Alphatricot family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Spell the periods in cents. Note the badness metric being used. Misc. cleanup
Sorting and +descriptions mirroring vulture family
Line 4: Line 4:


== Alphatricot ==
== Alphatricot ==
Alphatricot is a [[microtemperament]] whose generator is the real cube root of [[3/1|3rd]] [[harmonic]], 3<sup>1/3</sup>, tuned between 63/44 and 13/9. Its [[ploidacot]] is alpha-tricot. It is a member of the [[schismic–Mercator equivalence continuum]] with {{nowrap|''n'' {{=}} 3 }}, so unless 53edo is used as a tuning, the schisma is always observed.  
Alphatricot is a [[microtemperament]] whose generator is the real cube root of the [[3/1|3rd]] [[harmonic]], 3<sup>1/3</sup>, tuned between [[63/44]] and [[13/9]] and representing the acute augmented fourth of 59049/40960, that is, a [[729/512|Pythagorean augmented fourth]] plus a [[81/80|syntonic comma]]. Its [[ploidacot]] is alpha-tricot. It is a member of the [[schismic–Mercator equivalence continuum]] with {{nowrap|''n'' {{=}} 3 }}, so unless 53edo is used as a tuning, the [[schisma]] is always observed.  


The temperament was named by [[Paul Erlich]] in 2002 as ''tricot''<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5041.html Yahoo! Tuning Group | ''Paul's new names'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5080.html#5113 Yahoo! Tuning Group | ''Ultimate 5-limit comma list'']</ref>, but renamed in 2025 following the specifications of ploidacot.  
The temperament was named by [[Paul Erlich]] in 2002 as ''tricot''<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5041.html Yahoo! Tuning Group | ''Paul's new names'']</ref><ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_5080.html#5113 Yahoo! Tuning Group | ''Ultimate 5-limit comma list'']</ref>, but renamed in 2025 following the specifications of ploidacot.  
Line 47: Line 47:
* [[Alphatricot19]] – improper [[17L 2s]]
* [[Alphatricot19]] – improper [[17L 2s]]


== Alphatrimot ==
== Alphatrillium ==
Alphatrimot, named by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref>, can be described as the {{nowrap| 53 & 70 }} temperament.  
Alphatrillium, named by [[Xenllium]] in 2021 as ''trillium'' but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 441 }} temperament, tempering out the [[ragisma]] aside from the alphatricot comma. [[441edo]] is a good tuning for this temperament, with generator 233\441. The harmonic 7 is found at -95 generator steps, so that the smallest [[mos scale]] is the 123-tone one. For much simpler mappings of 7 at the cost of higher errors, you could try [[#Alphatrident|alphatrident]] and [[#Alphatrimot|alphatrimot]].  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 2430/2401, 5120/5103
[[Comma list]]: 4375/4374, 1099511627776/1098337086315


{{Mapping|legend=1| 1 0 -13 -3 | 0 3 29 11 }}
{{Mapping|legend=1| 1 0 -13 53 | 0 3 29 -95 }}


{{Multival|legend=1| 3 29 11 39 9 -56 }}
{{Multival|legend=1| 3 29 -95 39 -159 -302 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000, ~81/56 = 634.0259
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000, ~23625/16384 = 634.0118


{{Optimal ET sequence|legend=1| 17c, 36c, 53, 70, 229dd, 282dd }}
{{Optimal ET sequence|legend=1| 53, 441, 494, 935, 1376, 3193, 4569 }}


[[Badness]] (Smith): 0.100127
[[Badness]] (Smith): 0.030852


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 99/98, 121/120, 5120/5103
Comma list: 4375/4374, 131072/130977, 759375/758912
 
Mapping: {{mapping| 1 0 -13 53 -89 | 0 3 29 -95 175 }}
 
Optimal tuning (POTE): ~2 = 1200.0000, ~3888/2695 = 634.0094
 
{{Optimal ET sequence|legend=0| 53, 441, 494, 935, 1429 }}
 
Badness (Smith): 0.046758
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078
 
Mapping: {{mapping| 1 0 -13 53 -89 -28 | 0 3 29 -95 175 60 }}
 
Optimal tuning (POTE): ~2 = 1200.0000, ~75/52 = 634.0095
 
{{Optimal ET sequence|legend=0| 53, 441, 494, 935, 1429 }}
 
Badness (Smith): 0.019393
 
=== Pseudotrillium ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 5632/5625, 4108797/4096000


Mapping: {{mapping| 1 0 -13 -3 -5 | 0 3 29 11 16 }}
Mapping: {{mapping| 1 0 -13 53 -61 | 0 3 29 -95 122 }}


Optimal tuning (POTE): ~2 = 1200.0000, ~63/44 = 634.0273
Optimal tuning (POTE): ~2 = 1200.0000, ~231/160 = 634.0190


{{Optimal ET sequence|legend=0| 17c, 36ce, 53, 70, 123de }}
{{Optimal ET sequence|legend=0| 53, 335, 388 }}


Badness (Smith): 0.056134
Badness (Smith): 0.111931


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 99/98, 121/120, 169/168, 352/351
Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374


Mapping: {{mapping| 1 0 -13 -3 -5 0 | 0 3 29 11 16 7 }}
Mapping: {{mapping| 1 0 -13 53 -61 -28 | 0 3 29 -95 122 60 }}


Optimal tuning (POTE): ~2 = 1200.0000, ~13/9 = 634.0115
Optimal tuning (POTE): ~2 = 1200.0000, ~75/52 = 634.0181


{{Optimal ET sequence|legend=0| 17c, 36ce, 53, 70, 123de }}
{{Optimal ET sequence|legend=0| 53, 335, 388 }}


Badness (Smith): 0.032102
Badness (Smith): 0.054837


== Alphatrident ==
== Alphatrident ==
Alphatrident, named by [[Xenllium]] in 2021 as ''trident'' but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 229 }} temperament.  
Alphatrident, also named by [[Xenllium]] in 2021 as ''trident'' but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 229 }} temperament. It tempers out the [[garischisma]], 33554432/33480783 ({{monzo| 25 -14 0 1 }}), and finds the harmonic 7 at -14 fifths or {{nowrap| (-14) × 3 {{=}} -42 }} generator steps, so that the smallest mos scale that includes it is the 53-note one.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 133: Line 159:
Badness (Smith): 0.046593
Badness (Smith): 0.046593


== Alphatrillium ==
== Alphatrimot ==
Alphatrillium, also named by [[Xenllium]] in 2021 as ''trillium'' but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 441 }} temperament.  
Alphatrimot, named by [[Petr Pařízek]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101780.html Yahoo! Tuning Group | ''Suggested names for the unclasified temperaments'']</ref> but renamed following the specifications of ploidacot, can be described as the {{nowrap| 53 & 70 }} temperament. It finds prime 7 at only 11 generators up so that the generator is interpreted as a sharp ~[[81/56]], but is more of a full 13-limit system in its own right. [[123edo]] in the 123de val is a great tuning for it. Mos scales of 5, 7, 9, 11, 13, 15, 17, 19, 36 or 53 notes are available.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 1099511627776/1098337086315
[[Comma list]]: 2430/2401, 5120/5103


{{Mapping|legend=1| 1 0 -13 53 | 0 3 29 -95 }}
{{Mapping|legend=1| 1 0 -13 -3 | 0 3 29 11 }}


{{Multival|legend=1| 3 29 -95 39 -159 -302 }}
{{Multival|legend=1| 3 29 11 39 9 -56 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000, ~23625/16384 = 634.0118
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.0000, ~81/56 = 634.0259


{{Optimal ET sequence|legend=1| 53, 441, 494, 935, 1376, 3193, 4569 }}
{{Optimal ET sequence|legend=1| 17c, 36c, 53, 70, 229dd, 282dd }}


[[Badness]] (Smith): 0.030852
[[Badness]] (Smith): 0.100127


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 131072/130977, 759375/758912
Comma list: 99/98, 121/120, 5120/5103


Mapping: {{mapping| 1 0 -13 53 -89 | 0 3 29 -95 175 }}
Mapping: {{mapping| 1 0 -13 -3 -5 | 0 3 29 11 16 }}


Optimal tuning (POTE): ~2 = 1200.0000, ~3888/2695 = 634.0094
Optimal tuning (POTE): ~2 = 1200.0000, ~63/44 = 634.0273


{{Optimal ET sequence|legend=0| 53, 441, 494, 935, 1429 }}
{{Optimal ET sequence|legend=0| 17c, 36ce, 53, 70, 123de }}


Badness (Smith): 0.046758
Badness (Smith): 0.056134


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078
Comma list: 99/98, 121/120, 169/168, 352/351


Mapping: {{mapping| 1 0 -13 53 -89 -28 | 0 3 29 -95 175 60 }}
Mapping: {{mapping| 1 0 -13 -3 -5 0 | 0 3 29 11 16 7 }}


Optimal tuning (POTE): ~2 = 1200.0000, ~75/52 = 634.0095
Optimal tuning (POTE): ~2 = 1200.0000, ~13/9 = 634.0115


{{Optimal ET sequence|legend=0| 53, 441, 494, 935, 1429 }}
{{Optimal ET sequence|legend=0| 17c, 36ce, 53, 70, 123de }}


Badness (Smith): 0.019393
Badness (Smith): 0.032102
 
=== Pseudotrillium ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 5632/5625, 4108797/4096000
 
Mapping: {{mapping| 1 0 -13 53 -61 | 0 3 29 -95 122 }}
 
Optimal tuning (POTE): ~2 = 1200.0000, ~231/160 = 634.0190
 
{{Optimal ET sequence|legend=0| 53, 335, 388 }}
 
Badness (Smith): 0.111931
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374
 
Mapping: {{mapping| 1 0 -13 53 -61 -28 | 0 3 29 -95 122 60 }}
 
Optimal tuning (POTE): ~2 = 1200.0000, ~75/52 = 634.0181
 
{{Optimal ET sequence|legend=0| 53, 335, 388 }}
 
Badness (Smith): 0.054837


== Tritricot ==
== Tritricot ==
Line 257: Line 257:


=== Noletaland ===
=== Noletaland ===
Noletaland is described as 282 & 1323, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators ([[noleta]]-…) and tempers out the landscape comma (…-land). Noletaland reaches [[13/11]] in 2 generators, and [[29/19]] in 5. Then there is [[44/25]] in 4, and [[152/115]] in also 4.
Noletaland is described as {{nowrap| 282 & 1323 }}, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators ([[noleta]]-…) and tempers out the landscape comma (…-land). Noletaland reaches [[13/11]] in 2 generators, and [[29/19]] in 5. Then there is [[44/25]] in 4, and [[152/115]] in also 4.


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11

Revision as of 15:03, 16 March 2025

The alphatricot family of temperaments tempers out the alphatricot comma (monzo[39 -29 3, ratio: 68 719 476 736 000 / 68 630 377 364 883).

Strong 7-limit extensions of this temperament include alphatrimot (53 & 70), alphatrident (53 & 229) and alphatrillium (53 & 441). Tempering out hemifamity comma (5120/5103) leads to alphatrimot, porwell comma (6144/6125) leads to alphatrident, and ragisma (4375/4374) leads to alphatrillium.

Alphatricot

Alphatricot is a microtemperament whose generator is the real cube root of the 3rd harmonic, 31/3, tuned between 63/44 and 13/9 and representing the acute augmented fourth of 59049/40960, that is, a Pythagorean augmented fourth plus a syntonic comma. Its ploidacot is alpha-tricot. It is a member of the schismic–Mercator equivalence continuum with n = 3, so unless 53edo is used as a tuning, the schisma is always observed.

The temperament was named by Paul Erlich in 2002 as tricot[1][2], but renamed in 2025 following the specifications of ploidacot.

Subgroup: 2.3.5

Comma list: [39 -29 3

Mapping[1 0 -13], 0 3 29]]

mapping generators: ~2, ~59049/40960

Wedgie⟨⟨ 3 29 39 ]]

Optimal tuning (POTE): ~2 = 1200.000, ~59049/40960 = 634.012

Optimal ET sequence53, 229, 282, 335, 388, 441, 1376, 1817, 2258

Badness (Smith): 0.046093

2.3.5.13 subgroup

Subgroup: 2.3.5.13

Comma list: 2197/2187, 41067/40960

Sval mapping: [1 0 -13 0], 0 3 29 7]]

Gencom mapping: [1 0 -13 0 0 0], 0 3 29 0 0 7]]

gencom: [2 13/9; 2197/2187, 41067/40960]

Optimal tuning (POTE): ~2 = 1200.000, ~13/9 = 633.997

Optimal ET sequence: 17c, 36c, 53

RMS error: 0.2342 cents

Scales

Alphatrillium

Alphatrillium, named by Xenllium in 2021 as trillium but renamed following the specifications of ploidacot, can be described as the 53 & 441 temperament, tempering out the ragisma aside from the alphatricot comma. 441edo is a good tuning for this temperament, with generator 233\441. The harmonic 7 is found at -95 generator steps, so that the smallest mos scale is the 123-tone one. For much simpler mappings of 7 at the cost of higher errors, you could try alphatrident and alphatrimot.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 1099511627776/1098337086315

Mapping[1 0 -13 53], 0 3 29 -95]]

Wedgie⟨⟨ 3 29 -95 39 -159 -302 ]]

Optimal tuning (POTE): ~2 = 1200.0000, ~23625/16384 = 634.0118

Optimal ET sequence53, 441, 494, 935, 1376, 3193, 4569

Badness (Smith): 0.030852

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 131072/130977, 759375/758912

Mapping: [1 0 -13 53 -89], 0 3 29 -95 175]]

Optimal tuning (POTE): ~2 = 1200.0000, ~3888/2695 = 634.0094

Optimal ET sequence: 53, 441, 494, 935, 1429

Badness (Smith): 0.046758

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078

Mapping: [1 0 -13 53 -89 -28], 0 3 29 -95 175 60]]

Optimal tuning (POTE): ~2 = 1200.0000, ~75/52 = 634.0095

Optimal ET sequence: 53, 441, 494, 935, 1429

Badness (Smith): 0.019393

Pseudotrillium

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 5632/5625, 4108797/4096000

Mapping: [1 0 -13 53 -61], 0 3 29 -95 122]]

Optimal tuning (POTE): ~2 = 1200.0000, ~231/160 = 634.0190

Optimal ET sequence: 53, 335, 388

Badness (Smith): 0.111931

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374

Mapping: [1 0 -13 53 -61 -28], 0 3 29 -95 122 60]]

Optimal tuning (POTE): ~2 = 1200.0000, ~75/52 = 634.0181

Optimal ET sequence: 53, 335, 388

Badness (Smith): 0.054837

Alphatrident

Alphatrident, also named by Xenllium in 2021 as trident but renamed following the specifications of ploidacot, can be described as the 53 & 229 temperament. It tempers out the garischisma, 33554432/33480783 ([25 -14 0 1), and finds the harmonic 7 at -14 fifths or (-14) × 3 = -42 generator steps, so that the smallest mos scale that includes it is the 53-note one.

Subgroup: 2.3.5.7

Comma list: 6144/6125, 14348907/14336000

Mapping[1 0 -13 25], 0 3 29 -42]]

Wedgie⟨⟨ 3 29 -42 39 -75 -179 ]]

Optimal tuning (POTE): ~2 = 1200.0000, ~4096/2835 = 634.0480

Optimal ET sequence53, 176, 229, 282, 511

Badness (Smith): 0.101694

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3388/3375, 6144/6125, 8019/8000

Mapping: [1 0 -13 25 -33], 0 3 29 -42 69]]

Optimal tuning (POTE): ~2 = 1200.0000, ~231/160 = 634.0669

Optimal ET sequence: 53, 176, 229

Badness (Smith): 0.074272

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 2080/2079, 2197/2187, 3146/3125

Mapping: [1 0 -13 25 -33 0], 0 3 29 -42 69 7]]

Optimal tuning (POTE): ~2 = 1200.0000, ~13/9 = 634.0652

Optimal ET sequence: 53, 176, 229

Badness (Smith): 0.046593

Alphatrimot

Alphatrimot, named by Petr Pařízek in 2011[3] but renamed following the specifications of ploidacot, can be described as the 53 & 70 temperament. It finds prime 7 at only 11 generators up so that the generator is interpreted as a sharp ~81/56, but is more of a full 13-limit system in its own right. 123edo in the 123de val is a great tuning for it. Mos scales of 5, 7, 9, 11, 13, 15, 17, 19, 36 or 53 notes are available.

Subgroup: 2.3.5.7

Comma list: 2430/2401, 5120/5103

Mapping[1 0 -13 -3], 0 3 29 11]]

Wedgie⟨⟨ 3 29 11 39 9 -56 ]]

Optimal tuning (POTE): ~2 = 1200.0000, ~81/56 = 634.0259

Optimal ET sequence17c, 36c, 53, 70, 229dd, 282dd

Badness (Smith): 0.100127

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 121/120, 5120/5103

Mapping: [1 0 -13 -3 -5], 0 3 29 11 16]]

Optimal tuning (POTE): ~2 = 1200.0000, ~63/44 = 634.0273

Optimal ET sequence: 17c, 36ce, 53, 70, 123de

Badness (Smith): 0.056134

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 121/120, 169/168, 352/351

Mapping: [1 0 -13 -3 -5 0], 0 3 29 11 16 7]]

Optimal tuning (POTE): ~2 = 1200.0000, ~13/9 = 634.0115

Optimal ET sequence: 17c, 36ce, 53, 70, 123de

Badness (Smith): 0.032102

Tritricot

Subgroup: 2.3.5.7

Comma list: 250047/250000, 11785390260224/11767897353375

Mapping[3 6 19 30], 0 -3 -29 -52]]

Wedgie⟨⟨ 9 87 156 117 222 118 ]]

Optimal tuning (POTE): ~63/50 = 400.0000, ~100352/91125 = 165.9837

Optimal ET sequence159, 282, 441, 2487, 2928, 3369

Badness (Smith): 0.086081

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4000/3993, 166698/166375, 200704/200475

Mapping: [3 6 19 30 22], 0 -3 -29 -52 -28]]

Optimal tuning (POTE): ~63/50 = 400.0000, ~11/10 = 165.9835

Optimal ET sequence: 159, 282, 441

Badness (Smith): 0.074002

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1575/1573, 2080/2079, 34398/34375, 43904/43875

Mapping: [3 6 19 30 22 36], 0 -3 -29 -52 -28 -60]]

Optimal tuning (POTE): ~63/50 = 400.0000, ~11/10 = 165.9842

Optimal ET sequence: 159, 282, 441

Badness (Smith): 0.035641

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 936/935, 1575/1573, 1701/1700, 2025/2023, 8624/8619

Mapping: [3 6 19 30 22 36 16], 0 -3 -29 -52 -28 -60 -9]]

Optimal tuning (POTE): ~34/27 = 400.0000, ~11/10 = 165.9805

Optimal ET sequence: 159, 282, 441

Badness (Smith): 0.025972

Noletaland

Noletaland is described as 282 & 1323, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators (noleta-…) and tempers out the landscape comma (…-land). Noletaland reaches 13/11 in 2 generators, and 29/19 in 5. Then there is 44/25 in 4, and 152/115 in also 4.

Subgroup: 2.3.5.7.11

Comma list: 250047/250000, 56723625/56689952, 78675968/78594219

Mapping: [3 6 19 30 35], 0 -9 -87 -156 -178]]

mappin generators: ~63/50, ~1936/1875

Optimal tuning (CTE): ~63/50 = 400.0000, ~1936/1875 = 55.3290

Optimal ET sequence: 282, 759de, 1041, 1323, 4251e

Badness (Smith): 0.158

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 10648/10647, 43904/43875, 85750/85683, 250047/250000

Mapping: [3 6 19 30 35 36], 0 -9 -87 -156 -178 -180]]

Optimal tuning (CTE): ~63/50 = 400.0000, ~1936/1875 = 55.3294

Optimal ET sequence: 282, 759def, 1041, 1323

Badness (Smith): 0.0725

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 2058/2057, 4914/4913, 8624/8619, 12376/12375, 250047/250000

Mapping: [3 6 19 30 35 36 29], 0 -9 -87 -156 -178 -180 -121]]

Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3295

Optimal ET sequence: 282, 759def, 1041, 1323

Badness (Smith): 0.0380

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 2058/2057, 2926/2925, 3136/3135, 4200/4199, 4914/4913, 250047/250000

Mapping: [3 6 19 30 35 36 29 18], 0 -9 -87 -156 -178 -180 -121 -38]]

Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3295

Optimal ET sequence: 282, 759def, 1041, 1323

Badness (Smith): 0.0269

23-limit

Subgroup: 2.3.5.7.11.13.17.19.23

Comma list: 2058/2057, 2926/2925, 3136/3135, 3381/3380, 3520/3519, 4914/4913, 18515/18513

Mapping: [3 6 19 30 35 36 29 18 31], 0 -9 -87 -156 -178 -180 -121 -38 -126]]

Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3296

Optimal ET sequence: 282, 759def, 1041, 1323

Badness (Smith): 0.0194

29-limit

Subgroup: 2.3.5.7.11.13.17.19.23.29

Comma list: 2058/2057, 2755/2754, 2926/2925, 3136/3135, 3381/3380, 3451/3450, 3520/3519, 4914/4913

Mapping: [3 6 19 30 35 36 29 18 31 19], 0 -9 -87 -156 -178 -180 -121 -38 -126 -32]]

Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3296

Optimal ET sequence: 282, 759def, 1041, 1323

Badness (Smith): 0.0168

Notes