212edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+comma, improve links, +essentially tempered chords available in the system
Reorganize tuning and rtt info
Line 9: Line 9:


== Theory ==
== Theory ==
212 = 4 × 53, and it shares the 3rd, 5th, and 13th [[harmonic]]s with [[53edo]], but the mapping differs for 7 and 11.  
212edo is distinctly [[consistent]] in the [[15-odd-limit]] with harmonics of 3 through 13 all tuned flat. 212 = 4 × 53, and it shares the 3rd, 5th, and 13th [[harmonic]]s with [[53edo]], but the mapping differs for 7 and 11.  


It tempers out the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]] and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]] and [[10648/10647]].  
It tempers out the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]] and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]] and [[10648/10647]].  
It is distinctly [[consistent]] in the [[15-odd-limit]] with harmonics of 3 through 13 all tuned flat.


It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables the [[marveltwin triad]], the [[keenanismic chords]], the [[island chords]], and the [[sinbadmic chords]].  
It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables the [[marveltwin triad]], the [[keenanismic chords]], the [[island chords]], and the [[sinbadmic chords]].  

Revision as of 17:59, 30 December 2021

← 211edo 212edo 213edo →
Prime factorization 22 × 53
Step size 5.66038 ¢ 
Fifth 124\212 (701.887 ¢) (→ 31\53)
Semitones (A1:m2) 20:16 (113.2 ¢ : 90.57 ¢)
Consistency limit 15
Distinct consistency limit 15

The 212 equal divisions of the octave (212edo), or the 212(-tone) equal temperament (212tet, 212et) when viewed from a regular temperament perspective, divides the octave into 212 equal parts of about 5.66 cents each.

Theory

212edo is distinctly consistent in the 15-odd-limit with harmonics of 3 through 13 all tuned flat. 212 = 4 × 53, and it shares the 3rd, 5th, and 13th harmonics with 53edo, but the mapping differs for 7 and 11.

It tempers out the same commas (15625/15552, 32805/32768, 1600000/1594323, etc.) as 53edo in the 5-limit. In the 7-limit, it tempers out 2401/2400 (breedsma), 390625/388962 (dimcomp comma), and 4802000/4782969 (canousma). In the 11-limit, 385/384, 1375/1372, 6250/6237, 9801/9800 and 14641/14580; in the 13-limit, 325/324, 625/624, 676/675, 1001/1000, 1716/1715, 2080/2079 and 10648/10647.

It is the optimal patent val for 7- and 13-limit quadritikleismic temperament, the 7-limit rank-3 kleismic temperament, and the 13-limit rank-3 agni temperament. It enables the marveltwin triad, the keenanismic chords, the island chords, and the sinbadmic chords.

The 212gh val shows some potential beyond 15-odd-limit. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone.

Prime intervals

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 15625/15552, 32805/32768 [212 336 492 595]] +0.243 0.244 4.30
2.3.5.7.11 385/384, 1375/1372, 6250/6237, 14641/14580 [212 336 492 595 733]] +0.325 0.273 4.82
2.3.5.7.11.13 325/324, 385/384, 625/624, 1375/1372, 10648/10647 [212 336 492 595 733 784]] +0.396 0.296 5.23
2.3.5.7.11.13.17 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647 [212 336 492 595 733 784 866]] (212g) +0.447 0.301 5.32
2.3.5.7.11.13.17.19 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624 [212 336 492 595 733 784 866 900]] (212gh) +0.485 0.299 5.27

Note: temperaments supported by 53et are not included.

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 15\212 84.91 21/20 Amicable / amorous / pseudoamical
1 31\212 175.47 448/405 Sesquiquartififths
1 41\212 232.08 8/7 Quadrawell
1 67\212 379.25 56/45 Marthirds
2 11\212 62.26 28/27 Eagle
2 15\212 84.91 21/20 Floral
2 31\212 175.47 448/405 Bisesqui
2 97\212
(9\212)
549.06
(50.94)
11/8
(36/35)
Kleischismic
4 56\212
(3\212)
316.98
(16.98)
6/5
(126/125)
Quadritikleismic
4 88\212
(18\212)
498.11
(101.89)
4/3
(35/33)
Quadrant
53 41\212
(1\198)
232.08
(5.66)
8/7
(225/224)
Schismerc / cartography