Ragismic microtemperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Chlorine: normalize mappings and generators
Xenllium (talk | contribs)
mNo edit summary
Line 34: Line 34:


Ennealimmal extensions discussed elsewhere include [[Compton family #Omicronbeta|omicronbeta]], [[Tritrizo clan #Undecentic|undecentic]], [[Tritrizo clan #Schisennealimmal|schisennealimmal]], and [[Tritrizo clan #Lunennealimmal|lunennealimmal]].
Ennealimmal extensions discussed elsewhere include [[Compton family #Omicronbeta|omicronbeta]], [[Tritrizo clan #Undecentic|undecentic]], [[Tritrizo clan #Schisennealimmal|schisennealimmal]], and [[Tritrizo clan #Lunennealimmal|lunennealimmal]].


Subgroup: 2.3.5.7
Subgroup: 2.3.5.7
Line 69: Line 68:
POTE generator: ~5/3 = 884.4679
POTE generator: ~5/3 = 884.4679


Vals: {{Val list| 99e, 171e, 270, 909, 1179, 1449c, 1719c }}
Optimal GPV sequence: {{Val list| 99e, 171e, 270, 909, 1179, 1449c, 1719c }}


Badness: 0.027332
Badness: 0.027332
Line 82: Line 81:
POTE generator: ~5/3 = 884.4304
POTE generator: ~5/3 = 884.4304


Vals: {{Val list| 99e, 171e, 270 }}
Optimal GPV sequence: {{Val list| 99e, 171e, 270 }}


Badness: 0.029404
Badness: 0.029404
Line 97: Line 96:
POTE generator: ~5/3 = 884.4089
POTE generator: ~5/3 = 884.4089


Vals: {{Val list| 99, 171, 270, 711, 981, 1251, 2232e }}
Optimal GPV sequence: {{Val list| 99, 171, 270, 711, 981, 1251, 2232e }}


Badness: 0.026463
Badness: 0.026463
Line 110: Line 109:
POTE generator: ~5/3 = 884.3997
POTE generator: ~5/3 = 884.3997


Vals: {{Val list| 99, 171, 270, 711, 981, 1692e, 2673e }}
Optimal GPV sequence: {{Val list| 99, 171, 270, 711, 981, 1692e, 2673e }}


Badness: 0.016607
Badness: 0.016607
Line 130: Line 129:
* 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]
* 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]


Vals: {{Val list| 72, 171, 243 }}
Optimal GPV sequence: {{Val list| 72, 171, 243 }}


Badness: 0.020347
Badness: 0.020347
Line 148: Line 147:
* 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]
* 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]


Vals: {{Val list| 72, 171, 243 }}
Optimal GPV sequence: {{Val list| 72, 171, 243 }}


Badness: 0.023250
Badness: 0.023250
Line 166: Line 165:
* 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]
* 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]


Vals: {{Val list| 72, 171, 243 }}
Optimal GPV sequence: {{Val list| 72, 171, 243 }}


Badness: 0.014602
Badness: 0.014602
Line 179: Line 178:
POTE generator: ~5/3 = 883.6257
POTE generator: ~5/3 = 883.6257


Vals: {{Val list| 27e, 45ef, 72 }}
Optimal GPV sequence: {{Val list| 27e, 45ef, 72 }}


Badness: 0.020697
Badness: 0.020697
Line 192: Line 191:
POTE generator: ~5/3 = 883.8298
POTE generator: ~5/3 = 883.8298


Vals: {{Val list| 27, 45, 72, 171e, 243e, 315e }}
Optimal GPV sequence: {{Val list| 27, 45, 72, 171e, 243e, 315e }}


Badness: 0.031123
Badness: 0.031123
Line 205: Line 204:
POTE generator: ~5/3 = 883.8476
POTE generator: ~5/3 = 883.8476


Vals: {{Val list| 27, 45f, 72, 171ef, 243ef }}
Optimal GPV sequence: {{Val list| 27, 45f, 72, 171ef, 243ef }}


Badness: 0.030325
Badness: 0.030325
Line 227: Line 226:
* 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]
* 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]


Vals: {{Val list| 72, 198, 270, 342, 612, 954, 1566 }}
Optimal GPV sequence: {{Val list| 72, 198, 270, 342, 612, 954, 1566 }}


Badness: 0.006283
Badness: 0.006283
Line 248: Line 247:
* 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]
* 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]


Vals: {{Val list| 72, 198, 270 }}
Optimal GPV sequence: {{Val list| 72, 198, 270 }}


Badness: 0.012505
Badness: 0.012505
Line 263: Line 262:
POTE generator: ~1053/800 = 475.4727
POTE generator: ~1053/800 = 475.4727


Vals: {{Val list| 126, 144, 270, 684, 954 }}
Optimal GPV sequence: {{Val list| 126, 144, 270, 684, 954 }}


Badness: 0.013104
Badness: 0.013104
Line 280: Line 279:
POTE generator: ~140/121 = 250.3367
POTE generator: ~140/121 = 250.3367


Vals: {{Val list| 72, 369, 441 }}
Optimal GPV sequence: {{Val list| 72, 369, 441 }}


Badness: 0.034196
Badness: 0.034196
Line 293: Line 292:
POTE generator: ~140/121 = 250.3375
POTE generator: ~140/121 = 250.3375


Vals: {{Val list| 72, 297ef, 369f, 441 }}
Optimal GPV sequence: {{Val list| 72, 297ef, 369f, 441 }}


Badness: 0.026122
Badness: 0.026122
Line 308: Line 307:
POTE generator: ~25/22 = 221.0717
POTE generator: ~25/22 = 221.0717


Vals: {{Val list| 342, 1053, 1395, 1737, 4869dd, 6606cdd }}
Optimal GPV sequence: {{Val list| 342, 1053, 1395, 1737, 4869dd, 6606cdd }}


Badness: 0.021320
Badness: 0.021320
Line 323: Line 322:
POTE generator: ~2352/1375 = 928.8000
POTE generator: ~2352/1375 = 928.8000


Vals: {{Val list| 27, 243, 270, 783, 1053, 1323 }}
Optimal GPV sequence: {{Val list| 27, 243, 270, 783, 1053, 1323 }}


Badness: 0.029812
Badness: 0.029812
Line 351: Line 350:
POTE generator: ~8/7 = 230.3370
POTE generator: ~8/7 = 230.3370


Vals: {{Val list| 26, 198, 224, 422, 646, 1068d }}
Optimal GPV sequence: {{Val list| 26, 198, 224, 422, 646, 1068d }}


Badness: 0.040955
Badness: 0.040955
Line 364: Line 363:
POTE generator: ~8/7 = 230.3373
POTE generator: ~8/7 = 230.3373


Vals: {{Val list| 26, 198, 224, 422, 646f, 1068df }}
Optimal GPV sequence: {{Val list| 26, 198, 224, 422, 646f, 1068df }}


Badness: 0.020416
Badness: 0.020416
Line 370: Line 369:
== Supermajor ==
== Supermajor ==
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of {{multival|37 46 75 -13 15 45}}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of {{multival|37 46 75 -13 15 45}}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.


Subgroup: 2.3.5.7
Subgroup: 2.3.5.7
Line 395: Line 393:
POTE generator: ~9/7 = 435.082
POTE generator: ~9/7 = 435.082


EDOs: {{Val list| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}
Optimal GPV sequence: {{Val list| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}


Badness: 0.012773
Badness: 0.012773
Line 401: Line 399:
== Enneadecal ==
== Enneadecal ==
Enneadecal temperament tempers out the enneadeca, {{monzo|-14 -19 19}}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of [[19edo|19EDO]] up to just ones. [[171edo|171EDO]] is a good tuning for either the 5 or 7 limits, and [[494edo|494EDO]] shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo|665EDO]] for a tuning.
Enneadecal temperament tempers out the enneadeca, {{monzo|-14 -19 19}}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of [[19edo|19EDO]] up to just ones. [[171edo|171EDO]] is a good tuning for either the 5 or 7 limits, and [[494edo|494EDO]] shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo|665EDO]] for a tuning.


Subgroup: 2.3.5.7
Subgroup: 2.3.5.7
Line 428: Line 425:
POTE generator: ~3/2 = 702.360
POTE generator: ~3/2 = 702.360


Vals: {{Val list| 19, 152, 323e, 475de, 627de }}
Optimal GPV sequence: {{Val list| 19, 152, 323e, 475de, 627de }}


Badness: 0.043734
Badness: 0.043734
Line 441: Line 438:
POTE generator: ~3/2 = 702.212
POTE generator: ~3/2 = 702.212


Vals: {{Val list| 19, 152f, 323e }}
Optimal GPV sequence: {{Val list| 19, 152f, 323e }}


Badness: 0.033545
Badness: 0.033545
Line 454: Line 451:
POTE generator: ~3/2 = 701.881
POTE generator: ~3/2 = 701.881


Vals: {{Val list| 152, 342, 494, 836, 1178, 2014 }}
Optimal GPV sequence: {{Val list| 152, 342, 494, 836, 1178, 2014 }}


Badness: 0.009985
Badness: 0.009985
Line 467: Line 464:
POTE generator: ~3/2 = 701.986
POTE generator: ~3/2 = 701.986


Vals: {{Val list| 152, 342, 494, 836 }}
Optimal GPV sequence: {{Val list| 152, 342, 494, 836 }}


Badness: 0.030391
Badness: 0.030391
Line 497: Line 494:
POTE generator: ~6/5 = 315.582
POTE generator: ~6/5 = 315.582


Vals: {{Val list| 80, 190, 270, 1000, 1270 }}
Optimal GPV sequence: {{Val list| 80, 190, 270, 1000, 1270 }}


Badness: 0.024329
Badness: 0.024329
Line 510: Line 507:
POTE generator: ~6/5 = 315.602
POTE generator: ~6/5 = 315.602


Vals: {{Val list| 80, 190, 270, 730, 1000 }}
Optimal GPV sequence: {{Val list| 80, 190, 270, 730, 1000 }}


Badness: 0.016810
Badness: 0.016810
Line 538: Line 535:
POTE generator: ~49/48 = 26.286
POTE generator: ~49/48 = 26.286


Vals: {{Val list| 45e, 46, 91e, 137de }}
Optimal GPV sequence: {{Val list| 45e, 46, 91e, 137de }}


Badness: 0.054098
Badness: 0.054098
Line 551: Line 548:
POTE generator: ~49/48 = 26.310
POTE generator: ~49/48 = 26.310


Vals: {{Val list| 45ef, 46, 91ef, 137def }}
Optimal GPV sequence: {{Val list| 45ef, 46, 91ef, 137def }}


Badness: 0.033067
Badness: 0.033067
Line 564: Line 561:
POTE generator: ~49/48 = 26.246
POTE generator: ~49/48 = 26.246


Vals: {{Val list| 45, 46, 91, 137d }}
Optimal GPV sequence: {{Val list| 45, 46, 91, 137d }}


Badness: 0.076567
Badness: 0.076567
Line 577: Line 574:
POTE generator: ~49/48 = 26.239
POTE generator: ~49/48 = 26.239


Vals: {{Val list| 45, 46, 91, 137d }}
Optimal GPV sequence: {{Val list| 45, 46, 91, 137d }}


Badness: 0.051893
Badness: 0.051893
Line 605: Line 602:
POTE generator: ~1155/1024 = 208.901
POTE generator: ~1155/1024 = 208.901


Vals: {{Val list| 46, 132, 178, 224, 270, 494, 764 }}
Optimal GPV sequence: {{Val list| 46, 132, 178, 224, 270, 494, 764 }}


Badness: 0.012860
Badness: 0.012860
Line 618: Line 615:
POTE generator: ~44/39 = 208.903
POTE generator: ~44/39 = 208.903


Vals: {{Val list| 46, 178, 224, 270, 494, 764, 1258 }}
Optimal GPV sequence: {{Val list| 46, 178, 224, 270, 494, 764, 1258 }}


Badness: 0.008856
Badness: 0.008856
Line 678: Line 675:
POTE generator: ~27/20 = 519.704
POTE generator: ~27/20 = 519.704


Vals: {{Val list| 7, 217, 224, 441, 665, 1771ee }}
Optimal GPV sequence: {{Val list| 7, 217, 224, 441, 665, 1771ee }}


Badness: 0.052190
Badness: 0.052190
Line 691: Line 688:
POTE generator: ~27/20 = 519.706
POTE generator: ~27/20 = 519.706


Vals: {{Val list| 7, 217, 224, 441, 665, 1771eef }}
Optimal GPV sequence: {{Val list| 7, 217, 224, 441, 665, 1771eef }}


Badness: 0.023132
Badness: 0.023132
Line 697: Line 694:
== Quasithird ==
== Quasithird ==
The '''quasithird''' temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.
The '''quasithird''' temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.


Subgroup: 2.3.5
Subgroup: 2.3.5
Line 735: Line 731:
POTE generator: ~22/21 = 80.387 (or ~5103/4096 = 380.387)
POTE generator: ~22/21 = 80.387 (or ~5103/4096 = 380.387)


Vals: {{Val list| 60d, 164, 224, 388, 612, 836, 1448 }}
Optimal GPV sequence: {{Val list| 60d, 164, 224, 388, 612, 836, 1448 }}


Badness: 0.021125
Badness: 0.021125
Line 748: Line 744:
POTE generator: ~22/21 = 80.385 (or ~5103/4096 = 380.385)
POTE generator: ~22/21 = 80.385 (or ~5103/4096 = 380.385)


Vals: {{Val list| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}
Optimal GPV sequence: {{Val list| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}


Badness: 0.029501
Badness: 0.029501
Line 791: Line 787:
POTE generator: ~12/11 = 151.547
POTE generator: ~12/11 = 151.547


Vals: {{Val list| 8d, 190, 388 }}
Optimal GPV sequence: {{Val list| 8d, 190, 388 }}


Badness: 0.059127
Badness: 0.059127
Line 804: Line 800:
POTE generator: ~12/11 = 151.545
POTE generator: ~12/11 = 151.545


Vals: {{Val list| 8d, 190, 198, 388 }}
Optimal GPV sequence: {{Val list| 8d, 190, 198, 388 }}


Badness: 0.030941
Badness: 0.030941
Line 832: Line 828:
POTE generator: ~6/5 = 315.558
POTE generator: ~6/5 = 315.558


Vals: {{Val list| 19, 251, 270, 829, 1099, 1369, 1639 }}
Optimal GPV sequence: {{Val list| 19, 251, 270, 829, 1099, 1369, 1639 }}


Badness: 0.036878
Badness: 0.036878
Line 845: Line 841:
POTE generator: ~6/5 = 315.557
POTE generator: ~6/5 = 315.557


Vals: {{Val list| 19, 251, 270 }}
Optimal GPV sequence: {{Val list| 19, 251, 270 }}


Badness: 0.026818
Badness: 0.026818
Line 858: Line 854:
POTE generator: ~6/5 = 315.553
POTE generator: ~6/5 = 315.553


Vals: {{Val list| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}
Optimal GPV sequence: {{Val list| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}


Badness: 0.042572
Badness: 0.042572
Line 871: Line 867:
POTE generator: ~6/5 = 315.554
POTE generator: ~6/5 = 315.554


Vals: {{Val list| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}
Optimal GPV sequence: {{Val list| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}


Badness: 0.026028
Badness: 0.026028
Line 905: Line 901:
POTE generator: ~77/64 = 322.793
POTE generator: ~77/64 = 322.793


Vals: {{Val list| 26, 119c, 145, 171, 316e, 487ee }}
Optimal GPV sequence: {{Val list| 26, 119c, 145, 171, 316e, 487ee }}


Badness: 0.092238
Badness: 0.092238
Line 918: Line 914:
POTE generator: ~77/64 = 322.793
POTE generator: ~77/64 = 322.793


Vals: {{Val list| 26, 119c, 145, 171, 316ef, 487eef }}
Optimal GPV sequence: {{Val list| 26, 119c, 145, 171, 316ef, 487eef }}


Badness: 0.044662
Badness: 0.044662
Line 931: Line 927:
POTE generator: ~77/64 = 322.793
POTE generator: ~77/64 = 322.793


Vals: {{Val list| 26, 119c, 145, 171, 316ef, 487eef }}
Optimal GPV sequence: {{Val list| 26, 119c, 145, 171, 316ef, 487eef }}


Badness: 0.026562
Badness: 0.026562
Line 959: Line 955:
POTE generator: ~8/7 = 231.103
POTE generator: ~8/7 = 231.103


Vals: {{Val list| 26, 244, 270, 566, 836, 1106 }}
Optimal GPV sequence: {{Val list| 26, 244, 270, 566, 836, 1106 }}


Badness: 0.016188
Badness: 0.016188
Line 972: Line 968:
POTE generator: ~8/7 = 231.103
POTE generator: ~8/7 = 231.103


Vals: {{Val list| 26, 244, 270, 566, 836f, 1106f }}
Optimal GPV sequence: {{Val list| 26, 244, 270, 566, 836f, 1106f }}


Badness: 0.021762
Badness: 0.021762
Line 1,002: Line 998:
POTE generator: ~448/405 = 176.806
POTE generator: ~448/405 = 176.806


Vals: {{Val list| 190, 224, 414, 638, 1052c }}
Optimal GPV sequence: {{Val list| 190, 224, 414, 638, 1052c }}


Badness: 0.041043
Badness: 0.041043
Line 1,015: Line 1,011:
POTE generator: ~195/176 = 176.804
POTE generator: ~195/176 = 176.804


Vals: {{Val list| 190, 224, 414, 638, 1690bcc, 2328bccde }}
Optimal GPV sequence: {{Val list| 190, 224, 414, 638, 1690bcc, 2328bccde }}


Badness: 0.022643
Badness: 0.022643
Line 1,021: Line 1,017:
== Octoid ==
== Octoid ==
The '''octoid''' temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.
The '''octoid''' temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.


Subgroup: 2.3.5.7
Subgroup: 2.3.5.7
Line 1,063: Line 1,058:
* 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]
* 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]


Vals: {{Val list| 72, 152, 224 }}
Optimal GPV sequence: {{Val list| 72, 152, 224 }}


Badness: 0.014097
Badness: 0.014097
Line 1,069: Line 1,064:
Scales: [[Octoid72]], [[Octoid80]]
Scales: [[Octoid72]], [[Octoid80]]


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 1,078: Line 1,073:
POTE generator: ~7/5 = 583.905
POTE generator: ~7/5 = 583.905


Vals: {{Val list| 72, 152f, 224 }}
Optimal GPV sequence: {{Val list| 72, 152f, 224 }}


Badness: 0.015274
Badness: 0.015274
Line 1,087: Line 1,082:
* [http://www.archive.org/details/Dreyfus http://www.archive.org/details/Dreyfus] [http://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play]
* [http://www.archive.org/details/Dreyfus http://www.archive.org/details/Dreyfus] [http://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play]


==== 17-limit ====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Line 1,096: Line 1,091:
POTE generator: ~7/5 = 583.842
POTE generator: ~7/5 = 583.842


Vals: {{Val list| 72, 152fg, 224, 296, 520g }}
Optimal GPV sequence: {{Val list| 72, 152fg, 224, 296, 520g }}


Badness: 0.014304
Badness: 0.014304
Line 1,102: Line 1,097:
Scales: [[Octoid72]], [[Octoid80]]
Scales: [[Octoid72]], [[Octoid80]]


==== 19-limit ====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 1,111: Line 1,106:
POTE generator: ~7/5 = 583.932
POTE generator: ~7/5 = 583.932


Vals: {{Val list| 72, 152fg, 224 }}
Optimal GPV sequence: {{Val list| 72, 152fg, 224 }}


Badness: 0.016036
Badness: 0.016036
Line 1,117: Line 1,112:
Scales: [[Octoid72]], [[Octoid80]]
Scales: [[Octoid72]], [[Octoid80]]


=== Octopus ===
==== Octopus ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 1,126: Line 1,121:
POTE generator: ~7/5 = 583.892
POTE generator: ~7/5 = 583.892


Vals: {{Val list| 72, 152, 224f }}
Optimal GPV sequence: {{Val list| 72, 152, 224f }}


Badness: 0.021679
Badness: 0.021679
Line 1,132: Line 1,127:
Scales: [[Octoid72]], [[Octoid80]]
Scales: [[Octoid72]], [[Octoid80]]


==== 17-limit ====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Line 1,141: Line 1,136:
POTE generator: ~7/5 = 583.811
POTE generator: ~7/5 = 583.811


Vals: {{Val list| 72, 152, 224fg, 296ffg }}
Optimal GPV sequence: {{Val list| 72, 152, 224fg, 296ffg }}


Badness: 0.015614
Badness: 0.015614
Line 1,147: Line 1,142:
Scales: [[Octoid72]], [[Octoid80]]
Scales: [[Octoid72]], [[Octoid80]]


==== 19-limit ====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 1,156: Line 1,151:
POTE generator: ~7/5 = 584.064
POTE generator: ~7/5 = 584.064


Vals: {{Val list| 72, 152, 224fg, 376ffgh }}
Optimal GPV sequence: {{Val list| 72, 152, 224fg, 376ffgh }}


Badness: 0.016321
Badness: 0.016321
Line 1,162: Line 1,157:
Scales: [[Octoid72]], [[Octoid80]]
Scales: [[Octoid72]], [[Octoid80]]


=== Hexadecoid ===
==== Hexadecoid ====
Hexadecoid (80&144) has a period of 1/16 octave and tempers out 4225/4224.
Hexadecoid (80&144) has a period of 1/16 octave and tempers out 4225/4224.


Line 1,173: Line 1,168:
POTE generator: ~13/8 = 841.015
POTE generator: ~13/8 = 841.015


Vals: {{Val list| 80, 144, 224 }}
Optimal GPV sequence: {{Val list| 80, 144, 224 }}


Badness: 0.030818
Badness: 0.030818


==== 17-limit ====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Line 1,186: Line 1,181:
POTE generator: ~13/8 = 840.932
POTE generator: ~13/8 = 840.932


Vals: {{Val list| 80, 144, 224, 528dg }}
Optimal GPV sequence: {{Val list| 80, 144, 224, 528dg }}


Badness: 0.028611
Badness: 0.028611


==== 19-limit ====
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 1,199: Line 1,194:
POTE generator: ~13/8 = 840.896
POTE generator: ~13/8 = 840.896


Vals: {{Val list| 80, 144, 224, 304dh, 528dghh }}
Optimal GPV sequence: {{Val list| 80, 144, 224, 304dh, 528dghh }}


Badness: 0.023731
Badness: 0.023731
Line 1,210: Line 1,205:


In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)<sup>1/13</sup>, which gives pure major thirds.
In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)<sup>1/13</sup>, which gives pure major thirds.


Subgroup: 2.3.5.7
Subgroup: 2.3.5.7
Line 1,235: Line 1,229:
POTE generator: ~128/105 = 339.464
POTE generator: ~128/105 = 339.464


Vals: {{Val list| 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee }}
Optimal GPV sequence: {{Val list| 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee }}


Badness: 0.031506
Badness: 0.031506
Line 1,248: Line 1,242:
POTE generator: ~128/105 = 339.481
POTE generator: ~128/105 = 339.481


Vals: {{Val list| 46ef, 53, 99ef, 152f }} <nowiki>*</nowiki>
Optimal GPV sequence: {{Val list| 46ef, 53, 99ef, 152f }} <nowiki>*</nowiki>


<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
Line 1,265: Line 1,259:
POTE generator: ~11/9 = 339.390
POTE generator: ~11/9 = 339.390


Vals: {{Val list| 7, 39, 46, 53, 99 }}
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }}


Badness: 0.035187
Badness: 0.035187
Line 1,278: Line 1,272:
POTE generator: ~11/9 = 339.419
POTE generator: ~11/9 = 339.419


Vals: {{Val list| 7, 39, 46, 53, 99 }}
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }}


Badness: 0.022448
Badness: 0.022448
Line 1,291: Line 1,285:
POTE generator: ~11/9 = 339.366
POTE generator: ~11/9 = 339.366


Vals: {{Val list| 7, 39, 46, 53, 99 }}
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }}


Badness: 0.019395
Badness: 0.019395
Line 1,304: Line 1,298:
POTE generator: ~64/55 = 339.439
POTE generator: ~64/55 = 339.439


Vals: {{Val list| 14cde, 46, 106, 152, 350, 502d }}
Optimal GPV sequence: {{Val list| 14cde, 46, 106, 152, 350, 502d }}


Badness: 0.031307
Badness: 0.031307
Line 1,312: Line 1,306:


In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo|8 14 -13}}, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival|13 14 35 -8 19 42}} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival|13 14 35 -36 -8 19 -102 42 -132 -222}} adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118.
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo|8 14 -13}}, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival|13 14 35 -8 19 42}} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival|13 14 35 -36 -8 19 -102 42 -132 -222}} adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118.


Subgroup: 2.3.5
Subgroup: 2.3.5
Line 1,350: Line 1,343:
POTE generator: ~6/5 = 315.251
POTE generator: ~6/5 = 315.251


Vals: {{Val list| 19, 99, 118 }}
Optimal GPV sequence: {{Val list| 19, 99, 118 }}


Badness: 0.049711
Badness: 0.049711
Line 1,365: Line 1,358:
POTE generator: ~6/5 = 315.220
POTE generator: ~6/5 = 315.220


Vals: {{Val list| 19e, 99e, 118, 217, 335, 552d, 887dd }}
Optimal GPV sequence: {{Val list| 19e, 99e, 118, 217, 335, 552d, 887dd }}


Badness: 0.036027
Badness: 0.036027
Line 1,378: Line 1,371:
POTE generator: ~6/5 = 315.214
POTE generator: ~6/5 = 315.214


Vals: {{Val list| 99e, 118, 217, 552d, 769de }}
Optimal GPV sequence: {{Val list| 99e, 118, 217, 552d, 769de }}


Badness: 0.044710
Badness: 0.044710
Line 1,393: Line 1,386:
POTE generator: ~6/5 = 315.225
POTE generator: ~6/5 = 315.225


Vals: {{Val list| 19e, 99ef, 118, 217ff, 335ff }}
Optimal GPV sequence: {{Val list| 19e, 99ef, 118, 217ff, 335ff }}


Badness: 0.037618
Badness: 0.037618
Line 1,406: Line 1,399:
POTE generator: ~6/5 = 315.060
POTE generator: ~6/5 = 315.060


Vals: {{Val list| 19e, 80, 179, 259cd }}
Optimal GPV sequence: {{Val list| 19e, 80, 179, 259cd }}


Badness: 0.055884
Badness: 0.055884
Line 1,419: Line 1,412:
POTE generator: ~6/5 = 315.075
POTE generator: ~6/5 = 315.075


Vals: {{Val list| 19e, 80, 179 }}
Optimal GPV sequence: {{Val list| 19e, 80, 179 }}


Badness: 0.036559
Badness: 0.036559
Line 1,432: Line 1,425:
POTE generator: ~6/5 = 315.096
POTE generator: ~6/5 = 315.096


Vals: {{Val list| 19, 61d, 80, 99e, 179e }}
Optimal GPV sequence: {{Val list| 19, 61d, 80, 99e, 179e }}


Badness: 0.041720
Badness: 0.041720
Line 1,445: Line 1,438:
POTE generator: ~6/5 = 315.080
POTE generator: ~6/5 = 315.080


Vals: {{Val list| 19, 61d, 80, 99e, 179e }}
Optimal GPV sequence: {{Val list| 19, 61d, 80, 99e, 179e }}


Badness: 0.035781
Badness: 0.035781
Line 1,458: Line 1,451:
POTE generator: ~6/5 = 315.181
POTE generator: ~6/5 = 315.181


Vals: {{Val list| 80, 118, 198, 316, 514c, 830c }}
Optimal GPV sequence: {{Val list| 80, 118, 198, 316, 514c, 830c }}


Badness: 0.034208
Badness: 0.034208
Line 1,473: Line 1,466:
POTE generator: ~6/5 = 315.156
POTE generator: ~6/5 = 315.156


Vals: {{Val list| 80, 118, 198 }}
Optimal GPV sequence: {{Val list| 80, 118, 198 }}


Badness: 0.033775
Badness: 0.033775
Line 1,488: Line 1,481:
POTE generator: ~6/5 = 315.184
POTE generator: ~6/5 = 315.184


Vals: {{Val list| 80, 118f, 198f }}
Optimal GPV sequence: {{Val list| 80, 118f, 198f }}


Badness: 0.040467
Badness: 0.040467
Line 1,521: Line 1,514:
POTE generator: ~6/5 = 316.071
POTE generator: ~6/5 = 316.071


Vals: {{Val list| 19, 205, 224 }}
Optimal GPV sequence: {{Val list| 19, 205, 224 }}


Badness: 0.070952
Badness: 0.070952
Line 1,534: Line 1,527:
POTE generator: ~6/5 = 316.070
POTE generator: ~6/5 = 316.070


Vals: {{Val list| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}
Optimal GPV sequence: {{Val list| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}


Badness: 0.033874
Badness: 0.033874
Line 1,547: Line 1,540:
POTE generator: ~6/5 = 316.065
POTE generator: ~6/5 = 316.065


Vals: {{Val list| 19e, 205e, 224 }}
Optimal GPV sequence: {{Val list| 19e, 205e, 224 }}


Badness: 0.065400
Badness: 0.065400
Line 1,560: Line 1,553:
POTE generator: ~6/5 = 316.065
POTE generator: ~6/5 = 316.065


Vals: {{Val list| 19e, 205e, 224 }}
Optimal GPV sequence: {{Val list| 19e, 205e, 224 }}


Badness: 0.029782
Badness: 0.029782
Line 1,588: Line 1,581:
POTE generator: ~100/99 = 16.613
POTE generator: ~100/99 = 16.613


Vals: {{Val list| 72, 217, 289 }}
Optimal GPV sequence: {{Val list| 72, 217, 289 }}


Badness: 0.030875
Badness: 0.030875
Line 1,601: Line 1,594:
POTE generator: ~100/99 = 16.602
POTE generator: ~100/99 = 16.602


Vals: {{Val list| 72, 145, 217, 289 }}
Optimal GPV sequence: {{Val list| 72, 145, 217, 289 }}


Badness: 0.023862
Badness: 0.023862
Line 1,614: Line 1,607:
POTE generator: ~100/99 = 16.602
POTE generator: ~100/99 = 16.602


Vals: {{Val list| 72, 145, 217, 289 }}
Optimal GPV sequence: {{Val list| 72, 145, 217, 289 }}


Badness: 0.014741
Badness: 0.014741
Line 1,627: Line 1,620:
POTE generator: ~100/99 = 16.594
POTE generator: ~100/99 = 16.594


Vals: {{Val list| 72, 145, 217 }}
Optimal GPV sequence: {{Val list| 72, 145, 217 }}


Badness: 0.015197
Badness: 0.015197
Line 1,657: Line 1,650:
POTE generator: ~3/2 = 699.6179
POTE generator: ~3/2 = 699.6179


Vals: {{Val list| 26, 65, 91, 156d, 247cdde }}
Optimal GPV sequence: {{Val list| 26, 65, 91, 156d, 247cdde }}


Badness: 0.084590
Badness: 0.084590
Line 1,670: Line 1,663:
POTE generator: ~3/2 = 699.2969
POTE generator: ~3/2 = 699.2969


Vals: {{Val list| 26, 65f, 91f, 156dff }}
Optimal GPV sequence: {{Val list| 26, 65f, 91f, 156dff }}


Badness: 0.052366
Badness: 0.052366
Line 1,717: Line 1,710:
POTE generators: ~822083584/474609375 = 950.9749
POTE generators: ~822083584/474609375 = 950.9749


Vals: {{Val list| 289, 323, 612 }}
Optimal GPV sequence: {{Val list| 289, 323, 612 }}


Badness: 0.063706
Badness: 0.063706
Line 1,749: Line 1,742:
POTE generator: ~3/2 = 701.5951
POTE generator: ~3/2 = 701.5951


Vals: {{Val list| 46, 368, 414, 460, 874de }}
Optimal GPV sequence: {{Val list| 46, 368, 414, 460, 874de }}


Badness: 0.073783
Badness: 0.073783
Line 1,762: Line 1,755:
POTE generator: ~3/2 = 701.6419
POTE generator: ~3/2 = 701.6419


Vals: {{Val list| 46, 368, 414, 460, 874de, 1334de }}
Optimal GPV sequence: {{Val list| 46, 368, 414, 460, 874de, 1334de }}


Badness: 0.040751
Badness: 0.040751
Line 1,775: Line 1,768:
POTE generator: ~3/2 = 701.6425
POTE generator: ~3/2 = 701.6425


Vals: {{Val list| 46, 368, 414, 460, 874de, 1334deg }}
Optimal GPV sequence: {{Val list| 46, 368, 414, 460, 874de, 1334deg }}


Badness: 0.022441
Badness: 0.022441
Line 1,805: Line 1,798:
POTE generator: ~231/200 = 249.0193
POTE generator: ~231/200 = 249.0193


Vals: {{Val list| 53, 559, 612 }}
Optimal GPV sequence: {{Val list| 53, 559, 612 }}


Badness: 0.057083
Badness: 0.057083
Line 1,818: Line 1,811:
POTE generator: ~231/200 = 249.0199
POTE generator: ~231/200 = 249.0199


Vals: {{Val list| 53, 559, 612 }}
Optimal GPV sequence: {{Val list| 53, 559, 612 }}


Badness: 0.053780
Badness: 0.053780

Revision as of 13:31, 8 January 2022

The ragisma is 4375/4374 with a monzo of [-1 -7 4 1, the smallest 7-limit superparticular ratio. Since (10/9)4 = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.

Temperaments discussed elsewhere include:

Considered below are ennealimmal, gamera, supermajor, enneadeca, decal, sfourth, abigail, semidimi, brahmagupta, quasithird, semidimfourth, acrokleismic, seniority, orga, quatracot, octoid, amity, parakleismic, counterkleismic, quincy, chlorine, palladium, and monzism.

Ennealimmal

Ennealimmal tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma, [1 -27 18, which leads to the identification of (27/25)9 with the octave, and gives ennealimmal a period of 1/9 octave. Its pergen is (P8/9, P5/2). While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.

Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.

If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.

Ennealimmal extensions discussed elsewhere include omicronbeta, undecentic, schisennealimmal, and lunennealimmal.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 4375/4374

Mapping: [9 1 1 12], 0 2 3 2]]

Wedgie⟨⟨ 18 27 18 1 -22 -34 ]]

Mapping generators: ~27/25, ~5/3

POTE generators: ~5/3 = 884.3129

Tuning ranges:

  • 7-odd-limit diamond monotone: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
  • 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
  • 7- and 9-odd-limit diamond tradeoff: ~36/35 = [48.920, 49.179]
  • 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]

Template:Val list

Badness: 0.003610

11-limit

The ennealimmal temperament can be described as 99e&270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 5632/5625

Mapping: [9 1 1 12 -75], 0 2 3 2 16]]

POTE generator: ~5/3 = 884.4679

Optimal GPV sequence: Template:Val list

Badness: 0.027332

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374

Mapping: [9 1 1 12 -75 93], 0 2 3 2 16 -9]]

POTE generator: ~5/3 = 884.4304

Optimal GPV sequence: Template:Val list

Badness: 0.029404

Ennealimmia

Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ennealimmia temperament (171&270).

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 131072/130977

Mapping: [9 1 1 12 124], 0 2 3 2 -14]]

POTE generator: ~5/3 = 884.4089

Optimal GPV sequence: Template:Val list

Badness: 0.026463

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374

Mapping: [9 1 1 12 124 93], 0 2 3 2 -14 -9]]

POTE generator: ~5/3 = 884.3997

Optimal GPV sequence: Template:Val list

Badness: 0.016607

Ennealimnic

Ennealimnic temperament (72&171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 4375/4356

Mapping: [9 1 1 12 -2], 0 2 3 2 5]]

POTE generator: ~5/3 = 883.9386

Tuning ranges:

  • 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
  • 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
  • 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]

Optimal GPV sequence: Template:Val list

Badness: 0.020347

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440, 625/624

Mapping: [9 1 1 12 -2 -33], 0 2 3 2 5 10]]

POTE generator: ~5/3 = 883.9920

Tuning ranges:

  • 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
  • 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
  • 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]

Optimal GPV sequence: Template:Val list

Badness: 0.023250

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 364/363, 375/374, 441/440, 595/594

Mapping: [9 1 1 12 -2 -33 -3], 0 2 3 2 5 10 6]]

POTE generator: ~5/3 = 883.9981

Tuning ranges:

  • 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
  • 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
  • 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]

Optimal GPV sequence: Template:Val list

Badness: 0.014602

Ennealim

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 243/242, 325/324, 441/440

Mapping: [9 1 1 12 -2 20], 0 2 3 2 5 2]]

POTE generator: ~5/3 = 883.6257

Optimal GPV sequence: Template:Val list

Badness: 0.020697

Ennealiminal

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 4375/4374

Mapping: [9 1 1 12 51], 0 2 3 2 -3]]

POTE generator: ~5/3 = 883.8298

Optimal GPV sequence: Template:Val list

Badness: 0.031123

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 385/384, 1375/1372

Mapping: [9 1 1 12 51 20], 0 2 3 2 -3 2]]

POTE generator: ~5/3 = 883.8476

Optimal GPV sequence: Template:Val list

Badness: 0.030325

Hemiennealimmal

Hemiennealimmal (72&198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out 9801/9800 leads an octave split into two equal parts.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 4375/4374

Mapping: [18 0 -1 22 48], 0 2 3 2 1]]

Mapping generators: ~80/77, ~400/231

POTE generator: ~400/231 = 950.9553

Tuning ranges:

  • 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
  • 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
  • 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]

Optimal GPV sequence: Template:Val list

Badness: 0.006283

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024

Mapping: [18 0 -1 22 48 -19], 0 2 3 2 1 6]]

POTE generator ~26/15 = 951.0837

Tuning ranges:

  • 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
  • 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
  • 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
  • 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
  • 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
  • 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]

Optimal GPV sequence: Template:Val list

Badness: 0.012505

Semihemiennealimmal

Subgroup: 2.3.5.7.11.13

Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374

Mapping: [18 0 -1 22 48 88], 0 4 6 4 2 -3]]

Mapping generators: ~80/77, ~1053/800

POTE generator: ~1053/800 = 475.4727

Optimal GPV sequence: Template:Val list

Badness: 0.013104

Semiennealimmal

Semiennealimmal tempers out 4000/3993, and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4000/3993, 4375/4374

Mapping: [9 3 4 14 18], 0 6 9 6 7]]

Mapping generators: ~27/25, ~140/121

POTE generator: ~140/121 = 250.3367

Optimal GPV sequence: Template:Val list

Badness: 0.034196

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374

Mapping: [9 3 4 14 18 -8], 0 6 9 6 7 22]]

POTE generator: ~140/121 = 250.3375

Optimal GPV sequence: Template:Val list

Badness: 0.026122

Quadraennealimmal

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 234375/234256

Mapping: [9 1 1 12 -7], 0 8 12 8 23]]

Mapping generators: ~27/25, ~25/22

POTE generator: ~25/22 = 221.0717

Optimal GPV sequence: Template:Val list

Badness: 0.021320

Trinealimmal

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 2097152/2096325

Mapping: [27 1 0 34 177], 0 2 3 2 -4]]

Mapping generators: ~2744/2673, ~2352/1375

POTE generator: ~2352/1375 = 928.8000

Optimal GPV sequence: Template:Val list

Badness: 0.029812

Gamera

Subgroup: 2.3.5.7

Comma list: 4375/4374, 589824/588245

Mapping: [1 6 10 3], 0 -23 -40 -1]]

Wedgie⟨⟨ 23 40 1 10 -63 -110 ]]

POTE generator ~8/7 = 230.336

Template:Val list

Badness: 0.037648

Hemigamera

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 589824/588245

Mapping: [2 12 20 6 5], 0 -23 -40 -1 5]]

POTE generator: ~8/7 = 230.3370

Optimal GPV sequence: Template:Val list

Badness: 0.040955

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024

Mapping: [2 12 20 6 5 17], 0 -23 -40 -1 5 -25]]

POTE generator: ~8/7 = 230.3373

Optimal GPV sequence: Template:Val list

Badness: 0.020416

Supermajor

The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of ⟨⟨ 37 46 75 -13 15 45 ]]. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 52734375/52706752

Mapping: [1 15 19 30], 0 -37 -46 -75]]

Wedgie⟨⟨ 37 46 75 -13 15 45 ]]

POTE generator: ~9/7 = 435.082

Template:Val list

Badness: 0.010836

Semisupermajor

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 35156250/35153041

Mapping: [2 30 38 60 41], 0 -37 -46 -75 -47]]

POTE generator: ~9/7 = 435.082

Optimal GPV sequence: Template:Val list

Badness: 0.012773

Enneadecal

Enneadecal temperament tempers out the enneadeca, [-14 -19 19, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of 19EDO up to just ones. 171EDO is a good tuning for either the 5 or 7 limits, and 494EDO shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665EDO for a tuning.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 703125/702464

Mapping: [19 0 14 -37], 0 1 1 3]]

Wedgie⟨⟨ 19 19 57 -14 37 79 ]]

Mapping generators: ~28/27, ~3

POTE generator: ~3/2 = 701.880

Template:Val list

Badness: 0.010954

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 16384/16335

Mapping: [19 0 14 -37 126], 0 1 1 3 -2]]

POTE generator: ~3/2 = 702.360

Optimal GPV sequence: Template:Val list

Badness: 0.043734

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624, 729/728, 2205/2197

Mapping: [19 0 14 -37 126 -20], 0 1 1 3 -2 3]]

POTE generator: ~3/2 = 702.212

Optimal GPV sequence: Template:Val list

Badness: 0.033545

Hemienneadecal

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 234375/234256

Mapping: [38 0 28 -74 11], 0 1 1 3 2]]

POTE generator: ~3/2 = 701.881

Optimal GPV sequence: Template:Val list

Badness: 0.009985

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213

Mapping: [38 0 28 -74 11 502], 0 1 1 3 2 -6]]

POTE generator: ~3/2 = 701.986

Optimal GPV sequence: Template:Val list

Badness: 0.030391

Deca

Deca temperament has a period of 1/10 octave and tempers out the linus comma, [11 -10 -10 10 and [12 -3 -14 9 = 165288374272/164794921875 (satritrizo-asepbigu).

Subgroup: 2.3.5.7

Comma list: 4375/4374, 165288374272/164794921875

Mapping: [10 4 9 2], 0 5 6 11]]

Wedgie⟨⟨ 50 60 110 -21 34 87 ]]

POTE generator: ~6/5 = 315.577

Template:Val list

Badness: 0.080637

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 422576/421875

Mapping: [10 4 9 2 18], 0 5 6 11 7]]

POTE generator: ~6/5 = 315.582

Optimal GPV sequence: Template:Val list

Badness: 0.024329

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374

Mapping: [10 4 9 2 18 37], 0 5 6 11 7 0]]

POTE generator: ~6/5 = 315.602

Optimal GPV sequence: Template:Val list

Badness: 0.016810

Sfourth

Subgroup: 2.3.5.7

Comma list: 4375/4374, 64827/64000

Mapping: [1 2 3 3], 0 -19 -31 -9]]

Wedgie⟨⟨ 19 31 9 5 -39 -66 ]]

POTE generator: ~49/48 = 26.287

Template:Val list

Badness: 0.123291

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 441/440, 4375/4374

Mapping: [1 2 3 3 4], 0 -19 -31 -9 -25]]

POTE generator: ~49/48 = 26.286

Optimal GPV sequence: Template:Val list

Badness: 0.054098

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 325/324, 441/440

Mapping: [1 2 3 3 4 4], 0 -19 -31 -9 -25 -14]]

POTE generator: ~49/48 = 26.310

Optimal GPV sequence: Template:Val list

Badness: 0.033067

Sfour

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2401/2376, 4375/4374

Mapping: [1 2 3 3 3], 0 -19 -31 -9 21]]

POTE generator: ~49/48 = 26.246

Optimal GPV sequence: Template:Val list

Badness: 0.076567

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 364/363, 385/384, 4375/4374

Mapping: [1 2 3 3 3 3], 0 -19 -31 -9 21 32]]

POTE generator: ~49/48 = 26.239

Optimal GPV sequence: Template:Val list

Badness: 0.051893

Abigail

Subgroup: 2.3.5.7

Comma list: 4375/4374, 2147483648/2144153025

Mapping: [2 7 13 -1], 0 -11 -24 19]]

Wedgie⟨⟨ 22 48 -38 25 -122 -223 ]]

POTE generator: ~6912/6125 = 208.899

Template:Val list

Badness: 0.037000

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 131072/130977

Mapping: [2 7 13 -1 1], 0 -11 -24 19 17]]

POTE generator: ~1155/1024 = 208.901

Optimal GPV sequence: Template:Val list

Badness: 0.012860

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095

Mapping: [2 7 13 -1 1 -2], 0 -11 -24 19 17 27]]

POTE generator: ~44/39 = 208.903

Optimal GPV sequence: Template:Val list

Badness: 0.008856

Semidimi

The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit [-12 -73 55 and 7-limit 3955078125/3954653486, as well as 4375/4374.

Subgroup: 2.3.5

Comma: [-12 -73 55

Mapping: [1 36 48], 0 -55 -73]]

POTE generator: ~162/125 = 449.1269

Template:Val list

Badness: 0.754866

7-limit

Subgroup: 2.3.5.7

Comma list: 4375/4374, 3955078125/3954653486

Mapping: [1 36 48 61], 0 -55 -73 -93]]

Wedgie⟨⟨ 55 73 93 -12 -7 11 ]]

POTE generator: ~35/27 = 449.1270

Template:Val list

Badness: 0.015075

Brahmagupta

The brahmagupta temperament has a period of 1/7 octave, tempering out the akjaysma, [47 -7 -7 -7 = 140737488355328 / 140710042265625.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 70368744177664/70338939985125

Mapping: [7 2 -8 53], 0 3 8 -11]]

Wedgie⟨⟨ 21 56 -77 40 -181 -336 ]]

POTE generator: ~27/20 = 519.716

Template:Val list

Badness: 0.029122

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4000/3993, 4375/4374, 131072/130977

Mapping: [7 2 -8 53 3], 0 3 8 -11 7]]

POTE generator: ~27/20 = 519.704

Optimal GPV sequence: Template:Val list

Badness: 0.052190

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374

Mapping: [7 2 -8 53 3 35], 0 3 8 -11 7 -3]]

POTE generator: ~27/20 = 519.706

Optimal GPV sequence: Template:Val list

Badness: 0.023132

Quasithird

The quasithird temperament is featured by a major third interval which is 1600000/1594323 (amity comma) or 5120/5103 (hemifamity comma) below the just major third 5/4 as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the ragisma and [-60 29 0 5.

Subgroup: 2.3.5

Comma: [55 -64 20

Mapping: [4 0 -11], 0 5 16]]

POTE generator: ~1594323/1280000 = 380.395

Template:Val list

Badness: 0.099519

7-limit

Subgroup: 2.3.5.7

Comma list: 4375/4374, 1153470752371588581/1152921504606846976

Mapping: [4 0 -11 48], 0 5 16 -29]]

Wedgie: ⟨⟨ 20 64 -116 55 -240 -449 ]]

POTE generator: ~5103/4096 = 380.388

Template:Val list

Badness: 0.061813

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 4296700485/4294967296

Mapping: [4 0 -11 48 43], 0 5 16 -29 -23]]

POTE generator: ~22/21 = 80.387 (or ~5103/4096 = 380.387)

Optimal GPV sequence: Template:Val list

Badness: 0.021125

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2200/2197, 3025/3024, 4375/4374, 468512/468195

Mapping: [4 0 -11 48 43 11], 0 5 16 -29 -23 3]]

POTE generator: ~22/21 = 80.385 (or ~5103/4096 = 380.385)

Optimal GPV sequence: Template:Val list

Badness: 0.029501

Semidimfourth

The semidimifourth temperament is featured by a semi-diminished fourth inverval which is 128/125 above the pythagorean major third 81/64. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.

Subgroup: 2.3.5

Comma: [7 41 -31

Mapping: [1 21 28], 0 -31 -41]]

POTE generator: ~162/125 = 448.449

Template:Val list

Badness: 0.233376

7-limit

Subgroup: 2.3.5.7

Comma list: 4375/4374, 235298/234375

Mapping: [1 21 28 36], 0 -31 -41 -53]]

Wedgie: ⟨⟨ 31 41 53 -7 -3 8 ]]

POTE generator: ~35/27 = 448.456

Template:Val list

Badness: 0.055249

Neusec

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 235298/234375

Mapping: [2 11 15 19 15], 0 -31 -41 -53 -32]]

POTE generator: ~12/11 = 151.547

Optimal GPV sequence: Template:Val list

Badness: 0.059127

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374

Mapping: [2 11 15 19 15 17], 0 -31 -41 -53 -32 -38]]

POTE generator: ~12/11 = 151.545

Optimal GPV sequence: Template:Val list

Badness: 0.030941

Acrokleismic

Subgroup: 2.3.5.7

Comma list: 4375/4374, 2202927104/2197265625

Mapping: [1 10 11 27], 0 -32 -33 -92]]

Wedgie: ⟨⟨ 32 33 92 -22 56 121 ]]

POTE generator: ~6/5 = 315.557

Template:Val list

Badness: 0.056184

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 41503/41472, 172032/171875

Mapping: [1 10 11 27 -16], 0 -32 -33 -92 74]]

POTE generator: ~6/5 = 315.558

Optimal GPV sequence: Template:Val list

Badness: 0.036878

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976

Mapping: [1 10 11 27 -16 25], 0 -32 -33 -92 74 -81]]

POTE generator: ~6/5 = 315.557

Optimal GPV sequence: Template:Val list

Badness: 0.026818

Counteracro

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 5632/5625, 117649/117612

Mapping: [1 10 11 27 55], 0 -32 -33 -92 -196]]

POTE generator: ~6/5 = 315.553

Optimal GPV sequence: Template:Val list

Badness: 0.042572

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374

Mapping: [1 10 11 27 55 25], 0 -32 -33 -92 -196 -81]]

POTE generator: ~6/5 = 315.554

Optimal GPV sequence: Template:Val list

Badness: 0.026028

Seniority

Aside from the ragisma, the seniority temperament (26&145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ([-17 62 -35, quadla-sepquingu) is tempered out.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 201768035/201326592

Mapping: [1 11 19 2], 0 -35 -62 3]]

Wedgie: ⟨⟨ 35 62 -3 17 -103 -181 ]]

POTE generator: ~3087/2560 = 322.804

Template:Val list

Badness: 0.044877

Senator

The senator temperament (26&145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.

Subgroup: 2.3.5.7.11

Comma list: 441/440, 4375/4374, 65536/65219

Mapping: [1 11 19 2 4], 0 -35 -62 3 -2]]

POTE generator: ~77/64 = 322.793

Optimal GPV sequence: Template:Val list

Badness: 0.092238

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 2200/2197, 4375/4374

Mapping: [1 11 19 2 4 15], 0 -35 -62 3 -2 -42]]

POTE generator: ~77/64 = 322.793

Optimal GPV sequence: Template:Val list

Badness: 0.044662

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197

Mapping: [1 11 19 2 4 15 17], 0 -35 -62 3 -2 -42 -48]]

POTE generator: ~77/64 = 322.793

Optimal GPV sequence: Template:Val list

Badness: 0.026562

Orga

Subgroup: 2.3.5.7

Comma list: 4375/4374, 54975581388800/54936068900769

Mapping: [2 21 36 5], 0 -29 -51 1]]

Wedgie: ⟨⟨ 58 102 -2 27 -166 -291 ]]

POTE generator: ~8/7 = 231.104

Template:Val list

Badness: 0.040236

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 5767168/5764801

Mapping: [2 21 36 5 2], 0 -29 -51 1 8]]

POTE generator: ~8/7 = 231.103

Optimal GPV sequence: Template:Val list

Badness: 0.016188

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360

Mapping: [2 21 36 5 2 24], 0 -29 -51 1 8 -27]]

POTE generator: ~8/7 = 231.103

Optimal GPV sequence: Template:Val list

Badness: 0.021762

Quatracot

Subgroup: 2.3.5.7

Comma list: 4375/4374, 1483154296875/1473173782528

Mapping: [2 7 7 23], 0 -13 -8 -59]]

Wedgie⟨⟨ 26 16 118 -35 114 229 ]]

POTE generator: ~448/405 = 176.805

Template:Val list

Badness: 0.175982

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 1265625/1261568

Mapping: [2 7 7 23 19], 0 -13 -8 -59 -41]]

POTE generator: ~448/405 = 176.806

Optimal GPV sequence: Template:Val list

Badness: 0.041043

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 729/728, 1575/1573, 2200/2197

Mapping: [2 7 7 23 19 13], 0 -13 -8 -59 -41 -19]]

POTE generator: ~195/176 = 176.804

Optimal GPV sequence: Template:Val list

Badness: 0.022643

Octoid

The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 (ragisma) and 16875/16807 (mirkwai). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 16875/16807

Mapping: [8 1 3 3], 0 3 4 5]]

Wedgie: ⟨⟨ 24 32 40 -5 -4 3 ]]

Mapping generators: ~49/45, ~7/5

POTE generator: ~7/5 = 583.940

Tuning ranges:

  • 7-odd-limit diamond monotone: ~7/5 = [578.571, 600.000] (27\56 to 4\8)
  • 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88)
  • 7-odd-limit diamond tradeoff: ~7/5 = [582.512, 584.359]
  • 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
  • 7-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 584.359]
  • 9-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]

Template:Val list

Badness: 0.042670

Scales: Octoid72, Octoid80

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 1375/1372, 4000/3993

Mapping: [8 1 3 3 16], 0 3 4 5 3]]

POTE generator: ~7/5 = 583.962

Tuning ranges:

  • 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
  • 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
  • 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]

Optimal GPV sequence: Template:Val list

Badness: 0.014097

Scales: Octoid72, Octoid80

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624, 729/728, 1375/1372

Mapping: [8 1 3 3 16 -21], 0 3 4 5 3 13]]

POTE generator: ~7/5 = 583.905

Optimal GPV sequence: Template:Val list

Badness: 0.015274

Scales: Octoid72, Octoid80

Music
17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 375/374, 540/539, 625/624, 715/714, 729/728

Mapping: [8 1 3 3 16 -21 -14], 0 3 4 5 3 13 12]]

POTE generator: ~7/5 = 583.842

Optimal GPV sequence: Template:Val list

Badness: 0.014304

Scales: Octoid72, Octoid80

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714

Mapping: [8 1 3 3 16 -21 -14 34], 0 3 4 5 3 13 12 0]]

POTE generator: ~7/5 = 583.932

Optimal GPV sequence: Template:Val list

Badness: 0.016036

Scales: Octoid72, Octoid80

Octopus

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 364/363, 540/539

Mapping: [8 1 3 3 16 14], 0 3 4 5 3 4]]

POTE generator: ~7/5 = 583.892

Optimal GPV sequence: Template:Val list

Badness: 0.021679

Scales: Octoid72, Octoid80

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 169/168, 221/220, 289/288, 325/324, 540/539

Mapping: [8 1 3 3 16 14 21], 0 3 4 5 3 4 3]]

POTE generator: ~7/5 = 583.811

Optimal GPV sequence: Template:Val list

Badness: 0.015614

Scales: Octoid72, Octoid80

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399

Mapping: [8 1 3 3 16 14 21 34], 0 3 4 5 3 4 3 0]]

POTE generator: ~7/5 = 584.064

Optimal GPV sequence: Template:Val list

Badness: 0.016321

Scales: Octoid72, Octoid80

Hexadecoid

Hexadecoid (80&144) has a period of 1/16 octave and tempers out 4225/4224.

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224

Mapping: [16 26 38 46 56 59], 0 -3 -4 -5 -3 1]]

POTE generator: ~13/8 = 841.015

Optimal GPV sequence: Template:Val list

Badness: 0.030818

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224

Mapping: [16 26 38 46 56 59 65], 0 -3 -4 -5 -3 1 2]]

POTE generator: ~13/8 = 840.932

Optimal GPV sequence: Template:Val list

Badness: 0.028611

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444

Mapping: [16 26 38 46 56 59 65 68], 0 -3 -4 -5 -3 1 2 0]]

POTE generator: ~13/8 = 840.896

Optimal GPV sequence: Template:Val list

Badness: 0.023731

Amity

The generator for amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament. 99EDO is a good tuning for amity, with generator 28\99, and MOS of 11, 18, 25, 32, 39, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.

In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives pure major thirds.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 5120/5103

Mapping: [1 3 6 -2], 0 -5 -13 17]]

Wedgie⟨⟨ 5 13 -17 9 -41 -76 ]]

POTE generator: ~128/105 = 339.432

Template:Val list

Badness: 0.023649

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 5120/5103

Mapping: [1 3 6 -2 21], 0 -5 -13 17 -62]]

POTE generator: ~128/105 = 339.464

Optimal GPV sequence: Template:Val list

Badness: 0.031506

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 625/624, 847/845

Mapping: [1 3 6 -2 21 17], 0 -5 -13 17 -62 -47]]

POTE generator: ~128/105 = 339.481

Optimal GPV sequence: Template:Val list *

* optimal patent val: 205

Badness: 0.028008

Hitchcock

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 2200/2187

Mapping: [1 3 6 -2 6], 0 -5 -13 17 -9]]

POTE generator: ~11/9 = 339.390

Optimal GPV sequence: Template:Val list

Badness: 0.035187

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 325/324

Mapping: [1 3 6 -2 6 2], 0 -5 -13 17 -9 6]]

POTE generator: ~11/9 = 339.419

Optimal GPV sequence: Template:Val list

Badness: 0.022448

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 169/168, 176/175, 273/272

Mapping: [1 3 6 -2 6 2 -1], 0 -5 -13 17 -9 6 18]]

POTE generator: ~11/9 = 339.366

Optimal GPV sequence: Template:Val list

Badness: 0.019395

Hemiamity

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 5120/5103

Mapping: [2 1 -1 13 13], 0 5 13 -17 -14]]

POTE generator: ~64/55 = 339.439

Optimal GPV sequence: Template:Val list

Badness: 0.031307

Parakleismic

In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, [8 14 -13, with the 118EDO tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being ⟨⟨ 13 14 35 -8 19 42 ]] and adding 3136/3125 and 4375/4374, and the 11-limit wedgie ⟨⟨ 13 14 35 -36 -8 19 -102 42 -132 -222 ]] adding 385/384. For the 7-limit 99EDO may be preferred, but in the 11-limit it is best to stick with 118.

Subgroup: 2.3.5

Comma list: 1224440064/1220703125

Mapping: [1 5 6], 0 -13 -14]]

POTE generator: ~6/5 = 315.240

Template:Val list

Badness: 0.043279

7-limit

Subgroup: 2.3.5.7

Comma list: 3136/3125, 4375/4374

Mapping: [1 5 6 12], 0 -13 -14 -35]]

Wedgie: ⟨⟨ 13 14 35 -8 19 42 ]]

POTE generator: ~6/5 = 315.181

Template:Val list

Badness: 0.027431

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 3136/3125, 4375/4374

Mapping: [1 5 6 12 -6], 0 -13 -14 -35 36]]

POTE generator: ~6/5 = 315.251

Optimal GPV sequence: Template:Val list

Badness: 0.049711

Paralytic

The paralytic temperament (118&217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&217 tempers out 1001/1000, 1575/1573, and 3584/3575.

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3136/3125, 4375/4374

Mapping: [1 5 6 12 25], 0 -13 -14 -35 -82]]

POTE generator: ~6/5 = 315.220

Optimal GPV sequence: Template:Val list

Badness: 0.036027

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374

Mapping: [1 5 6 12 25 -16], 0 -13 -14 -35 -82 75]]

POTE generator: ~6/5 = 315.214

Optimal GPV sequence: Template:Val list

Badness: 0.044710

Paraklein

The paraklein temperament (19e&118) is another 13-limit extension of paralytic, which equates 13/11 with 32/27, 14/13 with 15/14, 25/24 with 26/25, and 27/26 with 28/27.

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 625/624, 729/728

Mapping: [1 5 6 12 25 15], 0 -13 -14 -35 -82 -43]]

POTE generator: ~6/5 = 315.225

Optimal GPV sequence: Template:Val list

Badness: 0.037618

Parkleismic

Subgroup: 2.3.5.7.11

Comma list: 176/175, 1375/1372, 2200/2187

Mapping: [1 5 6 12 20], 0 -13 -14 -35 -63]]

POTE generator: ~6/5 = 315.060

Optimal GPV sequence: Template:Val list

Badness: 0.055884

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 176/175, 325/324, 1375/1372

Mapping: [1 5 6 12 20 10], 0 -13 -14 -35 -63 -24]]

POTE generator: ~6/5 = 315.075

Optimal GPV sequence: Template:Val list

Badness: 0.036559

Paradigmic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 896/891, 3136/3125

Mapping: [1 5 6 12 -1], 0 -13 -14 -35 17]]

POTE generator: ~6/5 = 315.096

Optimal GPV sequence: Template:Val list

Badness: 0.041720

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 540/539, 832/825

Mapping: [1 5 6 12 -1 10], 0 -13 -14 -35 17 -24]]

POTE generator: ~6/5 = 315.080

Optimal GPV sequence: Template:Val list

Badness: 0.035781

Semiparakleismic

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 3136/3125, 4375/4374

Mapping: [2 10 12 24 19], 0 -13 -14 -35 -23]]

POTE generator: ~6/5 = 315.181

Optimal GPV sequence: Template:Val list

Badness: 0.034208

Semiparamint

This extension was named semiparakleismic in the earlier materials.

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374

Mapping: [2 10 12 24 19 -1], 0 -13 -14 -35 -23 16]]

POTE generator: ~6/5 = 315.156

Optimal GPV sequence: Template:Val list

Badness: 0.033775

Semiparawolf

This extension was named gentsemiparakleismic in the earlier materials.

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 364/363, 3136/3125

Mapping: [2 10 12 24 19 20], 0 -13 -14 -35 -23 -24]]

POTE generator: ~6/5 = 315.184

Optimal GPV sequence: Template:Val list

Badness: 0.040467

Counterkleismic

In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, [-20 -24 25, the amount by which six major dieses (648/625) fall short of the classic major third (5/4). It can be described as 19&224 temperament (counterkleismic, named by analogy to catakleismic and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).


Subgroup: 2.3.5.7

Comma list: 4375/4374, 158203125/157351936

Mapping: [1 -5 -4 -18], 0 25 24 79]]

Wedgie: ⟨⟨ 25 24 79 -20 55 116 ]]

POTE generator: ~6/5 = 316.060

Template:Val list

Badness: 0.090553

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 2097152/2096325

Mapping: [1 -5 -4 -18 19], 0 25 24 79 -59]]

POTE generator: ~6/5 = 316.071

Optimal GPV sequence: Template:Val list

Badness: 0.070952

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624, 729/728, 10985/10976

Mapping: [1 -5 -4 -18 19 -15], 0 25 24 79 -59 71]]

POTE generator: ~6/5 = 316.070

Optimal GPV sequence: Template:Val list

Badness: 0.033874

Counterlytic

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 4375/4374, 496125/495616

Mapping: [1 -5 -4 -18 -40], 0 25 24 79 165]]

POTE generator: ~6/5 = 316.065

Optimal GPV sequence: Template:Val list

Badness: 0.065400

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 729/728, 1375/1372, 10985/10976

Mapping: [1 -5 -4 -18 -40 -15], 0 25 24 79 165 71]]

POTE generator: ~6/5 = 316.065

Optimal GPV sequence: Template:Val list

Badness: 0.029782

Quincy

Subgroup: 2.3.5.7

Comma list: 4375/4374, 823543/819200

Mapping: [1 2 3 3], 0 -30 -49 -14]]

Wedgie: ⟨⟨ 30 49 14 8 -62 -105 ]]

POTE generator: ~1728/1715 = 16.613

Template:Val list

Badness: 0.079657

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 4000/3993, 4375/4374

Mapping: [1 2 3 3 4], 0 -30 -49 -14 -39]]

POTE generator: ~100/99 = 16.613

Optimal GPV sequence: Template:Val list

Badness: 0.030875

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 676/675, 4375/4374

Mapping: [1 2 3 3 4 5], 0 -30 -49 -14 -39 -94]]

POTE generator: ~100/99 = 16.602

Optimal GPV sequence: Template:Val list

Badness: 0.023862

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155

Mapping: [1 2 3 3 4 5 5], 0 -30 -49 -14 -39 -94 -66]]

POTE generator: ~100/99 = 16.602

Optimal GPV sequence: Template:Val list

Badness: 0.014741

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675

Mapping: [1 2 3 3 4 5 5 4], 0 -30 -49 -14 -39 -94 -66 18]]

POTE generator: ~100/99 = 16.594

Optimal GPV sequence: Template:Val list

Badness: 0.015197

Trideci

The trideci temperament (26&65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the tridecatonic temperament, but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name trideci comes from "tridecim" (Latin for "thirteen").

Subgroup: 2.3.5.7

Comma list: 4375/4374, 83349/81920

Mapping: [13 21 31 36], 0 -1 -2 1]]

POTE generator: ~3/2 = 699.1410

Template:Val list

Badness: 0.184585

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/242, 385/384, 4375/4374

Mapping: [13 21 31 36 45], 0 -1 -2 1 0]]

POTE generator: ~3/2 = 699.6179

Optimal GPV sequence: Template:Val list

Badness: 0.084590

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 245/242, 325/324, 385/384

Mapping: [13 21 31 36 45 48], 0 -1 -2 1 0 0]]

POTE generator: ~3/2 = 699.2969

Optimal GPV sequence: Template:Val list

Badness: 0.052366

Chlorine

The name of chlorine temperament comes from Chlorine, the 17th element.

Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, [-52 -17 34, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&323 temperament, which tempers out [-49 4 22 -3 as well as the ragisma. Not only the semitwelfth, but also the ~5/4 can be used as a generator.

Subgroup: 2.3.5

Comma: [-52 -17 34

Mapping: [17 0 26], 0 2 1]]

Mapping generators: ~25/24, ~[26 9 -17

POTE generator: ~[26 9 -17 = 950.9746

Template:Val list

Badness: 0.077072

7-limit

Subgroup: 2.3.5.7

Comma list: 4375/4374, 193119049072265625/193091834023510016

Mapping: [17 0 26 -87], 0 2 1 10]]

Wedgie⟨⟨ 34 17 170 -52 174 347 ]]

POTE generator: ~822083584/474609375 = 950.9995

Template:Val list

Badness: 0.041658

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 41503/41472, 1879453125/1879048192

Mapping: [17 0 26 -87 207], 0 2 1 10 -11]]

POTE generators: ~822083584/474609375 = 950.9749

Optimal GPV sequence: Template:Val list

Badness: 0.063706

Palladium

The name of palladium temperament comes from Palladium, the 46th element.

Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, [-39 92 -46, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&414 temperament, which tempers out [-51 8 2 12 as well as the ragisma.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 2270317133144025/2251799813685248

Mapping: [46 73 107 129], 0 -1 -2 1]]

Wedgie: ⟨⟨ 46 92 -46 39 -202 -365 ]]

POTE generator: ~3/2 = 701.6074

Template:Val list

Badness: 0.308505

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 9801/9800, 134775333/134217728

Mapping: [46 73 107 129 159], 0 -1 -2 1 1]]

POTE generator: ~3/2 = 701.5951

Optimal GPV sequence: Template:Val list

Badness: 0.073783

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364

Mapping: [46 73 107 129 159 170], 0 -1 -2 1 1 2]]

POTE generator: ~3/2 = 701.6419

Optimal GPV sequence: Template:Val list

Badness: 0.040751

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224

Mapping: [46 73 107 129 159 170 188], 0 -1 -2 1 1 2 0]]

POTE generator: ~3/2 = 701.6425

Optimal GPV sequence: Template:Val list

Badness: 0.022441

Monzism

The monzism temperament (53&612) is a rank-two temperament which tempers out the monzisma, [54 -37 2 and the nanisma, [109 -67 0 -1, as well as the ragisma, 4375/4374.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 36030948116563575/36028797018963968

Mapping: [1 2 10 -25], 0 -2 -37 134]]

Wedgie: ⟨⟨ 2 37 -134 54 -218 -415 ]]

POTE generator: ~310078125/268435456 = 249.0207

Template:Val list

Badness: 0.046569

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 41503/41472, 184549376/184528125

Mapping: [1 2 10 -25 46], 0 -2 -37 134 -205]]

POTE generator: ~231/200 = 249.0193

Optimal GPV sequence: Template:Val list

Badness: 0.057083

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625

Mapping: [1 2 10 -25 46 23], 0 -2 -37 134 -205 -93]]

POTE generator: ~231/200 = 249.0199

Optimal GPV sequence: Template:Val list

Badness: 0.053780