|
|
(38 intermediate revisions by 11 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Other names = Ketradektriatoh |
| : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-04-30 03:32:52 UTC</tt>.<br>
| | | Periods = 1 |
| : The original revision id was <tt>327194864</tt>.<br>
| | | nLargeSteps = 11 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 3 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 5 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 4 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #800061; font-size: 103%;">The Ketradektriatoh Scale</span>=
| | | Pattern = LLLLsLLLLsLLLs |
| | }} |
| | {{MOS intro|Other Names=}} |
|
| |
|
| This is a type of scale which denotes the use of a scale placed between [[11edo|11]] and [[14edo|14]] ED2's, employing a ratio generator between 41/32 ~ 9/7 (being [[25edo|25-ED2]] the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this form: LLLsLLLLsLLLLs.
| | == Name == |
| | Vector Graphics proposes '''ketradekic''' as a name for this scale, based on the name "Ketradektriatoh scale" proposed by [[Osmiorisbendi]], adapted to fit scale naming conventions. |
|
| |
|
| __**ED2s that contains this scale:**__
| | == Modes == |
| | {{MOS modes}} |
|
| |
|
| **2 2 2 1 2 2 2 2 1 2 2 2 2 1: [[25edo|25]]**
| | == Intervals == |
| 3 3 3 1 3 3 3 3 1 3 3 3 3 1: [[36edo|36]]
| | {{MOS intervals}} |
| **3 3 3 2 3 3 3 3 2 3 3 3 3 2: [[39edo|39]]**
| |
|
| |
|
| **4 4 4 1 4 4 4 4 1 4 4 4 4 1: [[47edo|47]]**
| | == Scale tree == |
| 4 4 4 2 4 4 4 4 2 4 4 4 4 2: [[50edo|50]]
| | {{MOS tuning spectrum}} |
| **4 4 4 3 4 4 4 4 3 4 4 4 4 3: [[53edo|53]]**
| |
|
| |
|
| 5 5 5 2 5 5 5 5 2 5 5 5 5 2: [[61edo|61]]
| | {{todo|expand}} |
| 5 5 5 3 5 5 5 5 3 5 5 5 5 3: [[64edo|64]]
| |
|
| |
|
| 7 7 7 2 7 7 7 7 2 7 7 7 7 2: [[83edo|83]]
| | [[Category:14-tone scales]] |
| 7 7 7 3 7 7 7 7 3 7 7 7 7 3: [[86edo|86]]
| |
| 7 7 7 4 7 7 7 7 4 7 7 7 7 4: [[89edo|89]]
| |
| 7 7 7 5 7 7 7 7 5 7 7 7 7 5: [[92edo|92]]
| |
| | |
| 9 9 9 4 9 9 9 9 4 9 9 9 9 4: [[111edo|111]]
| |
| 9 9 9 5 9 9 9 9 5 9 9 9 9 5: [[114edo|114]]
| |
| | |
| 11 11 11 4 11 11 11 11 4 11 11 11 11 4: [[133edo|133]]
| |
| 11 11 11 5 11 11 11 11 5 11 11 11 11 5: [[136edo|136]]
| |
| 11 11 11 6 11 11 11 11 6 11 11 11 11 6: [[139edo|139]]
| |
| 11 11 11 7 11 11 11 11 7 11 11 11 11 7: [[142edo|142]]
| |
| | |
| 13 13 13 5 13 13 13 13 5 13 13 13 13 5: [[158edo|158]]
| |
| 13 13 13 6 13 13 13 13 6 13 13 13 13 6: [[161edo|161]]
| |
| 13 13 13 7 13 13 13 13 7 13 13 13 13 7: [[164edo|164]]
| |
| 13 13 13 8 13 13 13 13 8 13 13 13 13 8: [[167edo|167]]</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>11L 3s</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="The Ketradektriatoh Scale"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #800061; font-size: 103%;">The Ketradektriatoh Scale</span></h1>
| |
| <br />
| |
| This is a type of scale which denotes the use of a scale placed between <a class="wiki_link" href="/11edo">11</a> and <a class="wiki_link" href="/14edo">14</a> ED2's, employing a ratio generator between 41/32 ~ 9/7 (being <a class="wiki_link" href="/25edo">25-ED2</a> the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this form: LLLsLLLLsLLLLs.<br />
| |
| <br />
| |
| <u><strong>ED2s that contains this scale:</strong></u><br />
| |
| <br />
| |
| <strong>2 2 2 1 2 2 2 2 1 2 2 2 2 1: <a class="wiki_link" href="/25edo">25</a></strong><br />
| |
| 3 3 3 1 3 3 3 3 1 3 3 3 3 1: <a class="wiki_link" href="/36edo">36</a><br />
| |
| <strong>3 3 3 2 3 3 3 3 2 3 3 3 3 2: <a class="wiki_link" href="/39edo">39</a></strong><br />
| |
| <br />
| |
| <strong>4 4 4 1 4 4 4 4 1 4 4 4 4 1: <a class="wiki_link" href="/47edo">47</a></strong><br />
| |
| 4 4 4 2 4 4 4 4 2 4 4 4 4 2: <a class="wiki_link" href="/50edo">50</a><br />
| |
| <strong>4 4 4 3 4 4 4 4 3 4 4 4 4 3: <a class="wiki_link" href="/53edo">53</a></strong><br />
| |
| <br />
| |
| 5 5 5 2 5 5 5 5 2 5 5 5 5 2: <a class="wiki_link" href="/61edo">61</a><br />
| |
| 5 5 5 3 5 5 5 5 3 5 5 5 5 3: <a class="wiki_link" href="/64edo">64</a><br />
| |
| <br />
| |
| 7 7 7 2 7 7 7 7 2 7 7 7 7 2: <a class="wiki_link" href="/83edo">83</a><br />
| |
| 7 7 7 3 7 7 7 7 3 7 7 7 7 3: <a class="wiki_link" href="/86edo">86</a><br />
| |
| 7 7 7 4 7 7 7 7 4 7 7 7 7 4: <a class="wiki_link" href="/89edo">89</a><br />
| |
| 7 7 7 5 7 7 7 7 5 7 7 7 7 5: <a class="wiki_link" href="/92edo">92</a><br />
| |
| <br />
| |
| 9 9 9 4 9 9 9 9 4 9 9 9 9 4: <a class="wiki_link" href="/111edo">111</a><br />
| |
| 9 9 9 5 9 9 9 9 5 9 9 9 9 5: <a class="wiki_link" href="/114edo">114</a><br />
| |
| <br />
| |
| 11 11 11 4 11 11 11 11 4 11 11 11 11 4: <a class="wiki_link" href="/133edo">133</a><br />
| |
| 11 11 11 5 11 11 11 11 5 11 11 11 11 5: <a class="wiki_link" href="/136edo">136</a><br />
| |
| 11 11 11 6 11 11 11 11 6 11 11 11 11 6: <a class="wiki_link" href="/139edo">139</a><br />
| |
| 11 11 11 7 11 11 11 11 7 11 11 11 11 7: <a class="wiki_link" href="/142edo">142</a><br />
| |
| <br />
| |
| 13 13 13 5 13 13 13 13 5 13 13 13 13 5: <a class="wiki_link" href="/158edo">158</a><br />
| |
| 13 13 13 6 13 13 13 13 6 13 13 13 13 6: <a class="wiki_link" href="/161edo">161</a><br />
| |
| 13 13 13 7 13 13 13 13 7 13 13 13 13 7: <a class="wiki_link" href="/164edo">164</a><br />
| |
| 13 13 13 8 13 13 13 13 8 13 13 13 13 8: <a class="wiki_link" href="/167edo">167</a></body></html></pre></div>
| |
11L 3s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 11 large steps and 3 small steps, repeating every octave. 11L 3s is a grandchild scale of 3L 5s, expanding it by 6 tones. Generators that produce this scale range from 428.6 ¢ to 436.4 ¢, or from 763.6 ¢ to 771.4 ¢.
Name
Vector Graphics proposes ketradekic as a name for this scale, based on the name "Ketradektriatoh scale" proposed by Osmiorisbendi, adapted to fit scale naming conventions.
Modes
Modes of 11L 3s
UDP |
Cyclic order |
Step pattern
|
13|0 |
1 |
LLLLsLLLLsLLLs
|
12|1 |
6 |
LLLLsLLLsLLLLs
|
11|2 |
11 |
LLLsLLLLsLLLLs
|
10|3 |
2 |
LLLsLLLLsLLLsL
|
9|4 |
7 |
LLLsLLLsLLLLsL
|
8|5 |
12 |
LLsLLLLsLLLLsL
|
7|6 |
3 |
LLsLLLLsLLLsLL
|
6|7 |
8 |
LLsLLLsLLLLsLL
|
5|8 |
13 |
LsLLLLsLLLLsLL
|
4|9 |
4 |
LsLLLLsLLLsLLL
|
3|10 |
9 |
LsLLLsLLLLsLLL
|
2|11 |
14 |
sLLLLsLLLLsLLL
|
1|12 |
5 |
sLLLLsLLLsLLLL
|
0|13 |
10 |
sLLLsLLLLsLLLL
|
Intervals
Intervals of 11L 3s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 85.7 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
85.7 ¢ to 109.1 ¢
|
2-mosstep
|
Minor 2-mosstep
|
m2ms
|
L + s
|
109.1 ¢ to 171.4 ¢
|
Major 2-mosstep
|
M2ms
|
2L
|
171.4 ¢ to 218.2 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
2L + s
|
218.2 ¢ to 257.1 ¢
|
Major 3-mosstep
|
M3ms
|
3L
|
257.1 ¢ to 327.3 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
3L + s
|
327.3 ¢ to 342.9 ¢
|
Major 4-mosstep
|
M4ms
|
4L
|
342.9 ¢ to 436.4 ¢
|
5-mosstep
|
Diminished 5-mosstep
|
d5ms
|
3L + 2s
|
327.3 ¢ to 428.6 ¢
|
Perfect 5-mosstep
|
P5ms
|
4L + s
|
428.6 ¢ to 436.4 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
4L + 2s
|
436.4 ¢ to 514.3 ¢
|
Major 6-mosstep
|
M6ms
|
5L + s
|
514.3 ¢ to 545.5 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
5L + 2s
|
545.5 ¢ to 600.0 ¢
|
Major 7-mosstep
|
M7ms
|
6L + s
|
600.0 ¢ to 654.5 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
6L + 2s
|
654.5 ¢ to 685.7 ¢
|
Major 8-mosstep
|
M8ms
|
7L + s
|
685.7 ¢ to 763.6 ¢
|
9-mosstep
|
Perfect 9-mosstep
|
P9ms
|
7L + 2s
|
763.6 ¢ to 771.4 ¢
|
Augmented 9-mosstep
|
A9ms
|
8L + s
|
771.4 ¢ to 872.7 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
7L + 3s
|
763.6 ¢ to 857.1 ¢
|
Major 10-mosstep
|
M10ms
|
8L + 2s
|
857.1 ¢ to 872.7 ¢
|
11-mosstep
|
Minor 11-mosstep
|
m11ms
|
8L + 3s
|
872.7 ¢ to 942.9 ¢
|
Major 11-mosstep
|
M11ms
|
9L + 2s
|
942.9 ¢ to 981.8 ¢
|
12-mosstep
|
Minor 12-mosstep
|
m12ms
|
9L + 3s
|
981.8 ¢ to 1028.6 ¢
|
Major 12-mosstep
|
M12ms
|
10L + 2s
|
1028.6 ¢ to 1090.9 ¢
|
13-mosstep
|
Minor 13-mosstep
|
m13ms
|
10L + 3s
|
1090.9 ¢ to 1114.3 ¢
|
Major 13-mosstep
|
M13ms
|
11L + 2s
|
1114.3 ¢ to 1200.0 ¢
|
14-mosstep
|
Perfect 14-mosstep
|
P14ms
|
11L + 3s
|
1200.0 ¢
|
Scale tree
Scale tree and tuning spectrum of 11L 3s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
5\14
|
|
|
|
|
|
428.571
|
771.429
|
1:1
|
1.000
|
Equalized 11L 3s
|
|
|
|
|
|
29\81
|
429.630
|
770.370
|
6:5
|
1.200
|
|
|
|
|
|
24\67
|
|
429.851
|
770.149
|
5:4
|
1.250
|
|
|
|
|
|
|
43\120
|
430.000
|
770.000
|
9:7
|
1.286
|
|
|
|
|
19\53
|
|
|
430.189
|
769.811
|
4:3
|
1.333
|
Supersoft 11L 3s
|
|
|
|
|
|
52\145
|
430.345
|
769.655
|
11:8
|
1.375
|
|
|
|
|
|
33\92
|
|
430.435
|
769.565
|
7:5
|
1.400
|
|
|
|
|
|
|
47\131
|
430.534
|
769.466
|
10:7
|
1.429
|
|
|
|
14\39
|
|
|
|
430.769
|
769.231
|
3:2
|
1.500
|
Soft 11L 3s
|
|
|
|
|
|
51\142
|
430.986
|
769.014
|
11:7
|
1.571
|
|
|
|
|
|
37\103
|
|
431.068
|
768.932
|
8:5
|
1.600
|
|
|
|
|
|
|
60\167
|
431.138
|
768.862
|
13:8
|
1.625
|
|
|
|
|
23\64
|
|
|
431.250
|
768.750
|
5:3
|
1.667
|
Semisoft 11L 3s
|
|
|
|
|
|
55\153
|
431.373
|
768.627
|
12:7
|
1.714
|
|
|
|
|
|
32\89
|
|
431.461
|
768.539
|
7:4
|
1.750
|
|
|
|
|
|
|
41\114
|
431.579
|
768.421
|
9:5
|
1.800
|
|
|
9\25
|
|
|
|
|
432.000
|
768.000
|
2:1
|
2.000
|
Basic 11L 3s Scales with tunings softer than this are proper
|
|
|
|
|
|
40\111
|
432.432
|
767.568
|
9:4
|
2.250
|
|
|
|
|
|
31\86
|
|
432.558
|
767.442
|
7:3
|
2.333
|
|
|
|
|
|
|
53\147
|
432.653
|
767.347
|
12:5
|
2.400
|
|
|
|
|
22\61
|
|
|
432.787
|
767.213
|
5:2
|
2.500
|
Semihard 11L 3s
|
|
|
|
|
|
57\158
|
432.911
|
767.089
|
13:5
|
2.600
|
|
|
|
|
|
35\97
|
|
432.990
|
767.010
|
8:3
|
2.667
|
|
|
|
|
|
|
48\133
|
433.083
|
766.917
|
11:4
|
2.750
|
|
|
|
13\36
|
|
|
|
433.333
|
766.667
|
3:1
|
3.000
|
Hard 11L 3s
|
|
|
|
|
|
43\119
|
433.613
|
766.387
|
10:3
|
3.333
|
|
|
|
|
|
30\83
|
|
433.735
|
766.265
|
7:2
|
3.500
|
|
|
|
|
|
|
47\130
|
433.846
|
766.154
|
11:3
|
3.667
|
|
|
|
|
17\47
|
|
|
434.043
|
765.957
|
4:1
|
4.000
|
Superhard 11L 3s
|
|
|
|
|
|
38\105
|
434.286
|
765.714
|
9:2
|
4.500
|
|
|
|
|
|
21\58
|
|
434.483
|
765.517
|
5:1
|
5.000
|
|
|
|
|
|
|
25\69
|
434.783
|
765.217
|
6:1
|
6.000
|
|
4\11
|
|
|
|
|
|
436.364
|
763.636
|
1:0
|
→ ∞
|
Collapsed 11L 3s
|