | |||
| ''-4.716'' | |||
| ''-16.248'' | |||
|- | |||
| [[31/13]] | |||
| +4.786 | |||
| +16.489 | |||
|- | |||
| [[31/17]] | |||
| +4.816 | |||
| +16.591 | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/27]]'' | |||
| ''-4.911'' | |||
| ''-16.920'' | |||
|- | |||
| [[31/25]] | |||
| +4.915 | |||
| +16.935 | |||
|- | |||
| [[31/5]] | |||
| +4.990 | |||
| +17.194 | |||
|- | |||
| [[29/23]] | |||
| +5.046 | |||
| +17.383 | |||
|- | |||
| '''[[31/1]]''' | |||
| '''+5.066''' | |||
| '''+17.452''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/14]]'' | |||
| ''-5.069'' | |||
| ''-17.463'' | |||
|- | |||
| [[29/11]] | |||
| +5.184 | |||
| +17.860 | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/2]]'' | |||
| ''-5.283'' | |||
| ''-18.201'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/8]]'' | |||
| ''+5.339'' | |||
| ''+18.394'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''-5.358'' | |||
| ''-18.459'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''+5.433'' | |||
| ''+18.718'' | |||
|- | |||
| [[12/11]] | |||
| -5.513 | |||
| -18.993 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-5.536'' | |||
| ''-19.075'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/15]]'' | |||
| ''+5.562'' | |||
| ''+19.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-5.612'' | |||
| ''-19.334'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/3]]'' | |||
| ''+5.637'' | |||
| ''+19.422'' | |||
|- | |||
| [[7/6]] | |||
| -5.647 | |||
| -19.456 | |||
|- | |||
| [[23/12]] | |||
| +5.651 | |||
| +19.470 | |||
|- | |||
| [[31/23]] | |||
| +5.687 | |||
| +19.592 | |||
|- | |||
| [[30/7]] | |||
| +5.722 | |||
| +19.714 | |||
|- | |||
| [[31/19]] | |||
| -5.801 | |||
| -19.986 | |||
|- | |||
| [[31/11]] | |||
| +5.825 | |||
| +20.069 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/8]]'' | |||
| ''+5.980'' | |||
| ''+20.603'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/9]]'' | |||
| ''+6.075'' | |||
| ''+20.929'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''-6.094'' | |||
| ''-20.994'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/14]]'' | |||
| ''-6.239'' | |||
| ''-21.496'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/22]]'' | |||
| ''-6.248'' | |||
| ''-21.528'' | |||
|- | |||
| [[12/1]] | |||
| -6.272 | |||
| -21.610 | |||
|- | |||
| [[12/5]] | |||
| -6.347 | |||
| -21.869 | |||
|- | |||
| [[29/7]] | |||
| +6.364 | |||
| +21.925 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''-6.383'' | |||
| ''-21.991'' | |||
|- | |||
| [[25/12]] | |||
| +6.422 | |||
| +22.127 | |||
|- | |||
| [[29/19]] | |||
| -6.442 | |||
| -22.195 | |||
|- | |||
| [[17/12]] | |||
| +6.522 | |||
| +22.471 | |||
|- | |||
| [[19/18]] | |||
| -6.528 | |||
| -22.492 | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/21]]'' | |||
| ''+6.538'' | |||
| ''+22.524'' | |||
|- | |||
| [[13/12]] | |||
| +6.552 | |||
| +22.573 | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/3]]'' | |||
| ''-6.561'' | |||
| ''-22.606'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/15]]'' | |||
| ''-6.637'' | |||
| ''-22.865'' | |||
|- | |||
| [[31/21]] | |||
| -6.682 | |||
| -23.023 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/9]]'' | |||
| ''+6.716'' | |||
| ''+23.138'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/13]]'' | |||
| ''+6.846'' | |||
| ''+23.588'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''+6.876'' | |||
| ''+23.690'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/27]]'' | |||
| ''-6.972'' | |||
| ''-24.019'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/25]]'' | |||
| ''+6.976'' | |||
| ''+24.034'' | |||
|- | |||
| [[31/7]] | |||
| +7.005 | |||
| +24.134 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/2]]'' | |||
| ''-7.008'' | |||
| ''-24.145'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/5]]'' | |||
| ''+7.051'' | |||
| ''+24.292'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/10]]'' | |||
| ''-7.083'' | |||
| ''-24.404'' | |||
|- | |||
| [[30/19]] | |||
| -7.084 | |||
| -24.406 | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/1]]'' | |||
| ''+7.126'' | |||
| ''+24.551'' | |||
|- | |||
| [[19/6]] | |||
| +7.159 | |||
| +24.665 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''-7.264'' | |||
| ''-25.027'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/26]]'' | |||
| ''-7.288'' | |||
| ''-25.108'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''-7.297'' | |||
| ''-25.141'' | |||
|- | |||
| [[29/21]] | |||
| -7.324 | |||
| -25.232 | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''-7.372'' | |||
| ''-25.400'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/19]]'' | |||
| ''+7.419'' | |||
| ''+25.561'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/21]]'' | |||
| ''+7.577'' | |||
| ''+26.104'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/27]]'' | |||
| ''-7.613'' | |||
| ''-26.228'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''-7.707'' | |||
| ''-26.554'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/23]]'' | |||
| ''+7.747'' | |||
| ''+26.691'' | |||
|- | |||
| [[26/7]] | |||
| -7.761 | |||
| -26.739 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''+7.871'' | |||
| ''+27.119'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/11]]'' | |||
| ''+7.886'' | |||
| ''+27.168'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''+7.901'' | |||
| ''+27.221'' | |||
|- | |||
| [[10/7]] | |||
| -7.965 | |||
| -27.443 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | |||
| ''+8.001'' | |||
| ''+27.565'' | |||
|- | |||
| [[7/2]] | |||
| +8.040 | |||
| +27.702 | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/9]]'' | |||
| ''-8.050'' | |||
| ''-27.735'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | |||
| ''+8.076'' | |||
| ''+27.824'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''+8.151'' | |||
| ''+28.082'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/2]]'' | |||
| ''-8.179'' | |||
| ''-28.178'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''-8.254'' | |||
| ''-28.437'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''-8.254'' | |||
| ''-28.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''+8.329'' | |||
| ''+28.698'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/24]]'' | |||
| ''-8.348'' | |||
| ''-28.763'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/19]]'' | |||
| ''+8.458'' | |||
| ''+29.141'' | |||
|- | |||
| [[31/3]] | |||
| -8.622 | |||
| -29.705 | |||
|- | |||
| [[31/15]] | |||
| -8.697 | |||
| -29.964 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''+8.772'' | |||
| ''+30.222'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/9]]'' | |||
| ''+8.776'' | |||
| ''+30.237'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''-8.786'' | |||
| ''-30.270'' | |||
|- | |||
| [[22/7]] | |||
| -8.800 | |||
| -30.319 | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''-8.815'' | |||
| ''-30.372'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''+8.861'' | |||
| ''+30.529'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''+8.891'' | |||
| ''+30.631'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''+8.910'' | |||
| ''+30.699'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''-8.915'' | |||
| ''-30.716'' | |||
|- | |||
| [[26/11]] | |||
| -8.941 | |||
| -30.803 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-8.955'' | |||
| ''-30.852'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''-8.990'' | |||
| ''-30.974'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''+9.065'' | |||
| ''+31.233'' | |||
|- | |||
| [[26/23]] | |||
| -9.079 | |||
| -31.281 | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/9]]'' | |||
| ''-9.089'' | |||
| ''-31.315'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''+9.140'' | |||
| ''+31.492'' | |||
|- | |||
| [[11/10]] | |||
| +9.145 | |||
| +31.508 | |||
|- | |||
| [[11/2]] | |||
| +9.220 | |||
| +31.766 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-9.244'' | |||
| ''-31.848'' | |||
|- | |||
| [[29/3]] | |||
| -9.263 | |||
| -31.914 | |||
|- | |||
| [[23/10]] | |||
| +9.284 | |||
| +31.985 | |||
|- | |||
| [[29/15]] | |||
| -9.338 | |||
| -32.173 | |||
|- | |||
| [[23/2]] | |||
| +9.359 | |||
| +32.243 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''-9.686'' | |||
| ''-33.373'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''-9.691'' | |||
| ''-33.387'' | |||
|- | |||
| [[26/1]] | |||
| -9.700 | |||
| -33.421 | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''-9.762'' | |||
| ''-33.632'' | |||
|- | |||
| [[26/5]] | |||
| -9.775 | |||
| -33.679 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/9]]'' | |||
| ''+9.801'' | |||
| ''+33.768'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''-9.825'' | |||
| ''-33.850'' | |||
|- | |||
| [[26/25]] | |||
| -9.850 | |||
| -33.938 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''+9.900'' | |||
| ''+34.109'' | |||
|- | |||
| [[10/1]] | |||
| -9.905 | |||
| -34.125 | |||
|- | |||
| [[26/17]] | |||
| -9.950 | |||
| -34.282 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-9.980''' | |||
| '''-34.384''' | |||
|- | |||
| [[5/2]] | |||
| +10.055 | |||
| +34.642 | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''+10.090'' | |||
| ''+34.764'' | |||
|- | |||
| [[23/22]] | |||
| +10.118 | |||
| +34.861 | |||
|- | |||
| [[25/2]] | |||
| +10.130 | |||
| +34.901 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''-10.135'' | |||
| ''-34.917'' | |||
|- | |||
| [[17/10]] | |||
| +10.155 | |||
| +34.986 | |||
|- | |||
| [[13/10]] | |||
| +10.184 | |||
| +35.088 | |||
|- | |||
| [[17/2]] | |||
| +10.230 | |||
| +35.244 | |||
|- | |||
| [[13/2]] | |||
| +10.259 | |||
| +35.346 | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''-10.269'' | |||
| ''-35.380'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+10.273'' | |||
| ''+35.394'' | |||
|- | |||
| [[19/13]] | |||
| +10.587 | |||
| +36.475 | |||
|- | |||
| [[19/17]] | |||
| +10.617 | |||
| +36.577 | |||
|- | |||
| [[29/12]] | |||
| +10.697 | |||
| +36.853 | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''-10.716'' | |||
| ''-36.919'' | |||
|- | |||
| [[25/19]] | |||
| -10.716 | |||
| -36.921 | |||
|- | |||
| [[22/1]] | |||
| -10.739 | |||
| -37.001 | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''+10.791'' | |||
| ''+37.177'' | |||
|- | |||
| [[19/5]] | |||
| +10.791 | |||
| +37.180 | |||
|- | |||
| [[22/5]] | |||
| -10.814 | |||
| -37.259 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''+10.866''' | |||
| '''+37.438''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''-10.870'' | |||
| ''-37.452'' | |||
|- | |||
| [[25/22]] | |||
| +10.890 | |||
| +37.518 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-10.894'' | |||
| ''-37.534'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-10.969'' | |||
| ''-37.793'' | |||
|- | |||
| [[22/17]] | |||
| -10.989 | |||
| -37.862 | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''-11.005'' | |||
| ''-37.915'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/18]]'' | |||
| ''+11.009'' | |||
| ''+37.929'' | |||
|- | |||
| [[22/13]] | |||
| -11.019 | |||
| -37.964 | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''+11.044'' | |||
| ''+38.052'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''+11.080'' | |||
| ''+38.174'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''+11.144'' | |||
| ''+38.395'' | |||
|- | |||
| [[14/11]] | |||
| -11.160 | |||
| -38.448 | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-11.174'' | |||
| ''-38.497'' | |||
|- | |||
| [[23/14]] | |||
| +11.298 | |||
| +38.925 | |||
|- | |||
| [[31/12]] | |||
| +11.338 | |||
| +39.062 | |||
|- | |||
| [[21/13]] | |||
| +11.468 | |||
| +39.512 | |||
|- | |||
| [[23/19]] | |||
| -11.488 | |||
| -39.579 | |||
|- | |||
| [[21/17]] | |||
| +11.498 | |||
| +39.614 | |||
|- | |||
| [[25/21]] | |||
| -11.598 | |||
| -39.958 | |||
|- | |||
| [[19/11]] | |||
| +11.626 | |||
| +40.056 | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/1]]'' | |||
| ''-11.630'' | |||
| ''-40.069'' | |||
|- | |||
| [[21/5]] | |||
| +11.673 | |||
| +40.216 | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/5]]'' | |||
| ''-11.705'' | |||
| ''-40.328'' | |||
|- | |||
| [[21/1]] | |||
| +11.748 | |||
| +40.475 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/13]]'' | |||
| ''+11.758'' | |||
| ''+40.508'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/18]]'' | |||
| ''+11.780'' | |||
| ''+40.587'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''+11.781'' | |||
| ''+40.589'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/17]]'' | |||
| ''+11.787'' | |||
| ''+40.610'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''-11.880'' | |||
| ''-40.930'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''-11.886'' | |||
| ''-40.952'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/25]]'' | |||
| ''+11.887'' | |||
| ''+40.954'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/13]]'' | |||
| ''-11.910'' | |||
| ''-41.032'' | |||
|- | |||
| [[14/1]] | |||
| -11.919 | |||
| -41.066 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/5]]'' | |||
| ''+11.962'' | |||
| ''+41.213'' | |||
|- | |||
| [[14/5]] | |||
| -11.994 | |||
| -41.324 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/1]]'' | |||
| ''+12.037'' | |||
| ''+41.471'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/14]]'' | |||
| ''-12.040'' | |||
| ''-41.482'' | |||
|- | |||
| [[25/14]] | |||
| +12.069 | |||
| +41.583 | |||
|- | |||
| [[17/14]] | |||
| +12.169 | |||
| +41.926 | |||
|- | |||
| [[14/13]] | |||
| -12.199 | |||
| -42.028 | |||
|- | |||
| [[31/18]] | |||
| -12.329 | |||
| -42.478 | |||
|- | |||
| [[23/21]] | |||
| -12.369 | |||
| -42.615 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''+12.493'' | |||
| ''+43.044'' | |||
|- | |||
| [[21/11]] | |||
| +12.507 | |||
| +43.092 | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/9]]'' | |||
| ''+12.517'' | |||
| ''+43.124'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''+12.523'' | |||
| ''+43.146'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''-12.623'' | |||
| ''-43.489'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/23]]'' | |||
| ''+12.658'' | |||
| ''+43.611'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''+12.662'' | |||
| ''+43.626'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/14]]'' | |||
| ''-12.681'' | |||
| ''-43.691'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''+12.698'' | |||
| ''+43.748'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''+12.773'' | |||
| ''+44.006'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/11]]'' | |||
| ''+12.797'' | |||
| ''+44.089'' | |||
|- | |||
| [[19/7]] | |||
| +12.806 | |||
| +44.120 | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/8]]'' | |||
| ''+12.951'' | |||
| ''+44.622'' | |||
|- | |||
| [[29/18]] | |||
| -12.970 | |||
| -44.687 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''-13.065'' | |||
| ''-45.014'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/22]]'' | |||
| ''-13.220'' | |||
| ''-45.547'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/7]]'' | |||
| ''-13.323'' | |||
| ''-45.902'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''+13.394'' | |||
| ''+46.147'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/3]]'' | |||
| ''+13.398'' | |||
| ''+46.161'' | |||
|- | |||
| [[13/3]] | |||
| -13.408 | |||
| -46.194 | |||
|- | |||
| [[17/3]] | |||
| -13.437 | |||
| -46.296 | |||
|- | |||
| [[15/13]] | |||
| +13.483 | |||
| +46.453 | |||
|- | |||
| [[17/15]] | |||
| -13.513 | |||
| -46.555 | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''+13.532'' | |||
| ''+46.624'' | |||
|- | |||
| [[25/3]] | |||
| -13.537 | |||
| -46.640 | |||
|- | |||
| [[5/3]] | |||
| -13.612 | |||
| -46.898 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''+13.687''' | |||
| '''+47.157''' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''-13.706'' | |||
| ''-47.223'' | |||
|- | |||
| [[15/1]] | |||
| +13.762 | |||
| +47.416 | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/22]]'' | |||
| ''-13.861'' | |||
| ''-47.756'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/7]]'' | |||
| ''+13.976'' | |||
| ''+48.153'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/2]]'' | |||
| ''-13.980'' | |||
| ''-48.164'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/10]]'' | |||
| ''-14.055'' | |||
| ''-48.423'' | |||
|- | |||
| [[29/26]] | |||
| +14.125 | |||
| +48.664 | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/26]]'' | |||
| ''-14.259'' | |||
| ''-49.127'' | |||
|- | |||
| [[23/3]] | |||
| -14.308 | |||
| -49.297 | |||
|- | |||
| [[24/7]] | |||
| -14.313 | |||
| -49.312 | |||
|- | |||
| [[29/10]] | |||
| +14.329 | |||
| +49.368 | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''-14.348'' | |||
| ''-49.434'' | |||
|- | |||
| [[23/15]] | |||
| -14.384 | |||
| -49.556 | |||
|- | |||
| [[29/2]] | |||
| +14.404 | |||
| +49.627 | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''+14.423'' | |||
| ''+49.692'' | |||
|- | |||
| [[11/3]] | |||
| -14.447 | |||
| -49.774 | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/11]]'' | |||
| ''-14.503'' | |||
| ''-49.967'' | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 32-integer-limit intervals in 186zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[17/13]] | |||
| -0.030 | |||
| -0.102 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+0.075''' | |||
| '''+0.259''' | |||
|- | |||
| [[25/17]] | |||
| -0.100 | |||
| -0.344 | |||
|- | |||
| [[25/13]] | |||
| -0.129 | |||
| -0.446 | |||
|- | |||
| [[23/11]] | |||
| +0.138 | |||
| +0.477 | |||
|- | |||
| [[25/1]] | |||
| +0.150 | |||
| +0.517 | |||
|- | |||
| [[17/5]] | |||
| +0.175 | |||
| +0.602 | |||
|- | |||
| [[13/5]] | |||
| +0.204 | |||
| +0.704 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''+0.250''' | |||
| '''+0.861''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''+0.279''' | |||
| '''+0.963''' | |||
|- | |||
| '''[[23/1]]''' | |||
| '''-0.621''' | |||
| '''-2.140''' | |||
|- | |||
| [[31/29]] | |||
| +0.641 | |||
| +2.209 | |||
|- | |||
| [[30/29]] | |||
| -0.642 | |||
| -2.211 | |||
|- | |||
| [[23/5]] | |||
| -0.696 | |||
| -2.399 | |||
|- | |||
| [[29/6]] | |||
| +0.717 | |||
| +2.470 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''-0.760''' | |||
| '''-2.617''' | |||
|- | |||
| [[25/23]] | |||
| +0.771 | |||
| +2.657 | |||
|- | |||
| [[11/5]] | |||
| -0.835 | |||
| -2.876 | |||
|- | |||
| [[23/17]] | |||
| -0.871 | |||
| -3.001 | |||
|- | |||
| [[21/19]] | |||
| +0.881 | |||
| +3.037 | |||
|- | |||
| [[23/13]] | |||
| -0.901 | |||
| -3.103 | |||
|- | |||
| [[25/11]] | |||
| +0.910 | |||
| +3.135 | |||
|- | |||
| [[17/11]] | |||
| +1.009 | |||
| +3.478 | |||
|- | |||
| [[13/11]] | |||
| +1.039 | |||
| +3.580 | |||
|- | |||
| [[11/7]] | |||
| +1.180 | |||
| +4.065 | |||
|- | |||
| [[31/30]] | |||
| +1.283 | |||
| +4.420 | |||
|- | |||
| [[23/7]] | |||
| +1.318 | |||
| +4.542 | |||
|- | |||
| [[31/6]] | |||
| +1.358 | |||
| +4.679 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''-1.939''' | |||
| '''-6.682''' | |||
|- | |||
| [[7/5]] | |||
| -2.015 | |||
| -6.941 | |||
|- | |||
| [[25/7]] | |||
| +2.090 | |||
| +7.199 | |||
|- | |||
| [[17/7]] | |||
| +2.189 | |||
| +7.543 | |||
|- | |||
| [[13/7]] | |||
| +2.219 | |||
| +7.645 | |||
|- | |||
| [[19/3]] | |||
| -2.821 | |||
| -9.719 | |||
|- | |||
| [[19/15]] | |||
| -2.896 | |||
| -9.977 | |||
|- | |||
| [[13/6]] | |||
| -3.428 | |||
| -11.811 | |||
|- | |||
| [[17/6]] | |||
| -3.458 | |||
| -11.913 | |||
|- | |||
| [[30/13]] | |||
| +3.503 | |||
| +12.069 | |||
|- | |||
| [[30/17]] | |||
| +3.533 | |||
| +12.171 | |||
|- | |||
| [[25/6]] | |||
| -3.557 | |||
| -12.256 | |||
|- | |||
| [[6/5]] | |||
| +3.632 | |||
| +12.515 | |||
|- | |||
| [[6/1]] | |||
| +3.708 | |||
| +12.774 | |||
|- | |||
| [[30/1]] | |||
| +3.783 | |||
| +13.032 | |||
|- | |||
| [[29/13]] | |||
| +4.145 | |||
| +14.280 | |||
|- | |||
| [[29/17]] | |||
| +4.174 | |||
| +14.382 | |||
|- | |||
| [[29/25]] | |||
| +4.274 | |||
| +14.726 | |||
|- | |||
| [[23/6]] | |||
| -4.329 | |||
| -14.914 | |||
|- | |||
| [[12/7]] | |||
| -4.333 | |||
| -14.928 | |||
|- | |||
| [[29/5]] | |||
| +4.349 | |||
| +14.985 | |||
|- | |||
| [[30/23]] | |||
| +4.404 | |||
| +15.172 | |||
|- | |||
| '''[[29/1]]''' | |||
| '''+4.424''' | |||
| '''+15.243''' | |||
|- | |||
| [[11/6]] | |||
| -4.467 | |||
| -15.391 | |||
|- | |||
| [[30/11]] | |||
| +4.542 | |||
| +15.649 | |||
|- | |||
| [[31/13]] | |||
| +4.786 | |||
| +16.489 | |||
|- | |||
| [[31/17]] | |||
| +4.816 | |||
| +16.591 | |||
|- | |||
| [[31/25]] | |||
| +4.915 | |||
| +16.935 | |||
|- | |||
| [[31/5]] | |||
| +4.990 | |||
| +17.194 | |||
|- | |||
| [[29/23]] | |||
| +5.046 | |||
| +17.383 | |||
|- | |||
| '''[[31/1]]''' | |||
| '''+5.066''' | |||
| '''+17.452''' | |||
|- | |||
| [[29/11]] | |||
| +5.184 | |||
| +17.860 | |||
|- | |||
| [[12/11]] | |||
| -5.513 | |||
| -18.993 | |||
|- | |||
| [[7/6]] | |||
| -5.647 | |||
| -19.456 | |||
|- | |||
| [[23/12]] | |||
| +5.651 | |||
| +19.470 | |||
|- | |||
| [[31/23]] | |||
| +5.687 | |||
| +19.592 | |||
|- | |||
| [[30/7]] | |||
| +5.722 | |||
| +19.714 | |||
|- | |||
| [[31/19]] | |||
| -5.801 | |||
| -19.986 | |||
|- | |||
| [[31/11]] | |||
| +5.825 | |||
| +20.069 | |||
|- | |||
| [[12/1]] | |||
| -6.272 | |||
| -21.610 | |||
|- | |||
| [[12/5]] | |||
| -6.347 | |||
| -21.869 | |||
|- | |||
| [[29/7]] | |||
| +6.364 | |||
| +21.925 | |||
|- | |||
| [[25/12]] | |||
| +6.422 | |||
| +22.127 | |||
|- | |||
| [[29/19]] | |||
| -6.442 | |||
| -22.195 | |||
|- | |||
| [[17/12]] | |||
| +6.522 | |||
| +22.471 | |||
|- | |||
| [[19/18]] | |||
| -6.528 | |||
| -22.492 | |||
|- | |||
| [[13/12]] | |||
| +6.552 | |||
| +22.573 | |||
|- | |||
| [[31/21]] | |||
| -6.682 | |||
| -23.023 | |||
|- | |||
| [[31/7]] | |||
| +7.005 | |||
| +24.134 | |||
|- | |||
| [[30/19]] | |||
| -7.084 | |||
| -24.406 | |||
|- | |||
| [[19/6]] | |||
| +7.159 | |||
| +24.665 | |||
|- | |||
| [[29/21]] | |||
| -7.324 | |||
| -25.232 | |||
|- | |||
| [[26/7]] | |||
| -7.761 | |||
| -26.739 | |||
|- | |||
| [[10/7]] | |||
| -7.965 | |||
| -27.443 | |||
|- | |||
| [[7/2]] | |||
| +8.040 | |||
| +27.702 | |||
|- | |||
| [[31/3]] | |||
| -8.622 | |||
| -29.705 | |||
|- | |||
| [[31/15]] | |||
| -8.697 | |||
| -29.964 | |||
|- | |||
| [[22/7]] | |||
| -8.800 | |||
| -30.319 | |||
|- | |||
| [[26/11]] | |||
| -8.941 | |||
| -30.803 | |||
|- | |||
| [[26/23]] | |||
| -9.079 | |||
| -31.281 | |||
|- | |||
| [[11/10]] | |||
| +9.145 | |||
| +31.508 | |||
|- | |||
| [[11/2]] | |||
| +9.220 | |||
| +31.766 | |||
|- | |||
| [[29/3]] | |||
| -9.263 | |||
| -31.914 | |||
|- | |||
| [[23/10]] | |||
| +9.284 | |||
| +31.985 | |||
|- | |||
| [[29/15]] | |||
| -9.338 | |||
| -32.173 | |||
|- | |||
| [[23/2]] | |||
| +9.359 | |||
| +32.243 | |||
|- | |||
| [[26/1]] | |||
| -9.700 | |||
| -33.421 | |||
|- | |||
| [[26/5]] | |||
| -9.775 | |||
| -33.679 | |||
|- | |||
| [[26/25]] | |||
| -9.850 | |||
| -33.938 | |||
|- | |||
| [[10/1]] | |||
| -9.905 | |||
| -34.125 | |||
|- | |||
| [[26/17]] | |||
| -9.950 | |||
| -34.282 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-9.980''' | |||
| '''-34.384''' | |||
|- | |||
| [[5/2]] | |||
| +10.055 | |||
| +34.642 | |||
|- | |||
| [[23/22]] | |||
| +10.118 | |||
| +34.861 | |||
|- | |||
| [[25/2]] | |||
| +10.130 | |||
| +34.901 | |||
|- | |||
| [[17/10]] | |||
| +10.155 | |||
| +34.986 | |||
|- | |||
| [[13/10]] | |||
| +10.184 | |||
| +35.088 | |||
|- | |||
| [[17/2]] | |||
| +10.230 | |||
| +35.244 | |||
|- | |||
| [[13/2]] | |||
| +10.259 | |||
| +35.346 | |||
|- | |||
| [[19/13]] | |||
| +10.587 | |||
| +36.475 | |||
|- | |||
| [[19/17]] | |||
| +10.617 | |||
| +36.577 | |||
|- | |||
| [[29/12]] | |||
| +10.697 | |||
| +36.853 | |||
|- | |||
| [[25/19]] | |||
| -10.716 | |||
| -36.921 | |||
|- | |||
| [[22/1]] | |||
| -10.739 | |||
| -37.001 | |||
|- | |||
| [[19/5]] | |||
| +10.791 | |||
| +37.180 | |||
|- | |||
| [[22/5]] | |||
| -10.814 | |||
| -37.259 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''+10.866''' | |||
| '''+37.438''' | |||
|- | |||
| [[25/22]] | |||
| +10.890 | |||
| +37.518 | |||
|- | |||
| [[22/17]] | |||
| -10.989 | |||
| -37.862 | |||
|- | |||
| [[22/13]] | |||
| -11.019 | |||
| -37.964 | |||
|- | |||
| [[14/11]] | |||
| -11.160 | |||
| -38.448 | |||
|- | |||
| [[23/14]] | |||
| +11.298 | |||
| +38.925 | |||
|- | |||
| [[31/12]] | |||
| +11.338 | |||
| +39.062 | |||
|- | |||
| [[21/13]] | |||
| +11.468 | |||
| +39.512 | |||
|- | |||
| [[23/19]] | |||
| -11.488 | |||
| -39.579 | |||
|- | |||
| [[21/17]] | |||
| +11.498 | |||
| +39.614 | |||
|- | |||
| [[25/21]] | |||
| -11.598 | |||
| -39.958 | |||
|- | |||
| [[19/11]] | |||
| +11.626 | |||
| +40.056 | |||
|- | |||
| [[21/5]] | |||
| +11.673 | |||
| +40.216 | |||
|- | |||
| [[21/1]] | |||
| +11.748 | |||
| +40.475 | |||
|- | |||
| [[14/1]] | |||
| -11.919 | |||
| -41.066 | |||
|- | |||
| [[14/5]] | |||
| -11.994 | |||
| -41.324 | |||
|- | |||
| [[25/14]] | |||
| +12.069 | |||
| +41.583 | |||
|- | |||
| [[17/14]] | |||
| +12.169 | |||
| +41.926 | |||
|- | |||
| [[14/13]] | |||
| -12.199 | |||
| -42.028 | |||
|- | |||
| [[31/18]] | |||
| -12.329 | |||
| -42.478 | |||
|- | |||
| [[23/21]] | |||
| -12.369 | |||
| -42.615 | |||
|- | |||
| [[21/11]] | |||
| +12.507 | |||
| +43.092 | |||
|- | |||
| [[19/7]] | |||
| +12.806 | |||
| +44.120 | |||
|- | |||
| [[29/18]] | |||
| -12.970 | |||
| -44.687 | |||
|- | |||
| [[13/3]] | |||
| -13.408 | |||
| -46.194 | |||
|- | |||
| [[17/3]] | |||
| -13.437 | |||
| -46.296 | |||
|- | |||
| [[15/13]] | |||
| +13.483 | |||
| +46.453 | |||
|- | |||
| [[17/15]] | |||
| -13.513 | |||
| -46.555 | |||
|- | |||
| [[25/3]] | |||
| -13.537 | |||
| -46.640 | |||
|- | |||
| [[5/3]] | |||
| -13.612 | |||
| -46.898 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''+13.687''' | |||
| '''+47.157''' | |||
|- | |||
| [[15/1]] | |||
| +13.762 | |||
| +47.416 | |||
|- | |||
| [[29/26]] | |||
| +14.125 | |||
| +48.664 | |||
|- | |||
| [[23/3]] | |||
| -14.308 | |||
| -49.297 | |||
|- | |||
| [[24/7]] | |||
| -14.313 | |||
| -49.312 | |||
|- | |||
| [[29/10]] | |||
| +14.329 | |||
| +49.368 | |||
|- | |||
| [[23/15]] | |||
| -14.384 | |||
| -49.556 | |||
|- | |||
| [[29/2]] | |||
| +14.404 | |||
| +49.627 | |||
|- | |||
| [[11/3]] | |||
| -14.447 | |||
| -49.774 | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/11]]'' | |||
| ''+14.522'' | |||
| ''+50.033'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/26]]'' | |||
| ''+14.766'' | |||
| ''+50.873'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/10]]'' | |||
| ''+14.970'' | |||
| ''+51.577'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/2]]'' | |||
| ''+15.045'' | |||
| ''+51.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/22]]'' | |||
| ''+15.164'' | |||
| ''+52.244'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/11]]'' | |||
| ''-15.492'' | |||
| ''-53.376'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/3]]'' | |||
| ''-15.627'' | |||
| ''-53.839'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/23]]'' | |||
| ''-15.631'' | |||
| ''-53.853'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/7]]'' | |||
| ''+15.702'' | |||
| ''+54.098'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/22]]'' | |||
| ''+15.805'' | |||
| ''+54.453'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/1]]'' | |||
| ''-16.252'' | |||
| ''-55.994'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/5]]'' | |||
| ''-16.327'' | |||
| ''-56.252'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/14]]'' | |||
| ''+16.344'' | |||
| ''+56.309'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/24]]'' | |||
| ''+16.402'' | |||
| ''+56.511'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/17]]'' | |||
| ''-16.502'' | |||
| ''-56.854'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/9]]'' | |||
| ''-16.508'' | |||
| ''-56.876'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/13]]'' | |||
| ''-16.532'' | |||
| ''-56.956'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/14]]'' | |||
| ''+16.985'' | |||
| ''+58.518'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/13]]'' | |||
| ''+17.115'' | |||
| ''+58.968'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/12]]'' | |||
| ''+17.139'' | |||
| ''+59.048'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/17]]'' | |||
| ''+17.145'' | |||
| ''+59.070'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/18]]'' | |||
| ''-17.245'' | |||
| ''-59.413'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/5]]'' | |||
| ''+17.320'' | |||
| ''+59.672'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/1]]'' | |||
| ''+17.395'' | |||
| ''+59.931'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/7]]'' | |||
| ''-17.945'' | |||
| ''-61.826'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/18]]'' | |||
| ''-18.016'' | |||
| ''-62.071'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[7/4]]'' | |||
| ''+18.020'' | |||
| ''+62.085'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/11]]'' | |||
| ''+18.154'' | |||
| ''+62.548'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/11]]'' | |||
| ''-19.125'' | |||
| ''-65.891'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/4]]'' | |||
| ''+19.200'' | |||
| ''+66.150'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/20]]'' | |||
| ''+19.263'' | |||
| ''+66.368'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[18/7]]'' | |||
| ''+19.334'' | |||
| ''+66.613'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/4]]'' | |||
| ''+19.338'' | |||
| ''+66.627'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/1]]'' | |||
| ''-19.884'' | |||
| ''-68.508'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/1]]'' | |||
| ''-19.960'' | |||
| ''-68.767'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[5/4]]'' | |||
| ''+20.035'' | |||
| ''+69.026'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/4]]'' | |||
| ''+20.110'' | |||
| ''+69.284'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/17]]'' | |||
| ''-20.134'' | |||
| ''-69.369'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/13]]'' | |||
| ''-20.164'' | |||
| ''-69.471'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/4]]'' | |||
| ''+20.209'' | |||
| ''+69.628'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/4]]'' | |||
| ''+20.239'' | |||
| ''+69.730'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/19]]'' | |||
| ''-20.567'' | |||
| ''-70.859'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/24]]'' | |||
| ''+20.676'' | |||
| ''+71.237'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/10]]'' | |||
| ''+20.771'' | |||
| ''+71.563'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/2]]'' | |||
| ''+20.846'' | |||
| ''+71.822'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/11]]'' | |||
| ''-21.139'' | |||
| ''-72.832'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/23]]'' | |||
| ''-21.278'' | |||
| ''-73.309'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/24]]'' | |||
| ''+21.318'' | |||
| ''+73.446'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/21]]'' | |||
| ''-21.448'' | |||
| ''-73.896'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/19]]'' | |||
| ''-21.606'' | |||
| ''-74.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/10]]'' | |||
| ''+21.653'' | |||
| ''+74.600'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/2]]'' | |||
| ''+21.728'' | |||
| ''+74.859'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/1]]'' | |||
| ''-21.899'' | |||
| ''-75.449'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/5]]'' | |||
| ''-21.974'' | |||
| ''-75.708'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/25]]'' | |||
| ''-22.049'' | |||
| ''-75.966'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/17]]'' | |||
| ''-22.149'' | |||
| ''-76.310'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/13]]'' | |||
| ''-22.178'' | |||
| ''-76.412'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/9]]'' | |||
| ''-22.309'' | |||
| ''-76.862'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/21]]'' | |||
| ''-22.487'' | |||
| ''-77.476'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/14]]'' | |||
| ''+22.786'' | |||
| ''+78.504'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/9]]'' | |||
| ''-22.950'' | |||
| ''-79.071'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/3]]'' | |||
| ''-23.388'' | |||
| ''-80.578'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/15]]'' | |||
| ''-23.463'' | |||
| ''-80.836'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/3]]'' | |||
| ''-23.592'' | |||
| ''-81.282'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[3/2]]'' | |||
| ''+23.667'' | |||
| ''+81.541'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/2]]'' | |||
| ''+23.742'' | |||
| ''+81.799'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/20]]'' | |||
| ''+24.309'' | |||
| ''+83.752'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/4]]'' | |||
| ''+24.384'' | |||
| ''+84.010'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/3]]'' | |||
| ''-24.427'' | |||
| ''-84.158'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/15]]'' | |||
| ''-24.502'' | |||
| ''-84.417'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/20]]'' | |||
| ''+24.950'' | |||
| ''+85.961'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/4]]'' | |||
| ''+25.025'' | |||
| ''+86.219'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/3]]'' | |||
| ''-25.607'' | |||
| ''-88.223'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/14]]'' | |||
| ''+25.682'' | |||
| ''+88.481'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/28]]'' | |||
| ''+26.323'' | |||
| ''+90.692'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/28]]'' | |||
| ''+26.965'' | |||
| ''+92.901'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/9]]'' | |||
| ''-27.095'' | |||
| ''-93.351'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[24/19]]'' | |||
| ''-27.119'' | |||
| ''-93.432'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/9]]'' | |||
| ''-27.125'' | |||
| ''-93.453'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/9]]'' | |||
| ''-27.224'' | |||
| ''-93.797'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/5]]'' | |||
| ''+27.300'' | |||
| ''+94.056'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/1]]'' | |||
| ''+27.375'' | |||
| ''+94.314'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/9]]'' | |||
| ''-27.996'' | |||
| ''-96.454'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/7]]'' | |||
| ''-28.000'' | |||
| ''-96.469'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''-28.134'' | |||
| ''-96.931'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/8]]'' | |||
| ''+29.180'' | |||
| ''+100.533'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/7]]'' | |||
| ''+29.314'' | |||
| ''+100.996'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/8]]'' | |||
| ''+29.318'' | |||
| ''+101.011'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/1]]'' | |||
| ''-29.939'' | |||
| ''-103.151'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/5]]'' | |||
| ''-30.014'' | |||
| ''-103.409'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/8]]'' | |||
| ''+30.090'' | |||
| ''+103.668'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/8]]'' | |||
| ''+30.189'' | |||
| ''+104.012'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/19]]'' | |||
| ''+30.195'' | |||
| ''+104.033'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/8]]'' | |||
| ''+30.219'' | |||
| ''+104.114'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/19]]'' | |||
| ''-30.751'' | |||
| ''-105.947'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/4]]'' | |||
| ''+30.826'' | |||
| ''+106.205'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/20]]'' | |||
| ''+31.632'' | |||
| ''+108.984'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/4]]'' | |||
| ''+31.707'' | |||
| ''+109.242'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/19]]'' | |||
| ''-32.765'' | |||
| ''-112.887'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/3]]'' | |||
| ''-33.572'' | |||
| ''-115.666'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[4/3]]'' | |||
| ''-33.647'' | |||
| ''-115.924'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/4]]'' | |||
| ''+33.722'' | |||
| ''+116.183'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/8]]'' | |||
| ''+34.364'' | |||
| ''+118.394'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/8]]'' | |||
| ''+35.005'' | |||
| ''+120.603'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/3]]'' | |||
| ''-35.586'' | |||
| ''-122.606'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/15]]'' | |||
| ''-35.661'' | |||
| ''-122.865'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/27]]'' | |||
| ''-35.996'' | |||
| ''-124.019'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/27]]'' | |||
| ''-36.638'' | |||
| ''-126.228'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[26/9]]'' | |||
| ''-37.075'' | |||
| ''-127.735'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[10/9]]'' | |||
| ''-37.279'' | |||
| ''-128.439'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/2]]'' | |||
| ''+37.354'' | |||
| ''+128.698'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/7]]'' | |||
| ''-37.980'' | |||
| ''-130.852'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[22/9]]'' | |||
| ''-38.114'' | |||
| ''-131.315'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/11]]'' | |||
| ''-39.160'' | |||
| ''-134.917'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/9]]'' | |||
| ''-39.294'' | |||
| ''-135.380'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[23/16]]'' | |||
| ''+39.298'' | |||
| ''+135.394'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/1]]'' | |||
| ''-39.919'' | |||
| ''-137.534'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/5]]'' | |||
| ''-39.994'' | |||
| ''-137.793'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[25/16]]'' | |||
| ''+40.069'' | |||
| ''+138.052'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[17/16]]'' | |||
| ''+40.169'' | |||
| ''+138.395'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/13]]'' | |||
| ''-40.199'' | |||
| ''-138.497'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/13]]'' | |||
| ''+40.782'' | |||
| ''+140.508'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/8]]'' | |||
| ''+40.806'' | |||
| ''+140.589'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/17]]'' | |||
| ''+40.812'' | |||
| ''+140.610'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/25]]'' | |||
| ''+40.912'' | |||
| ''+140.954'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/5]]'' | |||
| ''+40.987'' | |||
| ''+141.213'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/1]]'' | |||
| ''+41.062'' | |||
| ''+141.471'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/23]]'' | |||
| ''+41.683'' | |||
| ''+143.611'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/8]]'' | |||
| ''+41.687'' | |||
| ''+143.626'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/11]]'' | |||
| ''+41.822'' | |||
| ''+144.089'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/7]]'' | |||
| ''+43.001'' | |||
| ''+148.153'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[8/3]]'' | |||
| ''-43.627'' | |||
| ''-150.308'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/8]]'' | |||
| ''+43.702'' | |||
| ''+150.566'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[29/16]]'' | |||
| ''+44.343'' | |||
| ''+152.777'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[31/16]]'' | |||
| ''+44.985'' | |||
| ''+154.986'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[20/9]]'' | |||
| ''-47.259'' | |||
| ''-162.823'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/4]]'' | |||
| ''+47.334'' | |||
| ''+163.081'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/7]]'' | |||
| ''-47.959'' | |||
| ''-165.236'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/11]]'' | |||
| ''-49.139'' | |||
| ''-169.301'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/9]]'' | |||
| ''-49.274'' | |||
| ''-169.763'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/23]]'' | |||
| ''-49.278'' | |||
| ''-169.778'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/1]]'' | |||
| ''-49.899'' | |||
| ''-171.918'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/5]]'' | |||
| ''-49.974'' | |||
| ''-172.176'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/25]]'' | |||
| ''-50.049'' | |||
| ''-172.435'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/17]]'' | |||
| ''-50.149'' | |||
| ''-172.779'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/13]]'' | |||
| ''-50.178'' | |||
| ''-172.881'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/26]]'' | |||
| ''+50.762'' | |||
| ''+174.892'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[19/16]]'' | |||
| ''+50.786'' | |||
| ''+174.973'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/10]]'' | |||
| ''+50.967'' | |||
| ''+175.596'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/2]]'' | |||
| ''+51.042'' | |||
| ''+175.855'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[21/16]]'' | |||
| ''+51.667'' | |||
| ''+178.009'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/22]]'' | |||
| ''+51.801'' | |||
| ''+178.472'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/14]]'' | |||
| ''+52.981'' | |||
| ''+182.537'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/3]]'' | |||
| ''-53.606'' | |||
| ''-184.691'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/15]]'' | |||
| ''-53.682'' | |||
| ''-184.950'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/29]]'' | |||
| ''-54.323'' | |||
| ''-187.161'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/31]]'' | |||
| ''-54.964'' | |||
| ''-189.370'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[9/8]]'' | |||
| ''+57.314'' | |||
| ''+197.465'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/19]]'' | |||
| ''-60.765'' | |||
| ''-209.356'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/20]]'' | |||
| ''+60.946'' | |||
| ''+209.980'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/4]]'' | |||
| ''+61.021'' | |||
| ''+210.238'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/21]]'' | |||
| ''-61.647'' | |||
| ''-212.393'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[28/27]]'' | |||
| ''-62.961'' | |||
| ''-216.920'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/3]]'' | |||
| ''-63.586'' | |||
| ''-219.075'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/15]]'' | |||
| ''-63.661'' | |||
| ''-219.334'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[16/9]]'' | |||
| ''-67.294'' | |||
| ''-231.848'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/8]]'' | |||
| ''+71.001'' | |||
| ''+244.622'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/9]]'' | |||
| ''-77.274'' | |||
| ''-266.232'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[27/16]]'' | |||
| ''+80.981'' | |||
| ''+279.006'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[32/27]]'' | |||
| ''-90.961'' | |||
| ''-313.389'' | |||
|} | |||
[[Category:Zeta peak indexes]] |
Latest revision as of 01:07, 20 August 2025
186 zeta peak index (abbreviated 186zpi), is the equal-step tuning system obtained from the 186st peak of the Riemann zeta function.
Tuning | Strength | Closest edo | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per 8ve |
Step size (cents) |
Height | Integral | Gap | Edo | Octave (cents) | Consistent | Distinct | |
Size | Stretch | |||||||||
186zpi | 41.343835 | 29.024883 | 1.87659 | 0.241233 | 11.567493 | 41edo | 1190.020215 | −9.979785 | 2 | 2 |
Theory
Record on the Riemann zeta function with primes 2 and 3 removed
186zpi sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is 125zpi and the next one is 565zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with primes 2 and 3 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
125zpi | 30.6006474885974 | 39.2148564976330 | 1.468164 | 31edo | 1215.66055142662 | 30.5974484926723 | 39.2189564527704 | 3.769318 | 31edo | 1215.78765003588 |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 41edo | 1190.02021518380 | 41.3477989230936 | 29.0221010852836 | 4.469823 | 41edo | 1189.90614449663 |
565zpi | 98.6209462564991 | 12.1678005084130 | 2.305330 | 99edo | 1204.61225033289 | 98.6257548378926 | 12.1672072570942 | 4.883729 | 99edo | 1204.55351845233 |
Harmonic series
As a non-octave, non-tritave scale, 186zpi features a well-balanced harmonic series segment from 5 to 9, and performs exceptionally well across all prime harmonics from 5 to 23, with the exception of 19.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.0 | +13.7 | +9.1 | +0.1 | +3.7 | -1.9 | -0.9 | -1.7 | -9.9 | -0.8 | -6.3 | +0.3 | -11.9 | +13.8 | -10.9 |
Relative (%) | -34.4 | +47.2 | +31.2 | +0.3 | +12.8 | -6.7 | -3.2 | -5.7 | -34.1 | -2.6 | -21.6 | +1.0 | -41.1 | +47.4 | -37.5 | |
Step | 41 | 66 | 83 | 96 | 107 | 116 | 124 | 131 | 137 | 143 | 148 | 153 | 157 | 162 | 165 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.2 | -11.6 | +10.9 | +9.1 | +11.7 | -10.7 | -0.6 | +12.8 | +0.2 | -9.7 | +12.0 | +7.1 | +4.4 | +3.8 | +5.1 | +8.2 |
Relative (%) | +0.9 | -40.1 | +37.4 | +31.5 | +40.5 | -37.0 | -2.1 | +44.0 | +0.5 | -33.4 | +41.5 | +24.6 | +15.2 | +13.0 | +17.5 | +28.1 | |
Step | 169 | 172 | 176 | 179 | 182 | 184 | 187 | 190 | 192 | 194 | 197 | 199 | 201 | 203 | 205 | 207 |
Approximation of EDONOIs
Based on harmonics with less than 1 cent of error, 186zpi can be approximated by 96ed5, 124ed8 (or every 3 steps of 124edo), 143ed11, 153ed13, 169ed17, 187ed23, and 192ed25.
Intervals and notation
There are several ways to approach notation. The simplest method involves using the notations from 41edo. However, this method does not preserve octave compression when rendered by notation software. To address this issue, consider using the ups and downs notation from 124edo at every 3-degree step (i.e., the edonoi 124ed8).
It is important to note that 124edo provides two possible fifths (3/2). The closest one, from the val <124 197] (i.e. the patent val), is the fifth mapped to 73 steps of 124edo with a relative error of +46.465%. The second closest, from the val <124 196] (i.e. the val 124b), is mapped to 72 steps of 124edo with a relative error of -53.535%. This second fifth, which appears in 124ed8, also corresponds to the fifth of 31edo. Therefore, we choose to use the ups and downs notation of the 124b temperament, denoted as <124 196].
JI ratios are comprised of 32-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 20 steps Limma = 12 steps Apotome = 8 steps | |||
Degree | Cents | Ratios | Ups and downs notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 29.025 | ^^^1 | 3 | |
2 | 58.050 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24 | vvA1, ^^d2 | 6 |
3 | 87.075 | 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17 | vvvm2 | 9 |
4 | 116.100 | 17/16, 16/15, 31/29, 15/14, 29/27, 14/13 | m2 | 12 |
5 | 145.124 | 27/25, 13/12, 25/23, 12/11, 23/21 | ^^^m2 | 15 |
6 | 174.149 | 11/10, 32/29, 21/19, 31/28, 10/9 | vvM2 | 18 |
7 | 203.174 | 29/26, 19/17, 28/25, 9/8, 26/23, 17/15 | ^M2 | 21 |
8 | 232.199 | 25/22, 8/7, 31/27, 23/20 | ^4M2 | 24 |
9 | 261.224 | 15/13, 22/19, 29/25, 7/6 | ^^^d3 | 27 |
10 | 290.249 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26 | vvm3 | 30 |
11 | 319.274 | 6/5, 29/24, 23/19 | ^m3 | 33 |
12 | 348.299 | 17/14, 28/23, 11/9, 27/22, 16/13 | ~3 | 36 |
13 | 377.323 | 21/17, 26/21, 31/25, 5/4 | vM3 | 39 |
14 | 406.348 | 29/23, 24/19, 19/15, 14/11 | ^^M3 | 42 |
15 | 435.373 | 23/18, 32/25, 9/7, 31/24, 22/17 | vvvA3 | 45 |
16 | 464.398 | 13/10, 30/23, 17/13, 21/16, 25/19, 29/22 | v44 | 48 |
17 | 493.423 | 4/3 | v4 | 51 |
18 | 522.448 | 31/23, 27/20, 23/17, 19/14, 15/11 | ^^4 | 54 |
19 | 551.473 | 26/19, 11/8, 29/21, 18/13 | vvvA4 | 57 |
20 | 580.498 | 25/18, 32/23, 7/5, 31/22 | A4 | 60 |
21 | 609.523 | 24/17, 17/12, 27/19, 10/7 | vd5 | 63 |
22 | 638.547 | 23/16, 13/9, 29/20, 16/11 | ^^d5 | 66 |
23 | 667.572 | 19/13, 22/15, 25/17, 28/19, 31/21 | vvv5 | 69 |
24 | 696.597 | 3/2 | P5 | 72 |
25 | 725.622 | 32/21, 29/19, 26/17, 23/15 | ^^^5 | 75 |
26 | 754.647 | 20/13, 17/11, 31/20, 14/9 | vvA5, ^^d6 | 78 |
27 | 783.672 | 25/16, 11/7, 30/19, 19/12 | vvvm6 | 81 |
28 | 812.697 | 27/17, 8/5, 29/18 | m6 | 84 |
29 | 841.722 | 21/13, 13/8, 31/19, 18/11 | ^^^m6 | 87 |
30 | 870.746 | 23/14, 28/17, 5/3 | vvM6 | 90 |
31 | 899.771 | 32/19, 27/16, 22/13 | ^M6 | 93 |
32 | 928.796 | 17/10, 29/17, 12/7, 31/18 | ^4M6 | 96 |
33 | 957.821 | 19/11, 26/15, 7/4 | ^^^d7 | 99 |
34 | 986.846 | 30/17, 23/13, 16/9 | vvm7 | 102 |
35 | 1015.871 | 25/14, 9/5, 29/16 | ^m7 | 105 |
36 | 1044.896 | 20/11, 31/17, 11/6 | ~7 | 108 |
37 | 1073.921 | 24/13, 13/7, 28/15, 15/8 | vM7 | 111 |
38 | 1102.946 | 32/17, 17/9, 19/10 | ^^M7 | 114 |
39 | 1131.970 | 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | vvvA7 | 117 |
40 | 1160.995 | v41 +1 oct | 120 | |
41 | 1190.020 | 2/1 | v1 +1 oct | 123 |
42 | 1219.045 | ^^1 +1 oct | 126 | |
43 | 1248.070 | 31/15, 29/14 | vvvA1 +1 oct | 129 |
44 | 1277.095 | 27/13, 25/12, 23/11, 21/10 | v4m2 +1 oct | 132 |
45 | 1306.120 | 19/9, 17/8, 32/15, 15/7 | vm2 +1 oct | 135 |
46 | 1335.145 | 28/13, 13/6 | ^^m2 +1 oct | 138 |
47 | 1364.170 | 24/11, 11/5, 31/14 | vvvM2 +1 oct | 141 |
48 | 1393.194 | 20/9, 29/13, 9/4 | M2 +1 oct | 144 |
49 | 1422.219 | 25/11, 16/7 | ^^^M2 +1 oct | 147 |
50 | 1451.244 | 23/10, 30/13 | vvA2 +1 oct, ^^d3 +1 oct | 150 |
51 | 1480.269 | 7/3, 26/11 | vvvm3 +1 oct | 153 |
52 | 1509.294 | 19/8, 31/13, 12/5 | m3 +1 oct | 156 |
53 | 1538.319 | 29/12, 17/7, 22/9 | ^^^m3 +1 oct | 159 |
54 | 1567.344 | 27/11, 32/13 | vvM3 +1 oct | 162 |
55 | 1596.369 | 5/2 | ^M3 +1 oct | 165 |
56 | 1625.393 | 28/11, 23/9, 18/7 | ^4M3 +1 oct | 168 |
57 | 1654.418 | 31/12, 13/5 | ^^^d4 +1 oct | 171 |
58 | 1683.443 | 21/8, 29/11 | vv4 +1 oct | 174 |
59 | 1712.468 | 8/3, 27/10 | ^4 +1 oct | 177 |
60 | 1741.493 | 19/7, 30/11, 11/4 | ~4 +1 oct | 180 |
61 | 1770.518 | 25/9, 14/5 | vA4 +1 oct | 183 |
62 | 1799.543 | 31/11, 17/6 | ^^A4 +1 oct, vvd5 +1 oct | 186 |
63 | 1828.568 | 20/7, 23/8, 26/9 | ^d5 +1 oct | 189 |
64 | 1857.593 | 29/10, 32/11 | ~5 +1 oct | 192 |
65 | 1886.617 | v5 +1 oct | 195 | |
66 | 1915.642 | 3/1 | ^^5 +1 oct | 198 |
67 | 1944.667 | 31/10 | vvvA5 +1 oct | 201 |
68 | 1973.692 | 28/9, 25/8, 22/7 | v4m6 +1 oct | 204 |
69 | 2002.717 | 19/6, 16/5 | vm6 +1 oct | 207 |
70 | 2031.742 | 29/9, 13/4 | ^^m6 +1 oct | 210 |
71 | 2060.767 | 23/7 | vvvM6 +1 oct | 213 |
72 | 2089.792 | 10/3 | M6 +1 oct | 216 |
73 | 2118.816 | 27/8, 17/5, 24/7 | ^^^M6 +1 oct | 219 |
74 | 2147.841 | 31/9 | vvA6 +1 oct, ^^d7 +1 oct | 222 |
75 | 2176.866 | 7/2 | vvvm7 +1 oct | 225 |
76 | 2205.891 | 32/9, 25/7, 18/5 | m7 +1 oct | 228 |
77 | 2234.916 | 29/8, 11/3 | ^^^m7 +1 oct | 231 |
78 | 2263.941 | 26/7 | vvM7 +1 oct | 234 |
79 | 2292.966 | 15/4 | ^M7 +1 oct | 237 |
80 | 2321.991 | 19/5, 23/6 | ^4M7 +1 oct | 240 |
81 | 2351.016 | 27/7, 31/8 | ^^^d1 +2 oct | 243 |
82 | 2380.040 | vv1 +2 oct | 246 | |
83 | 2409.065 | 4/1 | ^1 +2 oct | 249 |
84 | 2438.090 | ^41 +2 oct | 252 | |
85 | 2467.115 | 29/7, 25/6 | ^^^d2 +2 oct | 255 |
86 | 2496.140 | 21/5, 17/4 | vvm2 +2 oct | 258 |
87 | 2525.165 | 30/7, 13/3 | ^m2 +2 oct | 261 |
88 | 2554.190 | 22/5 | ~2 +2 oct | 264 |
89 | 2583.215 | 31/7 | vM2 +2 oct | 267 |
90 | 2612.239 | 9/2 | ^^M2 +2 oct | 270 |
91 | 2641.264 | 32/7, 23/5 | vvvA2 +2 oct | 273 |
92 | 2670.289 | 14/3 | v4m3 +2 oct | 276 |
93 | 2699.314 | 19/4 | vm3 +2 oct | 279 |
94 | 2728.339 | 24/5, 29/6 | ^^m3 +2 oct | 282 |
95 | 2757.364 | vvvM3 +2 oct | 285 | |
96 | 2786.389 | 5/1 | M3 +2 oct | 288 |
97 | 2815.414 | ^^^M3 +2 oct | 291 | |
98 | 2844.439 | 31/6, 26/5 | vvA3 +2 oct, ^^d4 +2 oct | 294 |
99 | 2873.463 | 21/4 | vvv4 +2 oct | 297 |
100 | 2902.488 | 16/3 | P4 +2 oct | 300 |
101 | 2931.513 | 27/5 | ^^^4 +2 oct | 303 |
102 | 2960.538 | 11/2 | vvA4 +2 oct | 306 |
103 | 2989.563 | 28/5, 17/3 | ^A4 +2 oct | 309 |
104 | 3018.588 | 23/4 | d5 +2 oct | 312 |
105 | 3047.613 | 29/5 | ^^^d5 +2 oct | 315 |
106 | 3076.638 | vv5 +2 oct | 318 | |
107 | 3105.663 | 6/1 | ^5 +2 oct | 321 |
108 | 3134.687 | ^45 +2 oct | 324 | |
109 | 3163.712 | 31/5, 25/4 | ^^^d6 +2 oct | 327 |
110 | 3192.737 | 19/3 | vvm6 +2 oct | 330 |
111 | 3221.762 | 32/5 | ^m6 +2 oct | 333 |
112 | 3250.787 | 13/2 | ~6 +2 oct | 336 |
113 | 3279.812 | 20/3 | vM6 +2 oct | 339 |
114 | 3308.837 | 27/4 | ^^M6 +2 oct | 342 |
115 | 3337.862 | vvvA6 +2 oct | 345 | |
116 | 3366.886 | 7/1 | v4m7 +2 oct | 348 |
117 | 3395.911 | vm7 +2 oct | 351 | |
118 | 3424.936 | 29/4 | ^^m7 +2 oct | 354 |
119 | 3453.961 | 22/3 | vvvM7 +2 oct | 357 |
120 | 3482.986 | 15/2 | M7 +2 oct | 360 |
121 | 3512.011 | 23/3 | ^^^M7 +2 oct | 363 |
122 | 3541.036 | 31/4 | vvA7 +2 oct, ^^d1 +3 oct | 366 |
123 | 3570.061 | vvv1 +3 oct | 369 | |
124 | 3599.086 | 8/1 | P1 +3 oct | 372 |
125 | 3628.110 | ^^^1 +3 oct | 375 | |
126 | 3657.135 | 25/3 | vvA1 +3 oct, ^^d2 +3 oct | 378 |
127 | 3686.160 | vvvm2 +3 oct | 381 | |
128 | 3715.185 | 17/2 | m2 +3 oct | 384 |
129 | 3744.210 | 26/3 | ^^^m2 +3 oct | 387 |
130 | 3773.235 | vvM2 +3 oct | 390 | |
131 | 3802.260 | 9/1 | ^M2 +3 oct | 393 |
132 | 3831.285 | ^4M2 +3 oct | 396 | |
133 | 3860.309 | 28/3 | ^^^d3 +3 oct | 399 |
134 | 3889.334 | 19/2 | vvm3 +3 oct | 402 |
135 | 3918.359 | 29/3 | ^m3 +3 oct | 405 |
136 | 3947.384 | ~3 +3 oct | 408 | |
137 | 3976.409 | 10/1 | vM3 +3 oct | 411 |
138 | 4005.434 | ^^M3 +3 oct | 414 | |
139 | 4034.459 | 31/3 | vvvA3 +3 oct | 417 |
140 | 4063.484 | 21/2 | v44 +3 oct | 420 |
141 | 4092.509 | 32/3 | v4 +3 oct | 423 |
142 | 4121.533 | ^^4 +3 oct | 426 | |
143 | 4150.558 | 11/1 | vvvA4 +3 oct | 429 |
144 | 4179.583 | A4 +3 oct | 432 | |
145 | 4208.608 | vd5 +3 oct | 435 | |
146 | 4237.633 | 23/2 | ^^d5 +3 oct | 438 |
147 | 4266.658 | vvv5 +3 oct | 441 | |
148 | 4295.683 | 12/1 | P5 +3 oct | 444 |
149 | 4324.708 | ^^^5 +3 oct | 447 | |
150 | 4353.732 | vvA5 +3 oct, ^^d6 +3 oct | 450 | |
151 | 4382.757 | 25/2 | vvvm6 +3 oct | 453 |
152 | 4411.782 | m6 +3 oct | 456 | |
153 | 4440.807 | 13/1 | ^^^m6 +3 oct | 459 |
154 | 4469.832 | vvM6 +3 oct | 462 | |
155 | 4498.857 | 27/2 | ^M6 +3 oct | 465 |
156 | 4527.882 | ^4M6 +3 oct | 468 | |
157 | 4556.907 | 14/1 | ^^^d7 +3 oct | 471 |
158 | 4585.932 | vvm7 +3 oct | 474 | |
159 | 4614.956 | ^m7 +3 oct | 477 | |
160 | 4643.981 | 29/2 | ~7 +3 oct | 480 |
161 | 4673.006 | vM7 +3 oct | 483 | |
162 | 4702.031 | 15/1 | ^^M7 +3 oct | 486 |
163 | 4731.056 | 31/2 | vvvA7 +3 oct | 489 |
164 | 4760.081 | v41 +4 oct | 492 | |
165 | 4789.106 | 16/1 | v1 +4 oct | 495 |
166 | 4818.131 | ^^1 +4 oct | 498 | |
167 | 4847.156 | vvvA1 +4 oct | 501 | |
168 | 4876.180 | v4m2 +4 oct | 504 | |
169 | 4905.205 | 17/1 | vm2 +4 oct | 507 |
170 | 4934.230 | ^^m2 +4 oct | 510 | |
171 | 4963.255 | vvvM2 +4 oct | 513 | |
172 | 4992.280 | 18/1 | M2 +4 oct | 516 |
173 | 5021.305 | ^^^M2 +4 oct | 519 | |
174 | 5050.330 | vvA2 +4 oct, ^^d3 +4 oct | 522 | |
175 | 5079.355 | vvvm3 +4 oct | 525 | |
176 | 5108.379 | 19/1 | m3 +4 oct | 528 |
177 | 5137.404 | ^^^m3 +4 oct | 531 | |
178 | 5166.429 | vvM3 +4 oct | 534 | |
179 | 5195.454 | 20/1 | ^M3 +4 oct | 537 |
180 | 5224.479 | ^4M3 +4 oct | 540 | |
181 | 5253.504 | ^^^d4 +4 oct | 543 | |
182 | 5282.529 | 21/1 | vv4 +4 oct | 546 |
183 | 5311.554 | ^4 +4 oct | 549 | |
184 | 5340.579 | 22/1 | ~4 +4 oct | 552 |
185 | 5369.603 | vA4 +4 oct | 555 | |
186 | 5398.628 | ^^A4 +4 oct, vvd5 +4 oct | 558 | |
187 | 5427.653 | 23/1 | ^d5 +4 oct | 561 |
188 | 5456.678 | ~5 +4 oct | 564 | |
189 | 5485.703 | v5 +4 oct | 567 | |
190 | 5514.728 | 24/1 | ^^5 +4 oct | 570 |
191 | 5543.753 | vvvA5 +4 oct | 573 | |
192 | 5572.778 | 25/1 | v4m6 +4 oct | 576 |
193 | 5601.802 | vm6 +4 oct | 579 | |
194 | 5630.827 | 26/1 | ^^m6 +4 oct | 582 |
195 | 5659.852 | vvvM6 +4 oct | 585 | |
196 | 5688.877 | M6 +4 oct | 588 | |
197 | 5717.902 | 27/1 | ^^^M6 +4 oct | 591 |
198 | 5746.927 | vvA6 +4 oct, ^^d7 +4 oct | 594 | |
199 | 5775.952 | 28/1 | vvvm7 +4 oct | 597 |
200 | 5804.977 | m7 +4 oct | 600 | |
201 | 5834.002 | 29/1 | ^^^m7 +4 oct | 603 |
202 | 5863.026 | vvM7 +4 oct | 606 | |
203 | 5892.051 | 30/1 | ^M7 +4 oct | 609 |
204 | 5921.076 | ^4M7 +4 oct | 612 | |
205 | 5950.101 | 31/1 | ^^^d1 +5 oct | 615 |
206 | 5979.126 | vv1 +5 oct | 618 | |
207 | 6008.151 | 32/1 | ^1 +5 oct | 621 |
Approximation to JI
Interval mappings
The following tables show how 32-integer-limit intervals are represented in 186zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
17/13 | -0.030 | -0.102 |
5/1 | +0.075 | +0.259 |
25/17 | -0.100 | -0.344 |
25/13 | -0.129 | -0.446 |
23/11 | +0.138 | +0.477 |
25/1 | +0.150 | +0.517 |
11/8 | +0.155 | +0.533 |
17/5 | +0.175 | +0.602 |
13/5 | +0.204 | +0.704 |
17/1 | +0.250 | +0.861 |
13/1 | +0.279 | +0.963 |
9/7 | +0.289 | +0.996 |
23/8 | +0.293 | +1.011 |
23/1 | -0.621 | -2.140 |
31/29 | +0.641 | +2.209 |
30/29 | -0.642 | -2.211 |
23/5 | -0.696 | -2.399 |
29/6 | +0.717 | +2.470 |
9/8 | -0.736 | -2.535 |
11/1 | -0.760 | -2.617 |
25/23 | +0.771 | +2.657 |
11/5 | -0.835 | -2.876 |
23/17 | -0.871 | -3.001 |
21/19 | +0.881 | +3.037 |
11/9 | +0.891 | +3.069 |
23/13 | -0.901 | -3.103 |
25/11 | +0.910 | +3.135 |
8/1 | -0.914 | -3.151 |
8/5 | -0.990 | -3.409 |
17/11 | +1.009 | +3.478 |
8/7 | +1.025 | +3.531 |
23/9 | +1.029 | +3.546 |
13/11 | +1.039 | +3.580 |
25/8 | +1.065 | +3.668 |
17/8 | +1.164 | +4.012 |
27/19 | +1.171 | +4.033 |
11/7 | +1.180 | +4.065 |
13/8 | +1.194 | +4.114 |
31/30 | +1.283 | +4.420 |
23/7 | +1.318 | +4.542 |
31/6 | +1.358 | +4.679 |
9/1 | -1.650 | -5.686 |
9/5 | -1.725 | -5.944 |
20/19 | -1.726 | -5.947 |
25/9 | +1.800 | +6.203 |
19/4 | +1.801 | +6.205 |
17/9 | +1.900 | +6.547 |
24/19 | +1.906 | +6.568 |
13/9 | +1.930 | +6.649 |
7/1 | -1.939 | -6.682 |
7/5 | -2.015 | -6.941 |
31/28 | -2.060 | -7.099 |
25/7 | +2.090 | +7.199 |
17/7 | +2.189 | +7.543 |
13/7 | +2.219 | +7.645 |
21/20 | +2.607 | +8.984 |
21/4 | +2.683 | +9.242 |
29/28 | -2.702 | -9.308 |
32/19 | -2.716 | -9.356 |
19/3 | -2.821 | -9.719 |
19/15 | -2.896 | -9.977 |
27/20 | +2.897 | +9.980 |
27/4 | +2.972 | +10.238 |
32/31 | +3.085 | +10.630 |
15/14 | -3.343 | -11.519 |
14/3 | +3.418 | +11.777 |
13/6 | -3.428 | -11.811 |
17/6 | -3.458 | -11.913 |
30/13 | +3.503 | +12.069 |
30/17 | +3.533 | +12.171 |
25/6 | -3.557 | -12.256 |
32/21 | -3.597 | -12.393 |
6/5 | +3.632 | +12.515 |
6/1 | +3.708 | +12.774 |
32/29 | +3.726 | +12.839 |
28/19 | -3.741 | -12.887 |
30/1 | +3.783 | +13.032 |
32/27 | -3.886 | -13.389 |
31/4 | -4.000 | -13.781 |
31/20 | -4.075 | -14.039 |
29/13 | +4.145 | +14.280 |
29/17 | +4.174 | +14.382 |
29/25 | +4.274 | +14.726 |
23/6 | -4.329 | -14.914 |
12/7 | -4.333 | -14.928 |
29/5 | +4.349 | +14.985 |
16/15 | +4.368 | +15.050 |
30/23 | +4.404 | +15.172 |
29/1 | +4.424 | +15.243 |
16/3 | +4.443 | +15.309 |
11/6 | -4.467 | -15.391 |
22/15 | +4.523 | +15.583 |
30/11 | +4.542 | +15.649 |
20/3 | -4.547 | -15.666 |
22/3 | +4.598 | +15.842 |
4/3 | -4.622 | -15.924 |
29/4 | -4.641 | -15.990 |
15/4 | +4.697 | +16.183 |
29/20 | -4.716 | -16.248 |
31/13 | +4.786 | +16.489 |
31/17 | +4.816 | +16.591 |
28/27 | -4.911 | -16.920 |
31/25 | +4.915 | +16.935 |
31/5 | +4.990 | +17.194 |
29/23 | +5.046 | +17.383 |
31/1 | +5.066 | +17.452 |
27/14 | -5.069 | -17.463 |
29/11 | +5.184 | +17.860 |
15/2 | -5.283 | -18.201 |
29/8 | +5.339 | +18.394 |
3/2 | -5.358 | -18.459 |
10/3 | +5.433 | +18.718 |
12/11 | -5.513 | -18.993 |
32/3 | -5.536 | -19.075 |
26/15 | +5.562 | +19.164 |
32/15 | -5.612 | -19.334 |
26/3 | +5.637 | +19.422 |
7/6 | -5.647 | -19.456 |
23/12 | +5.651 | +19.470 |
31/23 | +5.687 | +19.592 |
30/7 | +5.722 | +19.714 |
31/19 | -5.801 | -19.986 |
31/11 | +5.825 | +20.069 |
31/8 | +5.980 | +20.603 |
29/9 | +6.075 | +20.929 |
27/16 | -6.094 | -20.994 |
19/14 | -6.239 | -21.496 |
27/22 | -6.248 | -21.528 |
12/1 | -6.272 | -21.610 |
12/5 | -6.347 | -21.869 |
29/7 | +6.364 | +21.925 |
21/16 | -6.383 | -21.991 |
25/12 | +6.422 | +22.127 |
29/19 | -6.442 | -22.195 |
17/12 | +6.522 | +22.471 |
19/18 | -6.528 | -22.492 |
22/21 | +6.538 | +22.524 |
13/12 | +6.552 | +22.573 |
28/3 | -6.561 | -22.606 |
28/15 | -6.637 | -22.865 |
31/21 | -6.682 | -23.023 |
31/9 | +6.716 | +23.138 |
28/13 | +6.846 | +23.588 |
28/17 | +6.876 | +23.690 |
31/27 | -6.972 | -24.019 |
28/25 | +6.976 | +24.034 |
31/7 | +7.005 | +24.134 |
27/2 | -7.008 | -24.145 |
28/5 | +7.051 | +24.292 |
27/10 | -7.083 | -24.404 |
30/19 | -7.084 | -24.406 |
28/1 | +7.126 | +24.551 |
19/6 | +7.159 | +24.665 |
19/16 | -7.264 | -25.027 |
27/26 | -7.288 | -25.108 |
21/2 | -7.297 | -25.141 |
29/21 | -7.324 | -25.232 |
21/10 | -7.372 | -25.400 |
22/19 | +7.419 | +25.561 |
26/21 | +7.577 | +26.104 |
29/27 | -7.613 | -26.228 |
31/24 | -7.707 | -26.554 |
28/23 | +7.747 | +26.691 |
26/7 | -7.761 | -26.739 |
32/13 | +7.871 | +27.119 |
28/11 | +7.886 | +27.168 |
32/17 | +7.901 | +27.221 |
10/7 | -7.965 | -27.443 |
32/25 | +8.001 | +27.565 |
7/2 | +8.040 | +27.702 |
26/9 | -8.050 | -27.735 |
32/5 | +8.076 | +27.824 |
32/1 | +8.151 | +28.082 |
19/2 | -8.179 | -28.178 |
19/10 | -8.254 | -28.437 |
10/9 | -8.254 | -28.439 |
9/2 | +8.329 | +28.698 |
29/24 | -8.348 | -28.763 |
26/19 | +8.458 | +29.141 |
31/3 | -8.622 | -29.705 |
31/15 | -8.697 | -29.964 |
32/23 | +8.772 | +30.222 |
28/9 | +8.776 | +30.237 |
13/4 | -8.786 | -30.270 |
22/7 | -8.800 | -30.319 |
17/4 | -8.815 | -30.372 |
20/13 | +8.861 | +30.529 |
20/17 | +8.891 | +30.631 |
32/11 | +8.910 | +30.699 |
25/4 | -8.915 | -30.716 |
26/11 | -8.941 | -30.803 |
16/7 | -8.955 | -30.852 |
5/4 | -8.990 | -30.974 |
4/1 | +9.065 | +31.233 |
26/23 | -9.079 | -31.281 |
22/9 | -9.089 | -31.315 |
20/1 | +9.140 | +31.492 |
11/10 | +9.145 | +31.508 |
11/2 | +9.220 | +31.766 |
16/9 | -9.244 | -31.848 |
29/3 | -9.263 | -31.914 |
23/10 | +9.284 | +31.985 |
29/15 | -9.338 | -32.173 |
23/2 | +9.359 | +32.243 |
23/4 | -9.686 | -33.373 |
18/7 | -9.691 | -33.387 |
26/1 | -9.700 | -33.421 |
23/20 | -9.762 | -33.632 |
26/5 | -9.775 | -33.679 |
32/9 | +9.801 | +33.768 |
11/4 | -9.825 | -33.850 |
26/25 | -9.850 | -33.938 |
20/11 | +9.900 | +34.109 |
10/1 | -9.905 | -34.125 |
26/17 | -9.950 | -34.282 |
2/1 | -9.980 | -34.384 |
5/2 | +10.055 | +34.642 |
32/7 | +10.090 | +34.764 |
23/22 | +10.118 | +34.861 |
25/2 | +10.130 | +34.901 |
16/11 | -10.135 | -34.917 |
17/10 | +10.155 | +34.986 |
13/10 | +10.184 | +35.088 |
17/2 | +10.230 | +35.244 |
13/2 | +10.259 | +35.346 |
14/9 | -10.269 | -35.380 |
23/16 | +10.273 | +35.394 |
19/13 | +10.587 | +36.475 |
19/17 | +10.617 | +36.577 |
29/12 | +10.697 | +36.853 |
9/4 | -10.716 | -36.919 |
25/19 | -10.716 | -36.921 |
22/1 | -10.739 | -37.001 |
20/9 | +10.791 | +37.177 |
19/5 | +10.791 | +37.180 |
22/5 | -10.814 | -37.259 |
19/1 | +10.866 | +37.438 |
18/11 | -10.870 | -37.452 |
25/22 | +10.890 | +37.518 |
16/1 | -10.894 | -37.534 |
16/5 | -10.969 | -37.793 |
22/17 | -10.989 | -37.862 |
7/4 | -11.005 | -37.915 |
23/18 | +11.009 | +37.929 |
22/13 | -11.019 | -37.964 |
25/16 | +11.044 | +38.052 |
20/7 | +11.080 | +38.174 |
17/16 | +11.144 | +38.395 |
14/11 | -11.160 | -38.448 |
16/13 | -11.174 | -38.497 |
23/14 | +11.298 | +38.925 |
31/12 | +11.338 | +39.062 |
21/13 | +11.468 | +39.512 |
23/19 | -11.488 | -39.579 |
21/17 | +11.498 | +39.614 |
25/21 | -11.598 | -39.958 |
19/11 | +11.626 | +40.056 |
18/1 | -11.630 | -40.069 |
21/5 | +11.673 | +40.216 |
18/5 | -11.705 | -40.328 |
21/1 | +11.748 | +40.475 |
27/13 | +11.758 | +40.508 |
25/18 | +11.780 | +40.587 |
19/8 | +11.781 | +40.589 |
27/17 | +11.787 | +40.610 |
18/17 | -11.880 | -40.930 |
19/12 | -11.886 | -40.952 |
27/25 | +11.887 | +40.954 |
18/13 | -11.910 | -41.032 |
14/1 | -11.919 | -41.066 |
27/5 | +11.962 | +41.213 |
14/5 | -11.994 | -41.324 |
27/1 | +12.037 | +41.471 |
31/14 | -12.040 | -41.482 |
25/14 | +12.069 | +41.583 |
17/14 | +12.169 | +41.926 |
14/13 | -12.199 | -42.028 |
31/18 | -12.329 | -42.478 |
23/21 | -12.369 | -42.615 |
24/13 | +12.493 | +43.044 |
21/11 | +12.507 | +43.092 |
19/9 | +12.517 | +43.124 |
24/17 | +12.523 | +43.146 |
25/24 | -12.623 | -43.489 |
27/23 | +12.658 | +43.611 |
21/8 | +12.662 | +43.626 |
29/14 | -12.681 | -43.691 |
24/5 | +12.698 | +43.748 |
24/1 | +12.773 | +44.006 |
27/11 | +12.797 | +44.089 |
19/7 | +12.806 | +44.120 |
27/8 | +12.951 | +44.622 |
29/18 | -12.970 | -44.687 |
31/16 | -13.065 | -45.014 |
31/22 | -13.220 | -45.547 |
15/7 | -13.323 | -45.902 |
24/23 | +13.394 | +46.147 |
7/3 | +13.398 | +46.161 |
13/3 | -13.408 | -46.194 |
17/3 | -13.437 | -46.296 |
15/13 | +13.483 | +46.453 |
17/15 | -13.513 | -46.555 |
24/11 | +13.532 | +46.624 |
25/3 | -13.537 | -46.640 |
5/3 | -13.612 | -46.898 |
3/1 | +13.687 | +47.157 |
29/16 | -13.706 | -47.223 |
15/1 | +13.762 | +47.416 |
29/22 | -13.861 | -47.756 |
27/7 | +13.976 | +48.153 |
31/2 | -13.980 | -48.164 |
31/10 | -14.055 | -48.423 |
29/26 | +14.125 | +48.664 |
31/26 | -14.259 | -49.127 |
23/3 | -14.308 | -49.297 |
24/7 | -14.313 | -49.312 |
29/10 | +14.329 | +49.368 |
15/8 | -14.348 | -49.434 |
23/15 | -14.384 | -49.556 |
29/2 | +14.404 | +49.627 |
8/3 | +14.423 | +49.692 |
11/3 | -14.447 | -49.774 |
15/11 | -14.503 | -49.967 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
17/13 | -0.030 | -0.102 |
5/1 | +0.075 | +0.259 |
25/17 | -0.100 | -0.344 |
25/13 | -0.129 | -0.446 |
23/11 | +0.138 | +0.477 |
25/1 | +0.150 | +0.517 |
17/5 | +0.175 | +0.602 |
13/5 | +0.204 | +0.704 |
17/1 | +0.250 | +0.861 |
13/1 | +0.279 | +0.963 |
23/1 | -0.621 | -2.140 |
31/29 | +0.641 | +2.209 |
30/29 | -0.642 | -2.211 |
23/5 | -0.696 | -2.399 |
29/6 | +0.717 | +2.470 |
11/1 | -0.760 | -2.617 |
25/23 | +0.771 | +2.657 |
11/5 | -0.835 | -2.876 |
23/17 | -0.871 | -3.001 |
21/19 | +0.881 | +3.037 |
23/13 | -0.901 | -3.103 |
25/11 | +0.910 | +3.135 |
17/11 | +1.009 | +3.478 |
13/11 | +1.039 | +3.580 |
11/7 | +1.180 | +4.065 |
31/30 | +1.283 | +4.420 |
23/7 | +1.318 | +4.542 |
31/6 | +1.358 | +4.679 |
7/1 | -1.939 | -6.682 |
7/5 | -2.015 | -6.941 |
25/7 | +2.090 | +7.199 |
17/7 | +2.189 | +7.543 |
13/7 | +2.219 | +7.645 |
19/3 | -2.821 | -9.719 |
19/15 | -2.896 | -9.977 |
13/6 | -3.428 | -11.811 |
17/6 | -3.458 | -11.913 |
30/13 | +3.503 | +12.069 |
30/17 | +3.533 | +12.171 |
25/6 | -3.557 | -12.256 |
6/5 | +3.632 | +12.515 |
6/1 | +3.708 | +12.774 |
30/1 | +3.783 | +13.032 |
29/13 | +4.145 | +14.280 |
29/17 | +4.174 | +14.382 |
29/25 | +4.274 | +14.726 |
23/6 | -4.329 | -14.914 |
12/7 | -4.333 | -14.928 |
29/5 | +4.349 | +14.985 |
30/23 | +4.404 | +15.172 |
29/1 | +4.424 | +15.243 |
11/6 | -4.467 | -15.391 |
30/11 | +4.542 | +15.649 |
31/13 | +4.786 | +16.489 |
31/17 | +4.816 | +16.591 |
31/25 | +4.915 | +16.935 |
31/5 | +4.990 | +17.194 |
29/23 | +5.046 | +17.383 |
31/1 | +5.066 | +17.452 |
29/11 | +5.184 | +17.860 |
12/11 | -5.513 | -18.993 |
7/6 | -5.647 | -19.456 |
23/12 | +5.651 | +19.470 |
31/23 | +5.687 | +19.592 |
30/7 | +5.722 | +19.714 |
31/19 | -5.801 | -19.986 |
31/11 | +5.825 | +20.069 |
12/1 | -6.272 | -21.610 |
12/5 | -6.347 | -21.869 |
29/7 | +6.364 | +21.925 |
25/12 | +6.422 | +22.127 |
29/19 | -6.442 | -22.195 |
17/12 | +6.522 | +22.471 |
19/18 | -6.528 | -22.492 |
13/12 | +6.552 | +22.573 |
31/21 | -6.682 | -23.023 |
31/7 | +7.005 | +24.134 |
30/19 | -7.084 | -24.406 |
19/6 | +7.159 | +24.665 |
29/21 | -7.324 | -25.232 |
26/7 | -7.761 | -26.739 |
10/7 | -7.965 | -27.443 |
7/2 | +8.040 | +27.702 |
31/3 | -8.622 | -29.705 |
31/15 | -8.697 | -29.964 |
22/7 | -8.800 | -30.319 |
26/11 | -8.941 | -30.803 |
26/23 | -9.079 | -31.281 |
11/10 | +9.145 | +31.508 |
11/2 | +9.220 | +31.766 |
29/3 | -9.263 | -31.914 |
23/10 | +9.284 | +31.985 |
29/15 | -9.338 | -32.173 |
23/2 | +9.359 | +32.243 |
26/1 | -9.700 | -33.421 |
26/5 | -9.775 | -33.679 |
26/25 | -9.850 | -33.938 |
10/1 | -9.905 | -34.125 |
26/17 | -9.950 | -34.282 |
2/1 | -9.980 | -34.384 |
5/2 | +10.055 | +34.642 |
23/22 | +10.118 | +34.861 |
25/2 | +10.130 | +34.901 |
17/10 | +10.155 | +34.986 |
13/10 | +10.184 | +35.088 |
17/2 | +10.230 | +35.244 |
13/2 | +10.259 | +35.346 |
19/13 | +10.587 | +36.475 |
19/17 | +10.617 | +36.577 |
29/12 | +10.697 | +36.853 |
25/19 | -10.716 | -36.921 |
22/1 | -10.739 | -37.001 |
19/5 | +10.791 | +37.180 |
22/5 | -10.814 | -37.259 |
19/1 | +10.866 | +37.438 |
25/22 | +10.890 | +37.518 |
22/17 | -10.989 | -37.862 |
22/13 | -11.019 | -37.964 |
14/11 | -11.160 | -38.448 |
23/14 | +11.298 | +38.925 |
31/12 | +11.338 | +39.062 |
21/13 | +11.468 | +39.512 |
23/19 | -11.488 | -39.579 |
21/17 | +11.498 | +39.614 |
25/21 | -11.598 | -39.958 |
19/11 | +11.626 | +40.056 |
21/5 | +11.673 | +40.216 |
21/1 | +11.748 | +40.475 |
14/1 | -11.919 | -41.066 |
14/5 | -11.994 | -41.324 |
25/14 | +12.069 | +41.583 |
17/14 | +12.169 | +41.926 |
14/13 | -12.199 | -42.028 |
31/18 | -12.329 | -42.478 |
23/21 | -12.369 | -42.615 |
21/11 | +12.507 | +43.092 |
19/7 | +12.806 | +44.120 |
29/18 | -12.970 | -44.687 |
13/3 | -13.408 | -46.194 |
17/3 | -13.437 | -46.296 |
15/13 | +13.483 | +46.453 |
17/15 | -13.513 | -46.555 |
25/3 | -13.537 | -46.640 |
5/3 | -13.612 | -46.898 |
3/1 | +13.687 | +47.157 |
15/1 | +13.762 | +47.416 |
29/26 | +14.125 | +48.664 |
23/3 | -14.308 | -49.297 |
24/7 | -14.313 | -49.312 |
29/10 | +14.329 | +49.368 |
23/15 | -14.384 | -49.556 |
29/2 | +14.404 | +49.627 |
11/3 | -14.447 | -49.774 |
15/11 | +14.522 | +50.033 |
31/26 | +14.766 | +50.873 |
31/10 | +14.970 | +51.577 |
31/2 | +15.045 | +51.836 |
29/22 | +15.164 | +52.244 |
24/11 | -15.492 | -53.376 |
7/3 | -15.627 | -53.839 |
24/23 | -15.631 | -53.853 |
15/7 | +15.702 | +54.098 |
31/22 | +15.805 | +54.453 |
24/1 | -16.252 | -55.994 |
24/5 | -16.327 | -56.252 |
29/14 | +16.344 | +56.309 |
25/24 | +16.402 | +56.511 |
24/17 | -16.502 | -56.854 |
19/9 | -16.508 | -56.876 |
24/13 | -16.532 | -56.956 |
31/14 | +16.985 | +58.518 |
18/13 | +17.115 | +58.968 |
19/12 | +17.139 | +59.048 |
18/17 | +17.145 | +59.070 |
25/18 | -17.245 | -59.413 |
18/5 | +17.320 | +59.672 |
18/1 | +17.395 | +59.931 |
20/7 | -17.945 | -61.826 |
23/18 | -18.016 | -62.071 |
7/4 | +18.020 | +62.085 |
18/11 | +18.154 | +62.548 |
20/11 | -19.125 | -65.891 |
11/4 | +19.200 | +66.150 |
23/20 | +19.263 | +66.368 |
18/7 | +19.334 | +66.613 |
23/4 | +19.338 | +66.627 |
20/1 | -19.884 | -68.508 |
4/1 | -19.960 | -68.767 |
5/4 | +20.035 | +69.026 |
25/4 | +20.110 | +69.284 |
20/17 | -20.134 | -69.369 |
20/13 | -20.164 | -69.471 |
17/4 | +20.209 | +69.628 |
13/4 | +20.239 | +69.730 |
26/19 | -20.567 | -70.859 |
29/24 | +20.676 | +71.237 |
19/10 | +20.771 | +71.563 |
19/2 | +20.846 | +71.822 |
28/11 | -21.139 | -72.832 |
28/23 | -21.278 | -73.309 |
31/24 | +21.318 | +73.446 |
26/21 | -21.448 | -73.896 |
22/19 | -21.606 | -74.439 |
21/10 | +21.653 | +74.600 |
21/2 | +21.728 | +74.859 |
28/1 | -21.899 | -75.449 |
28/5 | -21.974 | -75.708 |
28/25 | -22.049 | -75.966 |
28/17 | -22.149 | -76.310 |
28/13 | -22.178 | -76.412 |
31/9 | -22.309 | -76.862 |
22/21 | -22.487 | -77.476 |
19/14 | +22.786 | +78.504 |
29/9 | -22.950 | -79.071 |
26/3 | -23.388 | -80.578 |
26/15 | -23.463 | -80.836 |
10/3 | -23.592 | -81.282 |
3/2 | +23.667 | +81.541 |
15/2 | +23.742 | +81.799 |
29/20 | +24.309 | +83.752 |
29/4 | +24.384 | +84.010 |
22/3 | -24.427 | -84.158 |
22/15 | -24.502 | -84.417 |
31/20 | +24.950 | +85.961 |
31/4 | +25.025 | +86.219 |
14/3 | -25.607 | -88.223 |
15/14 | +25.682 | +88.481 |
29/28 | +26.323 | +90.692 |
31/28 | +26.965 | +92.901 |
13/9 | -27.095 | -93.351 |
24/19 | -27.119 | -93.432 |
17/9 | -27.125 | -93.453 |
25/9 | -27.224 | -93.797 |
9/5 | +27.300 | +94.056 |
9/1 | +27.375 | +94.314 |
23/9 | -27.996 | -96.454 |
8/7 | -28.000 | -96.469 |
11/9 | -28.134 | -96.931 |
11/8 | +29.180 | +100.533 |
9/7 | +29.314 | +100.996 |
23/8 | +29.318 | +101.011 |
8/1 | -29.939 | -103.151 |
8/5 | -30.014 | -103.409 |
25/8 | +30.090 | +103.668 |
17/8 | +30.189 | +104.012 |
27/19 | +30.195 | +104.033 |
13/8 | +30.219 | +104.114 |
20/19 | -30.751 | -105.947 |
19/4 | +30.826 | +106.205 |
21/20 | +31.632 | +108.984 |
21/4 | +31.707 | +109.242 |
28/19 | -32.765 | -112.887 |
20/3 | -33.572 | -115.666 |
4/3 | -33.647 | -115.924 |
15/4 | +33.722 | +116.183 |
29/8 | +34.364 | +118.394 |
31/8 | +35.005 | +120.603 |
28/3 | -35.586 | -122.606 |
28/15 | -35.661 | -122.865 |
31/27 | -35.996 | -124.019 |
29/27 | -36.638 | -126.228 |
26/9 | -37.075 | -127.735 |
10/9 | -37.279 | -128.439 |
9/2 | +37.354 | +128.698 |
16/7 | -37.980 | -130.852 |
22/9 | -38.114 | -131.315 |
16/11 | -39.160 | -134.917 |
14/9 | -39.294 | -135.380 |
23/16 | +39.298 | +135.394 |
16/1 | -39.919 | -137.534 |
16/5 | -39.994 | -137.793 |
25/16 | +40.069 | +138.052 |
17/16 | +40.169 | +138.395 |
16/13 | -40.199 | -138.497 |
27/13 | +40.782 | +140.508 |
19/8 | +40.806 | +140.589 |
27/17 | +40.812 | +140.610 |
27/25 | +40.912 | +140.954 |
27/5 | +40.987 | +141.213 |
27/1 | +41.062 | +141.471 |
27/23 | +41.683 | +143.611 |
21/8 | +41.687 | +143.626 |
27/11 | +41.822 | +144.089 |
27/7 | +43.001 | +148.153 |
8/3 | -43.627 | -150.308 |
15/8 | +43.702 | +150.566 |
29/16 | +44.343 | +152.777 |
31/16 | +44.985 | +154.986 |
20/9 | -47.259 | -162.823 |
9/4 | +47.334 | +163.081 |
32/7 | -47.959 | -165.236 |
32/11 | -49.139 | -169.301 |
28/9 | -49.274 | -169.763 |
32/23 | -49.278 | -169.778 |
32/1 | -49.899 | -171.918 |
32/5 | -49.974 | -172.176 |
32/25 | -50.049 | -172.435 |
32/17 | -50.149 | -172.779 |
32/13 | -50.178 | -172.881 |
27/26 | +50.762 | +174.892 |
19/16 | +50.786 | +174.973 |
27/10 | +50.967 | +175.596 |
27/2 | +51.042 | +175.855 |
21/16 | +51.667 | +178.009 |
27/22 | +51.801 | +178.472 |
27/14 | +52.981 | +182.537 |
16/3 | -53.606 | -184.691 |
16/15 | -53.682 | -184.950 |
32/29 | -54.323 | -187.161 |
32/31 | -54.964 | -189.370 |
9/8 | +57.314 | +197.465 |
32/19 | -60.765 | -209.356 |
27/20 | +60.946 | +209.980 |
27/4 | +61.021 | +210.238 |
32/21 | -61.647 | -212.393 |
28/27 | -62.961 | -216.920 |
32/3 | -63.586 | -219.075 |
32/15 | -63.661 | -219.334 |
16/9 | -67.294 | -231.848 |
27/8 | +71.001 | +244.622 |
32/9 | -77.274 | -266.232 |
27/16 | +80.981 | +279.006 |
32/27 | -90.961 | -313.389 |