|
|
(12 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Other names = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-10-28 17:54:00 UTC</tt>.<br>
| | | Periods = 2 |
| : The original revision id was <tt>564262007</tt>.<br>
| | | nLargeSteps = 12 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 10 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 2 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This is the MOS where the pattern 6L 5s repeats at the half octave. It is the quartertone scale of Diaschismic temperament and its generator is a diatonic semitone no larger than 2/22edo~1/11edo (109.091 cents), making 5/4 one period minus two generators,
| | | Pattern = LLsLsLsLsLsLLsLsLsLsLs |
| || 2/22 || || || || || 109.091 || | | }} |
| || || || || || 9/100 || 108 || | | {{MOS intro}} |
| || || || || 7/78 || || 107.692 ||
| |
| || || || || || 12/134 || 107.463 ||
| |
| || || || 5/56 || || || 107.143 || | |
| || || || || || || 106.9325 ||
| |
| || || || || || 13/146 || 106.849 ||
| |
| || || || || || || 196.799 ||
| |
| || || || || 8/90 || || 106.667 ||
| |
| || || || || || 11/124 || 106.452 ||
| |
| || || 3/34 || || || || 105.882 ||
| |
| || || || || || 10/114 || 105.263 ||
| |
| || || || || 7/80 || || 105 || | |
| || || || || || || 104.829 || | |
| || || || || || 11/126 || 104.762 || | |
| || || || || || || 104.693 ||
| |
| || || || 4/46 || || || 104.348 ||
| |
| || || || || || || 104.193 ||
| |
| || || || || || 9/104 || 103.846 ||
| |
| || || || || 5/58 || || 103.448 ||
| |
| || || || || || 6/70 || 102.857 ||
| |
| || 1/12 || || || || || 100 ||
| |
| 849</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>12L 10s</title></head><body>This is the MOS where the pattern 6L 5s repeats at the half octave. It is the quartertone scale of Diaschismic temperament and its generator is a diatonic semitone no larger than 2/22edo~1/11edo (109.091 cents), making 5/4 one period minus two generators,<br />
| |
|
| |
|
| | This scale is the [[quartertone]] scale of [[diaschismic]] temperament with [[dark]] generators above 100¢ (around the upper range of a [[diatonic semitone]]). This maps [[5/4]] (386{{c}}) to one period (600{{c}}) minus two dark generators. |
|
| |
|
| <table class="wiki_table">
| | == Modes == |
| <tr>
| | {{MOS modes}} |
| <td>2/22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>109.091<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/100<br />
| |
| </td>
| |
| <td>108<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/78<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>107.692<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12/134<br />
| |
| </td>
| |
| <td>107.463<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/56<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>107.143<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>106.9325<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13/146<br />
| |
| </td>
| |
| <td>106.849<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>196.799<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8/90<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>106.667<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/124<br />
| |
| </td>
| |
| <td>106.452<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>3/34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>105.882<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10/114<br />
| |
| </td>
| |
| <td>105.263<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7/80<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>105<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.829<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11/126<br />
| |
| </td>
| |
| <td>104.762<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.693<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4/46<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.348<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.193<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9/104<br />
| |
| </td>
| |
| <td>103.846<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5/58<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>103.448<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6/70<br />
| |
| </td>
| |
| <td>102.857<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1/12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| 849</body></html></pre></div>
| | == Intervals == |
| | {{MOS intervals}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 7/2 = [[Diaschismic]] |
| | }} |
| | |
| | {{todo|expand}} |
12L 10s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 10 small steps, with a period of 6 large steps and 5 small steps that repeats every 600.0 ¢, or twice every octave. 12L 10s is a grandchild scale of 2L 8s, expanding it by 12 tones. Generators that produce this scale range from 490.9 ¢ to 500 ¢, or from 100 ¢ to 109.1 ¢.
This scale is the quartertone scale of diaschismic temperament with dark generators above 100¢ (around the upper range of a diatonic semitone). This maps 5/4 (386 ¢) to one period (600 ¢) minus two dark generators.
Modes
Modes of 12L 10s
UDP |
Cyclic order |
Step pattern
|
20|0(2) |
1 |
LLsLsLsLsLsLLsLsLsLsLs
|
18|2(2) |
10 |
LsLLsLsLsLsLsLLsLsLsLs
|
16|4(2) |
8 |
LsLsLLsLsLsLsLsLLsLsLs
|
14|6(2) |
6 |
LsLsLsLLsLsLsLsLsLLsLs
|
12|8(2) |
4 |
LsLsLsLsLLsLsLsLsLsLLs
|
10|10(2) |
2 |
LsLsLsLsLsLLsLsLsLsLsL
|
8|12(2) |
11 |
sLLsLsLsLsLsLLsLsLsLsL
|
6|14(2) |
9 |
sLsLLsLsLsLsLsLLsLsLsL
|
4|16(2) |
7 |
sLsLsLLsLsLsLsLsLLsLsL
|
2|18(2) |
5 |
sLsLsLsLLsLsLsLsLsLLsL
|
0|20(2) |
3 |
sLsLsLsLsLLsLsLsLsLsLL
|
Intervals
Intervals of 12L 10s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Minor 1-mosstep
|
m1ms
|
s
|
0.0 ¢ to 54.5 ¢
|
Major 1-mosstep
|
M1ms
|
L
|
54.5 ¢ to 100.0 ¢
|
2-mosstep
|
Perfect 2-mosstep
|
P2ms
|
L + s
|
100.0 ¢ to 109.1 ¢
|
Augmented 2-mosstep
|
A2ms
|
2L
|
109.1 ¢ to 200.0 ¢
|
3-mosstep
|
Minor 3-mosstep
|
m3ms
|
L + 2s
|
100.0 ¢ to 163.6 ¢
|
Major 3-mosstep
|
M3ms
|
2L + s
|
163.6 ¢ to 200.0 ¢
|
4-mosstep
|
Minor 4-mosstep
|
m4ms
|
2L + 2s
|
200.0 ¢ to 218.2 ¢
|
Major 4-mosstep
|
M4ms
|
3L + s
|
218.2 ¢ to 300.0 ¢
|
5-mosstep
|
Minor 5-mosstep
|
m5ms
|
2L + 3s
|
200.0 ¢ to 272.7 ¢
|
Major 5-mosstep
|
M5ms
|
3L + 2s
|
272.7 ¢ to 300.0 ¢
|
6-mosstep
|
Minor 6-mosstep
|
m6ms
|
3L + 3s
|
300.0 ¢ to 327.3 ¢
|
Major 6-mosstep
|
M6ms
|
4L + 2s
|
327.3 ¢ to 400.0 ¢
|
7-mosstep
|
Minor 7-mosstep
|
m7ms
|
3L + 4s
|
300.0 ¢ to 381.8 ¢
|
Major 7-mosstep
|
M7ms
|
4L + 3s
|
381.8 ¢ to 400.0 ¢
|
8-mosstep
|
Minor 8-mosstep
|
m8ms
|
4L + 4s
|
400.0 ¢ to 436.4 ¢
|
Major 8-mosstep
|
M8ms
|
5L + 3s
|
436.4 ¢ to 500.0 ¢
|
9-mosstep
|
Diminished 9-mosstep
|
d9ms
|
4L + 5s
|
400.0 ¢ to 490.9 ¢
|
Perfect 9-mosstep
|
P9ms
|
5L + 4s
|
490.9 ¢ to 500.0 ¢
|
10-mosstep
|
Minor 10-mosstep
|
m10ms
|
5L + 5s
|
500.0 ¢ to 545.5 ¢
|
Major 10-mosstep
|
M10ms
|
6L + 4s
|
545.5 ¢ to 600.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
6L + 5s
|
600.0 ¢
|
12-mosstep
|
Minor 12-mosstep
|
m12ms
|
6L + 6s
|
600.0 ¢ to 654.5 ¢
|
Major 12-mosstep
|
M12ms
|
7L + 5s
|
654.5 ¢ to 700.0 ¢
|
13-mosstep
|
Perfect 13-mosstep
|
P13ms
|
7L + 6s
|
700.0 ¢ to 709.1 ¢
|
Augmented 13-mosstep
|
A13ms
|
8L + 5s
|
709.1 ¢ to 800.0 ¢
|
14-mosstep
|
Minor 14-mosstep
|
m14ms
|
7L + 7s
|
700.0 ¢ to 763.6 ¢
|
Major 14-mosstep
|
M14ms
|
8L + 6s
|
763.6 ¢ to 800.0 ¢
|
15-mosstep
|
Minor 15-mosstep
|
m15ms
|
8L + 7s
|
800.0 ¢ to 818.2 ¢
|
Major 15-mosstep
|
M15ms
|
9L + 6s
|
818.2 ¢ to 900.0 ¢
|
16-mosstep
|
Minor 16-mosstep
|
m16ms
|
8L + 8s
|
800.0 ¢ to 872.7 ¢
|
Major 16-mosstep
|
M16ms
|
9L + 7s
|
872.7 ¢ to 900.0 ¢
|
17-mosstep
|
Minor 17-mosstep
|
m17ms
|
9L + 8s
|
900.0 ¢ to 927.3 ¢
|
Major 17-mosstep
|
M17ms
|
10L + 7s
|
927.3 ¢ to 1000.0 ¢
|
18-mosstep
|
Minor 18-mosstep
|
m18ms
|
9L + 9s
|
900.0 ¢ to 981.8 ¢
|
Major 18-mosstep
|
M18ms
|
10L + 8s
|
981.8 ¢ to 1000.0 ¢
|
19-mosstep
|
Minor 19-mosstep
|
m19ms
|
10L + 9s
|
1000.0 ¢ to 1036.4 ¢
|
Major 19-mosstep
|
M19ms
|
11L + 8s
|
1036.4 ¢ to 1100.0 ¢
|
20-mosstep
|
Diminished 20-mosstep
|
d20ms
|
10L + 10s
|
1000.0 ¢ to 1090.9 ¢
|
Perfect 20-mosstep
|
P20ms
|
11L + 9s
|
1090.9 ¢ to 1100.0 ¢
|
21-mosstep
|
Minor 21-mosstep
|
m21ms
|
11L + 10s
|
1100.0 ¢ to 1145.5 ¢
|
Major 21-mosstep
|
M21ms
|
12L + 9s
|
1145.5 ¢ to 1200.0 ¢
|
22-mosstep
|
Perfect 22-mosstep
|
P22ms
|
12L + 10s
|
1200.0 ¢
|
Scale tree
Scale tree and tuning spectrum of 12L 10s
Generator(edo)
|
Cents
|
Step ratio
|
Comments
|
Bright
|
Dark
|
L:s
|
Hardness
|
9\22
|
|
|
|
|
|
490.909
|
109.091
|
1:1
|
1.000
|
Equalized 12L 10s
|
|
|
|
|
|
50\122
|
491.803
|
108.197
|
6:5
|
1.200
|
|
|
|
|
|
41\100
|
|
492.000
|
108.000
|
5:4
|
1.250
|
|
|
|
|
|
|
73\178
|
492.135
|
107.865
|
9:7
|
1.286
|
|
|
|
|
32\78
|
|
|
492.308
|
107.692
|
4:3
|
1.333
|
Supersoft 12L 10s
|
|
|
|
|
|
87\212
|
492.453
|
107.547
|
11:8
|
1.375
|
|
|
|
|
|
55\134
|
|
492.537
|
107.463
|
7:5
|
1.400
|
|
|
|
|
|
|
78\190
|
492.632
|
107.368
|
10:7
|
1.429
|
|
|
|
23\56
|
|
|
|
492.857
|
107.143
|
3:2
|
1.500
|
Soft 12L 10s
|
|
|
|
|
|
83\202
|
493.069
|
106.931
|
11:7
|
1.571
|
|
|
|
|
|
60\146
|
|
493.151
|
106.849
|
8:5
|
1.600
|
|
|
|
|
|
|
97\236
|
493.220
|
106.780
|
13:8
|
1.625
|
|
|
|
|
37\90
|
|
|
493.333
|
106.667
|
5:3
|
1.667
|
Semisoft 12L 10s
|
|
|
|
|
|
88\214
|
493.458
|
106.542
|
12:7
|
1.714
|
|
|
|
|
|
51\124
|
|
493.548
|
106.452
|
7:4
|
1.750
|
|
|
|
|
|
|
65\158
|
493.671
|
106.329
|
9:5
|
1.800
|
|
|
14\34
|
|
|
|
|
494.118
|
105.882
|
2:1
|
2.000
|
Basic 12L 10s Scales with tunings softer than this are proper
|
|
|
|
|
|
61\148
|
494.595
|
105.405
|
9:4
|
2.250
|
|
|
|
|
|
47\114
|
|
494.737
|
105.263
|
7:3
|
2.333
|
|
|
|
|
|
|
80\194
|
494.845
|
105.155
|
12:5
|
2.400
|
|
|
|
|
33\80
|
|
|
495.000
|
105.000
|
5:2
|
2.500
|
Semihard 12L 10s
|
|
|
|
|
|
85\206
|
495.146
|
104.854
|
13:5
|
2.600
|
|
|
|
|
|
52\126
|
|
495.238
|
104.762
|
8:3
|
2.667
|
|
|
|
|
|
|
71\172
|
495.349
|
104.651
|
11:4
|
2.750
|
|
|
|
19\46
|
|
|
|
495.652
|
104.348
|
3:1
|
3.000
|
Hard 12L 10s
|
|
|
|
|
|
62\150
|
496.000
|
104.000
|
10:3
|
3.333
|
|
|
|
|
|
43\104
|
|
496.154
|
103.846
|
7:2
|
3.500
|
Diaschismic
|
|
|
|
|
|
67\162
|
496.296
|
103.704
|
11:3
|
3.667
|
|
|
|
|
24\58
|
|
|
496.552
|
103.448
|
4:1
|
4.000
|
Superhard 12L 10s
|
|
|
|
|
|
53\128
|
496.875
|
103.125
|
9:2
|
4.500
|
|
|
|
|
|
29\70
|
|
497.143
|
102.857
|
5:1
|
5.000
|
|
|
|
|
|
|
34\82
|
497.561
|
102.439
|
6:1
|
6.000
|
|
5\12
|
|
|
|
|
|
500.000
|
100.000
|
1:0
|
→ ∞
|
Collapsed 12L 10s
|