Equable heptatonic

From Xenharmonic Wiki
Jump to navigation Jump to search

In the theory of Margo Schulter, equable heptatonic is a category of intervals which occupy regions intermediate between 11/10 and 10/9, or 9/5 and 20/11. There are two heartland regions given below, with approximate cents ranges from Schulter's article Regions of the Interval Spectrum:

  • Neut2–Maj2 – intermediate between 11/10 and 10/9 – 160¢–182¢ (~submajor second)
  • min7–Neut7 – intermediate between 9/5 and 20/11 – 1018¢–1040¢ (~supraminor seventh)

Equable heptatonic intervals are well-represented in 7edo at 171.429¢ (1\7) and 1028.571¢ (6\7). They also appear in 27edo, 34edo and 41edo. As they fall in ambiguous zones between simpler categories, they are inevitably xenharmonic.

Examples

Some equable heptatonic intervals in all two ranges, both just and tempered, are listed below.

Neut2–Maj2 (submajor second)

Interval Cents Value Prime Limit (if applicable)
34/31 159.920 31
2\15 160.000 -
79/72 160.627 79
45/41 161.161 41
7\52 161.538 -
101/92 161.579 101
56/51 161.915 17
5\37 162.162 -
67/61 162.422 67
78/71 162.786 71
89/81 163.060 89
100/91 163.274 13
3\22 163.636 -
7\51 164.706 -
11/10 165.004 11
4\29 165.517 -
5\36 166.667 -
98/89 166.772 89
87/79 166.995 79
76/69 167.284 23
6\43 167.442 -
65/59 167.670 59
7\50 168.000 -
54/49 168.213 7
97/88 168.577 97
43/39 169.035 43
75/68 169.627 17
32/29 170.423 29
85/77 171.125 17
1\7 171.429 -
53/48 171.550 53
74/67 172.037 67
95/86 172.309 43
21/19 173.268 19
94/85 174.237 47
73/66 174.517 77
7\48 175.000 -
52/47 175.021 47
83/75 175.465 83
6\41 175.610 -
31/28 176.210 31
5\34 176.471 -
72/65 177.069 13
41/37 177.718 41
4\27 177.778 -
92/83 178.227 83
51/46 178.636 23
7\47 178.723 -
61/55 179.253 61
71/64 179.697 71
3\20 180.000 -
81/73 180.031 73
91/82 180.291 41
5\33 181.818 -
10/9 182.404 5
7\46 182.609 -
2\13 184.615 -

min7–Neut7 (supraminor seventh)

Interval Cents Value Prime Limit (if applicable)
11\13 1015.385 -
39\46 1017.391 -
9/5 1017.596 5
28\33 1018.182 -
17\20 1020.000 -
40\47 1021.277 -
92/51 1021.364 23
83/46 1021.773 83
23\27 1022.222 -
74/41 1022.282 41
65/36 1022.931 13
29\34 1023.529 -
56/31 1023.790 31
35\41 1024.390 -
47/26 1024.979 47
41\48 1025.000 -
85/47 1025.763 47
38/21 1026.732 19
67/37 1027.963 67
6\7 1028.571 -
29/16 1029.577 29
78/43 1030.965 43
49/27 1031.787 7
43\50 1032.000 -
69/38 1032.716 23
37\43 1032.558 -
89/49 1033.228 89
31\36 1033.333 -
25\29 1034.483 -
20/11 1034.996 11
44\51 1035.294 -
19\22 1036.364 -
91/50 1036.726 13
71/39 1037.214 71
32\37 1037.838 -
51/28 1038.085 17
45\52 1038.462 -
82/45 1038.839 41
13\15 1040.000 -
31/17 1040.080 31

See also