Interseptimal

From Xenharmonic Wiki
Jump to navigation Jump to search

In the theory of Margo Schulter, interseptimal is a category of intervals which occupy regions intermediate between two septimal ratios such as 8/7 and 7/6, or 12/7 and 7/4. There are four interseptimal regions given below, with approximate cents ranges from Schulter's article Regions of the Interval Spectrum:

  • Maj2–min3 – intermediate between 8/7 and 7/6 – 240¢–260¢
  • Maj3–4 – intermediate between 9/7 and 21/16 – 440¢–468¢
  • 5–min6 – intermediate between 32/21 and 14/9 – 732¢–760¢
  • Maj6–min7 – intermediate between 12/7 and 7/4 – 940¢–960¢

Interseptimal intervals are well-represented in 24edo at 250¢, 450¢, 750¢ and 950¢. They also appear in 19edo and 29edo.

As they fall in ambiguous zones between simpler categories, they are inevitably xenharmonic. This also makes them difficult to name: do we classify a 250-cent interval as a second, a third, both, or neither? One option is to give each region a distinct name (analogous to using the word tritone rather than diminished fifth or augmented fourth). Possible names that could be used are:

  • 240¢–260¢ – semifourth – an interval of this size is around half the size of a perfect fourth.
  • 440¢–468¢ – semisixth – an interval of this size is around half the size of a major sixth.
    • The term naiadic (from naiad, a kind of ancient Greek water spirit) refers to the 440c–464c region by Zhea Erose, who uses it frequently.
  • 732¢–760¢ – semitenth – an interval of this size is around half the size of a minor tenth (i. e., an octave plus a minor third). Another possible name is sesquifourth (since this is also about one and a half times the size of a perfect fourth).
  • 940¢–960¢ – semitwelfth – an interval of this size is around half the size of a perfect twelfth (i.e. a compound perfect fifth, or tritave). All even edts have a semitwelfth of approximately 951 cents, analogous to the 600 cent tritone shared by all even edos.

This makes notating these intervals very easy as long as we have an agreed-upon symbol for "semi".

By analogy the tritone could also be called a semioctave, although the term tritone is so well-established that seems is little reason to change it now. A key difference is that the tritone is intermediate between two septimal ratios separated by a jubilisma (50/49), whereas the other interseptimal ranges listed above are between two septimal ratios separated by a slendro diesis (49/48).

Examples

Some interseptimal intervals in all four ranges, both just and tempered, are listed below.

Maj2–min3 – 240-260¢

Interval Cents Value Prime Limit (if applicable)
147/128 239.607 7
1\5 240.000 -
54/47 240.358 47
23/20 241.961 23
1152/1001 243.238 13
38/33 244.240 19
144/125 244.969 5
15/13 247.741 13
6\29 248.276 -
5\24 250.000 -
52/45 250.304 13
37/32 251.344 37
81/70 252.680 7
4\19 252.632 -
22/19 253.805 19
29/25 256.950 29
3\14 257.143 -
297/256 257.183 11
36/31 258.874 31
5\23 260.870 -

Maj3–4 – 440-468¢

Interval Cents Value Prime Limit (if applicable)
5\88cET or 11\30 440.000 -
40/31 441.278 31
7\19 442.015 -
31/24 443.081 31
10\27 444.444 -
22/17 446.363 17
35/27 449.275 7
3\8 450.000 -
48/37 450.611 37
13/10 454.214 13
11\29 455.172 -
125/96 456.986 5
8\21 457.143 -
56/43 457.308 43
43/33 458.245 43
30/23 459.994 23
5\13 461.538 -
47/36 461.597 47
64/49 462.348 7
98/75 463.069 7
17/13 464.428 17
12\31 464.516 -
7\18 466.667 -
38/29 467.936 29

5–min6 – 732-760¢

Interval Cents Value Prime Limit (if applicable)
5\Bohlen-Pierce 731.521 -
29/19 732.064 29
11\18 733.333 -
19\31 735.484 -
26/17 735.572 17
49/75 736.931 7
49/32 737.652 7
72/47 738.403 47
23/15 740.006 23
66/43 741.755 43
43/28 742.692 43
13\21 742.857 -
182/125 743.014 5
18\29 744.828 -
20/13 745.786 13
37/24 749.389 37
5\8 750.000 -
54/35 750.725 7
17/11 753.637 17
17\27 755.556 -
48/31 756.919 31
12\19 757.895 -
31/20 758.722 31
19\30 760.000 -

Maj6–min7 – 940-960¢

Interval Cents Value Prime Limit (if applicable)
18\23 939.130 -
31/18 941.126 31
512/297 942.817 11
11\14 942.857 -
50/29 943.050 29
19/11 946.195 19
140/81 947.320 7
15\19 947.368 -
64/37 948.656 37
45/26 949.696 13
19\24 950.000 -
23\29 951.724 -
26/15 952.259 13
125/72 955.031 5
33/19 955.760 19
1001/576 956.762 13
40/23 958.039 23
47/27 959.642 47
4\5 960.000 -
256/147 960.393 7

See also

Notes

  1. Flora Canou criticizes semisixth and semitenth as they fail to make clear whether the interval to be split is major or minor, and prefers naiadic and cocytic.