9L 1s: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>JosephRuhf **Imported revision 377191732 - Original comment: ** |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(29 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox MOS | |||
| Name = sinatonic | |||
| Periods = 1 | |||
| nLargeSteps = 9 | |||
| nSmallSteps = 1 | |||
| Equalized = 1 | |||
| Collapsed = 1 | |||
| Pattern = LLLLLLLLLs | |||
| | }} | ||
| | {{MOS intro}} It appears as the [[albitonic scale]] in temperaments such as [[Negri]] and [[Twothirdtonic]]. | ||
| | |||
| | |||
| | |||
| | |||
== Names == | |||
The [[TAMNAMS]] system calls this scale pattern '''sinatonic''' after [[sinaic]], a proposed interval category name for [[14/13]]-like intervals that generate the scale. Graham Breed's [[MOS naming]] calls this the "Grumpy" decatonic scale. | |||
== Scale properties == | |||
{{TAMNAMS use}} | |||
=== Intervals === | |||
{{MOS intervals}} | |||
=== Generator chain === | |||
{{MOS genchain}} | |||
=== Modes === | |||
{{MOS mode degrees}} | |||
== Scale tree == | |||
{{MOS tuning spectrum}} | |||
{{Todo|complete table|add examples|improve synopsis|inline=1|text=Populate scale tree}} | |||
[[Category:10-tone scales]] |
Latest revision as of 14:05, 5 May 2025
← 8L 1s | 9L 1s | 10L 1s → |
↙ 8L 2s | ↓ 9L 2s | 10L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║││ ││││││││││││ └┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLLLLLLLLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
9L 1s, named sinatonic in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 9 large steps and 1 small step, repeating every octave. Generators that produce this scale range from 120 ¢ to 133.3 ¢, or from 1066.7 ¢ to 1080 ¢. Scales of this form are always proper because there is only one small step. It appears as the albitonic scale in temperaments such as Negri and Twothirdtonic.
Names
The TAMNAMS system calls this scale pattern sinatonic after sinaic, a proposed interval category name for 14/13-like intervals that generate the scale. Graham Breed's MOS naming calls this the "Grumpy" decatonic scale.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-sinastep | Perfect 0-sinastep | P0sis | 0 | 0.0 ¢ |
1-sinastep | Diminished 1-sinastep | d1sis | s | 0.0 ¢ to 120.0 ¢ |
Perfect 1-sinastep | P1sis | L | 120.0 ¢ to 133.3 ¢ | |
2-sinastep | Minor 2-sinastep | m2sis | L + s | 133.3 ¢ to 240.0 ¢ |
Major 2-sinastep | M2sis | 2L | 240.0 ¢ to 266.7 ¢ | |
3-sinastep | Minor 3-sinastep | m3sis | 2L + s | 266.7 ¢ to 360.0 ¢ |
Major 3-sinastep | M3sis | 3L | 360.0 ¢ to 400.0 ¢ | |
4-sinastep | Minor 4-sinastep | m4sis | 3L + s | 400.0 ¢ to 480.0 ¢ |
Major 4-sinastep | M4sis | 4L | 480.0 ¢ to 533.3 ¢ | |
5-sinastep | Minor 5-sinastep | m5sis | 4L + s | 533.3 ¢ to 600.0 ¢ |
Major 5-sinastep | M5sis | 5L | 600.0 ¢ to 666.7 ¢ | |
6-sinastep | Minor 6-sinastep | m6sis | 5L + s | 666.7 ¢ to 720.0 ¢ |
Major 6-sinastep | M6sis | 6L | 720.0 ¢ to 800.0 ¢ | |
7-sinastep | Minor 7-sinastep | m7sis | 6L + s | 800.0 ¢ to 840.0 ¢ |
Major 7-sinastep | M7sis | 7L | 840.0 ¢ to 933.3 ¢ | |
8-sinastep | Minor 8-sinastep | m8sis | 7L + s | 933.3 ¢ to 960.0 ¢ |
Major 8-sinastep | M8sis | 8L | 960.0 ¢ to 1066.7 ¢ | |
9-sinastep | Perfect 9-sinastep | P9sis | 8L + s | 1066.7 ¢ to 1080.0 ¢ |
Augmented 9-sinastep | A9sis | 9L | 1080.0 ¢ to 1200.0 ¢ | |
10-sinastep | Perfect 10-sinastep | P10sis | 9L + s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
18 | Augmented 8-sinadegree | A8sid |
17 | Augmented 7-sinadegree | A7sid |
16 | Augmented 6-sinadegree | A6sid |
15 | Augmented 5-sinadegree | A5sid |
14 | Augmented 4-sinadegree | A4sid |
13 | Augmented 3-sinadegree | A3sid |
12 | Augmented 2-sinadegree | A2sid |
11 | Augmented 1-sinadegree | A1sid |
10 | Augmented 0-sinadegree | A0sid |
9 | Augmented 9-sinadegree | A9sid |
8 | Major 8-sinadegree | M8sid |
7 | Major 7-sinadegree | M7sid |
6 | Major 6-sinadegree | M6sid |
5 | Major 5-sinadegree | M5sid |
4 | Major 4-sinadegree | M4sid |
3 | Major 3-sinadegree | M3sid |
2 | Major 2-sinadegree | M2sid |
1 | Perfect 1-sinadegree | P1sid |
0 | Perfect 0-sinadegree Perfect 10-sinadegree |
P0sid P10sid |
−1 | Perfect 9-sinadegree | P9sid |
−2 | Minor 8-sinadegree | m8sid |
−3 | Minor 7-sinadegree | m7sid |
−4 | Minor 6-sinadegree | m6sid |
−5 | Minor 5-sinadegree | m5sid |
−6 | Minor 4-sinadegree | m4sid |
−7 | Minor 3-sinadegree | m3sid |
−8 | Minor 2-sinadegree | m2sid |
−9 | Diminished 1-sinadegree | d1sid |
−10 | Diminished 10-sinadegree | d10sid |
−11 | Diminished 9-sinadegree | d9sid |
−12 | Diminished 8-sinadegree | d8sid |
−13 | Diminished 7-sinadegree | d7sid |
−14 | Diminished 6-sinadegree | d6sid |
−15 | Diminished 5-sinadegree | d5sid |
−16 | Diminished 4-sinadegree | d4sid |
−17 | Diminished 3-sinadegree | d3sid |
−18 | Diminished 2-sinadegree | d2sid |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (sinadegree) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
9|0 | 1 | LLLLLLLLLs | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Perf. |
8|1 | 2 | LLLLLLLLsL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
7|2 | 3 | LLLLLLLsLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Perf. | Perf. |
6|3 | 4 | LLLLLLsLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Perf. | Perf. |
5|4 | 5 | LLLLLsLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Perf. | Perf. |
4|5 | 6 | LLLLsLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Perf. | Perf. |
3|6 | 7 | LLLsLLLLLL | Perf. | Perf. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
2|7 | 8 | LLsLLLLLLL | Perf. | Perf. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
1|8 | 9 | LsLLLLLLLL | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
0|9 | 10 | sLLLLLLLLL | Perf. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\10 | 120.000 | 1080.000 | 1:1 | 1.000 | Equalized 9L 1s | |||||
6\59 | 122.034 | 1077.966 | 6:5 | 1.200 | ||||||
5\49 | 122.449 | 1077.551 | 5:4 | 1.250 | ||||||
9\88 | 122.727 | 1077.273 | 9:7 | 1.286 | ||||||
4\39 | 123.077 | 1076.923 | 4:3 | 1.333 | Supersoft 9L 1s | |||||
11\107 | 123.364 | 1076.636 | 11:8 | 1.375 | ||||||
7\68 | 123.529 | 1076.471 | 7:5 | 1.400 | ||||||
10\97 | 123.711 | 1076.289 | 10:7 | 1.429 | ||||||
3\29 | 124.138 | 1075.862 | 3:2 | 1.500 | Soft 9L 1s | |||||
11\106 | 124.528 | 1075.472 | 11:7 | 1.571 | ||||||
8\77 | 124.675 | 1075.325 | 8:5 | 1.600 | ||||||
13\125 | 124.800 | 1075.200 | 13:8 | 1.625 | ||||||
5\48 | 125.000 | 1075.000 | 5:3 | 1.667 | Semisoft 9L 1s | |||||
12\115 | 125.217 | 1074.783 | 12:7 | 1.714 | ||||||
7\67 | 125.373 | 1074.627 | 7:4 | 1.750 | ||||||
9\86 | 125.581 | 1074.419 | 9:5 | 1.800 | ||||||
2\19 | 126.316 | 1073.684 | 2:1 | 2.000 | Basic 9L 1s | |||||
9\85 | 127.059 | 1072.941 | 9:4 | 2.250 | ||||||
7\66 | 127.273 | 1072.727 | 7:3 | 2.333 | ||||||
12\113 | 127.434 | 1072.566 | 12:5 | 2.400 | ||||||
5\47 | 127.660 | 1072.340 | 5:2 | 2.500 | Semihard 9L 1s | |||||
13\122 | 127.869 | 1072.131 | 13:5 | 2.600 | ||||||
8\75 | 128.000 | 1072.000 | 8:3 | 2.667 | ||||||
11\103 | 128.155 | 1071.845 | 11:4 | 2.750 | ||||||
3\28 | 128.571 | 1071.429 | 3:1 | 3.000 | Hard 9L 1s | |||||
10\93 | 129.032 | 1070.968 | 10:3 | 3.333 | ||||||
7\65 | 129.231 | 1070.769 | 7:2 | 3.500 | ||||||
11\102 | 129.412 | 1070.588 | 11:3 | 3.667 | ||||||
4\37 | 129.730 | 1070.270 | 4:1 | 4.000 | Superhard 9L 1s | |||||
9\83 | 130.120 | 1069.880 | 9:2 | 4.500 | ||||||
5\46 | 130.435 | 1069.565 | 5:1 | 5.000 | ||||||
6\55 | 130.909 | 1069.091 | 6:1 | 6.000 | ||||||
1\9 | 133.333 | 1066.667 | 1:0 | → ∞ | Collapsed 9L 1s |