212edo: Difference between revisions
Cleanup |
|||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
212edo is | 212edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]] with [[harmonic]]s of 3 through 13 all tuned flat. 212 = 4 × 53, and it shares the [[3/1|3rd]], [[5/1|5th]], and [[13/1|13th]] [[harmonic]]s with [[53edo]], but the mapping differs for [[7/1|7]] and [[11/1|11]]. | ||
The equal temperament tempers out the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]] and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]] and [[10648/10647]]. | The equal temperament [[tempering out|tempers out]] the same commas ([[15625/15552]], [[32805/32768]], [[amity comma|1600000/1594323]], etc.) as 53edo in the [[5-limit]]. In the [[7-limit]], it tempers out 2401/2400 ([[breedsma]]), 390625/388962 ([[dimcomp comma]]), and 4802000/4782969 ([[canousma]]). In the [[11-limit]], [[385/384]], [[1375/1372]], [[6250/6237]], [[9801/9800]] and [[14641/14580]]; in the [[13-limit]], [[325/324]], [[625/624]], [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]] and [[10648/10647]]. | ||
It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit. | It is the [[optimal patent val]] for 7- and 13-limit [[quadritikleismic]] temperament, the 7-limit [[Kleismic rank three family #Rank-3 kleismic|rank-3 kleismic]] temperament, and the 13-limit rank-3 [[agni]] temperament. It enables [[marveltwin chords]], [[keenanismic chords]], [[sinbadmic chords]], and [[lambeth chords]] in the 13-odd-limit in addition to [[island chords]] in the 15-odd-limit. | ||
Line 32: | Line 32: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 15625/15552, 32805/32768 | | 2401/2400, 15625/15552, 32805/32768 | ||
| | | {{mapping| 212 336 492 595 }} | ||
| +0.243 | | +0.243 | ||
| 0.244 | | 0.244 | ||
Line 39: | Line 39: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 385/384, 1375/1372, 6250/6237, 14641/14580 | | 385/384, 1375/1372, 6250/6237, 14641/14580 | ||
| | | {{mapping| 212 336 492 595 733 }} | ||
| +0.325 | | +0.325 | ||
| 0.273 | | 0.273 | ||
Line 46: | Line 46: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 325/324, 385/384, 625/624, 1375/1372, 10648/10647 | | 325/324, 385/384, 625/624, 1375/1372, 10648/10647 | ||
| | | {{mapping| 212 336 492 595 733 784 }} | ||
| +0.396 | | +0.396 | ||
| 0.296 | | 0.296 | ||
Line 53: | Line 53: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647 | | 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647 | ||
| | | {{mapping| 212 336 492 595 733 784 866 }} (212g) | ||
| +0.447 | | +0.447 | ||
| 0.301 | | 0.301 | ||
Line 60: | Line 60: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624 | | 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624 | ||
| | | {{mapping| 212 336 492 595 733 784 866 900 }} (212gh) | ||
| +0.485 | | +0.485 | ||
| 0.299 | | 0.299 | ||
| 5.27 | | 5.27 | ||
|} | |} | ||
*212et (212gh val) has a lower absolute error in the 19-limit than any previous equal temperaments, past [[193edo|193]] and followed by [[217edo|217]]. | |||
* 212et (212gh val) has a lower absolute error in the 19-limit than any previous equal temperaments, past [[193edo|193]] and followed by [[217edo|217]]. | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Line 73: | Line 74: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>Ratio | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 144: | Line 145: | ||
| [[Schismerc]] / [[cartography]] | | [[Schismerc]] / [[cartography]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
== Music == | == Music == | ||
; [[Eliora]] | ; [[Eliora]] |
Revision as of 09:04, 3 April 2024
← 211edo | 212edo | 213edo → |
Theory
212edo is distinctly consistent in the 15-odd-limit with harmonics of 3 through 13 all tuned flat. 212 = 4 × 53, and it shares the 3rd, 5th, and 13th harmonics with 53edo, but the mapping differs for 7 and 11.
The equal temperament tempers out the same commas (15625/15552, 32805/32768, 1600000/1594323, etc.) as 53edo in the 5-limit. In the 7-limit, it tempers out 2401/2400 (breedsma), 390625/388962 (dimcomp comma), and 4802000/4782969 (canousma). In the 11-limit, 385/384, 1375/1372, 6250/6237, 9801/9800 and 14641/14580; in the 13-limit, 325/324, 625/624, 676/675, 1001/1000, 1716/1715, 2080/2079 and 10648/10647.
It is the optimal patent val for 7- and 13-limit quadritikleismic temperament, the 7-limit rank-3 kleismic temperament, and the 13-limit rank-3 agni temperament. It enables marveltwin chords, keenanismic chords, sinbadmic chords, and lambeth chords in the 13-odd-limit in addition to island chords in the 15-odd-limit.
The 212gh val shows some potential beyond 15-odd-limit. Also, using 212bb val (where fifth is flattened by single step, approximately 1/4 comma) gives a tuning almost identical to the POTE tuning for 5-limit meantone. This is related to the fact that 212edo splits steps of 53edo, which are mapped to a syntonic comma, in four.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.07 | -1.41 | -0.90 | -2.26 | -2.79 | +2.59 | +2.49 | +0.03 | +0.61 | -1.64 |
Relative (%) | +0.0 | -1.2 | -24.9 | -15.9 | -40.0 | -49.3 | +45.8 | +43.9 | +0.5 | +10.8 | -29.0 | |
Steps (reduced) |
212 (0) |
336 (124) |
492 (68) |
595 (171) |
733 (97) |
784 (148) |
867 (19) |
901 (53) |
959 (111) |
1030 (182) |
1050 (202) |
Subsets and supersets
Since 212 factors into 22 × 53, 212edo has subset edos 2, 4, 53, and 106. As such, it can be used to tune the period-53 cartography temperament and the period-106 boiler temperment.
A step of 212edo is exactly 50 türk sents.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 15625/15552, 32805/32768 | [⟨212 336 492 595]] | +0.243 | 0.244 | 4.30 |
2.3.5.7.11 | 385/384, 1375/1372, 6250/6237, 14641/14580 | [⟨212 336 492 595 733]] | +0.325 | 0.273 | 4.82 |
2.3.5.7.11.13 | 325/324, 385/384, 625/624, 1375/1372, 10648/10647 | [⟨212 336 492 595 733 784]] | +0.396 | 0.296 | 5.23 |
2.3.5.7.11.13.17 | 289/288, 325/324, 385/384, 442/441, 625/624, 10648/10647 | [⟨212 336 492 595 733 784 866]] (212g) | +0.447 | 0.301 | 5.32 |
2.3.5.7.11.13.17.19 | 289/288, 325/324, 361/360, 385/384, 442/441, 513/512, 625/624 | [⟨212 336 492 595 733 784 866 900]] (212gh) | +0.485 | 0.299 | 5.27 |
- 212et (212gh val) has a lower absolute error in the 19-limit than any previous equal temperaments, past 193 and followed by 217.
Rank-2 temperaments
Note: temperaments supported by 53et are not included.
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 15\212 | 84.91 | 21/20 | Amicable / amorous / pseudoamical |
1 | 31\212 | 175.47 | 448/405 | Sesquiquartififths |
1 | 41\212 | 232.08 | 8/7 | Quadrawell |
1 | 67\212 | 379.25 | 56/45 | Marthirds |
2 | 11\212 | 62.26 | 28/27 | Eagle |
2 | 15\212 | 84.91 | 21/20 | Floral |
2 | 31\212 | 175.47 | 448/405 | Bisesqui |
2 | 97\212 (9\212) |
549.06 (50.94) |
11/8 (36/35) |
Kleischismic |
4 | 56\212 (3\212) |
316.98 (16.98) |
6/5 (126/125) |
Quadritikleismic |
4 | 88\212 (18\212) |
498.11 (101.89) |
4/3 (35/33) |
Quadrant |
53 | 41\212 (1\212) |
232.08 (5.66) |
8/7 (225/224) |
Schismerc / cartography |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct