Octave (interval region)

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is about the interval region. For the octave as a just ratio, see 2/1.
English Wikipedia has an article on:

A perfect octave (P8) or octave (8ve) is an interval that is approximately 1200 cents in size. While a rough tuning range for octaves is sharper than 1170 cents according to Margo Schulter's theory of interval regions, the term octave tends to imply a function within music that only works with intervals that corresponding to a just ratio of 2/1 or a close approximation thereof, usually preferred to be sharp-tempered if tempered. Other intervals are also classified as octaves, sometimes called wolf octaves or imperfect octaves, if they are reasonably mapped to seven steps of the diatonic scale and twelve steps of the chromatic scale, reflecting the period and equave of both. Enharmonic intervals may be found at multiples of 12 steps along the chain of fifths, such as the diminished ninth (mapped to 8\7) and augmented seventh (6\7).

The aforementioned function is the interval of equivalence, or equave, because tones separated by an octave are perceived to have the same or similar pitch class to the average human listener. The reason for this phenomenon is probably due to the strong concordance of the octave or the strong amplitude of the second harmonic in most harmonic instruments. As such, it is common practice to octave-reduce intervals so that they lie within the octave.

Because of that, this page only covers intervals of 1200 cents and flatter, as sharper intervals octave-reduce to commas and dieses.

For the sake of simplicity, this page also covers interseptimal seventh-octaves, which are approximately 1150 cents in size and are the complements of dieses. Thus, the interval region considered as "octave" for the purpose of this page is 1140-1200 cents.

In just intonation

By prime limit

The only "perfect" octave is the interval 2/1, which can be stacked to produce all other 2-limit intervals. It is 1200 cents in size, by definition. However, various "out-of-tune" octaves exist, usually flat or sharp of an octave by a small interval such as a comma.

Several notable ones are:

Interval Prime
limit
Distance
from 2/1
Comma
1048576/531441 3 23.4600 531441/524288
160/81 5 21.5063 81/80
125/64 5 41.0589 128/125
125/63 7 13.7948 126/125
63/32 7 27.2641 64/63
49/25 7 34.9756 50/49
96/49 7 35.6968 49/48
35/18 7 48.7704 36/35
64/33 11 53.2729 33/32
33/17 17 51.6825 34/33

In tempered scales

As the just octave of 2/1 is the interval being equally divided in EDOs, it is represented perfectly in all of them. It is also represented perfectly in all octave-period MOSes. Note both of these statements assume the octave is untempered. The following table lists other octave-sized intervals (> 1140 cents) that exist in various significant EDOs.

EDO Suboctaves
22 1145 ¢
24 1150 ¢
25 1152 ¢
26 1154 ¢
27 1156 ¢
29 1159 ¢
31 1161 ¢
34 1165 ¢
41 1142 ¢, 1171 ¢
53 1155 ¢, 1177 ¢

2/1 is also represented perfectly in most temperaments, or the most common tunings thereof, and is mainly involved in octave-reducing intervals (such as saying that, in meantone, four 3/2s (octave-reduced) stack to 5/4).

See also


ViewTalkEditInterval classification
Seconds and thirds UnisonComma and diesisSemitoneNeutral secondMajor second • (Interseptimal second-third) • Minor thirdNeutral thirdMajor third
Fourths and fifths (Interseptimal third-fourth) • Perfect fourthSuperfourthTritoneSubfifthPerfect fifth • (Interseptimal fifth-sixth)
Sixths and sevenths Minor sixthNeutral sixthMajor sixth • (Interseptimal sixth-seventh) • Minor seventhNeutral seventhMajor seventhOctave
Diatonic qualities DiminishedMinorPerfectMajorAugmented
Tuning ranges Neutral (interval quality)Submajor and supraminorPental major and minorNovamajor and novaminorNeogothic major and minorSupermajor and subminorUltramajor and inframinor