7L 6s
↖ 6L 5s | ↑ 7L 5s | 8L 5s ↗ |
← 6L 6s | 7L 6s | 8L 6s → |
↙ 6L 7s | ↓ 7L 7s | 8L 7s ↘ |
┌╥╥┬╥┬╥┬╥┬╥┬╥┬┐ │║║│║│║│║│║│║││ │││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sLsLsLsLsLsLL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
7L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 6 small steps, repeating every octave. 7L 6s is a child scale of 6L 1s, expanding it by 6 tones. Generators that produce this scale range from 1015.4 ¢ to 1028.6 ¢, or from 171.4 ¢ to 184.6 ¢.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
MOS data is deprecated. Please use the following templates individually: MOS intervals, MOS genchain, and MOS mode degrees |
Tuning spectrum
Enipucrop range. See also 7L 6s, 7L 13s, and 13L 7s.
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
11\13 | 1015.385 | 184.615 | 1:1 | 1.000 | Equalized 7L 6s | |||||
61\72 | 1016.667 | 183.333 | 6:5 | 1.200 | ||||||
50\59 | 1016.949 | 183.051 | 5:4 | 1.250 | ||||||
89\105 | 1017.143 | 182.857 | 9:7 | 1.286 | ||||||
39\46 | 1017.391 | 182.609 | 4:3 | 1.333 | Supersoft 7L 6s Mitonic | |||||
106\125 | 1017.600 | 182.400 | 11:8 | 1.375 | ||||||
67\79 | 1017.722 | 182.278 | 7:5 | 1.400 | ||||||
95\112 | 1017.857 | 182.143 | 10:7 | 1.429 | ||||||
28\33 | 1018.182 | 181.818 | 3:2 | 1.500 | Soft 7L 6s | |||||
101\119 | 1018.487 | 181.513 | 11:7 | 1.571 | ||||||
73\86 | 1018.605 | 181.395 | 8:5 | 1.600 | ||||||
118\139 | 1018.705 | 181.295 | 13:8 | 1.625 | ||||||
45\53 | 1018.868 | 181.132 | 5:3 | 1.667 | Semisoft 7L 6s | |||||
107\126 | 1019.048 | 180.952 | 12:7 | 1.714 | ||||||
62\73 | 1019.178 | 180.822 | 7:4 | 1.750 | ||||||
79\93 | 1019.355 | 180.645 | 9:5 | 1.800 | ||||||
17\20 | 1020.000 | 180.000 | 2:1 | 2.000 | Basic 7L 6s Scales with tunings softer than this are proper | |||||
74\87 | 1020.690 | 179.310 | 9:4 | 2.250 | ||||||
57\67 | 1020.896 | 179.104 | 7:3 | 2.333 | ||||||
97\114 | 1021.053 | 178.947 | 12:5 | 2.400 | ||||||
40\47 | 1021.277 | 178.723 | 5:2 | 2.500 | Semihard 7L 6s | |||||
103\121 | 1021.488 | 178.512 | 13:5 | 2.600 | ||||||
63\74 | 1021.622 | 178.378 | 8:3 | 2.667 | ||||||
86\101 | 1021.782 | 178.218 | 11:4 | 2.750 | ||||||
23\27 | 1022.222 | 177.778 | 3:1 | 3.000 | Hard 7L 6s | |||||
75\88 | 1022.727 | 177.273 | 10:3 | 3.333 | Wollemia, Ponens | |||||
52\61 | 1022.951 | 177.049 | 7:2 | 3.500 | Modus | |||||
81\95 | 1023.158 | 176.842 | 11:3 | 3.667 | ||||||
29\34 | 1023.529 | 176.471 | 4:1 | 4.000 | Superhard 7L 6s Tetracot is in this range | |||||
64\75 | 1024.000 | 176.000 | 9:2 | 4.500 | ||||||
35\41 | 1024.390 | 175.610 | 5:1 | 5.000 | Sesquiquartififths, Monkey, Bunya | |||||
41\48 | 1025.000 | 175.000 | 6:1 | 6.000 | ||||||
6\7 | 1028.571 | 171.429 | 1:0 | → ∞ | Collapsed 7L 6s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |