Starling family: Difference between revisions
Cmloegcmluin (talk | contribs) "optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence |
Update keys |
||
Line 1: | Line 1: | ||
The head of the '''starling family''' is starling, which tempers out [[126/125]], the starling comma or septimal semicomma. Starling has a normal list basis of [2, 3, 5]; hence a 5-limit scale can be converted to starling simply by tempering it. One way to do that, and an excellent starling tuning, is given by [[77edo]]. Other possible tunings are [[108edo]] and [[185edo]], and the nonpatent [[135edo]] val {{val| 135 214 314 379 }}. | The head of the '''starling family''' is starling, which tempers out [[126/125]], the starling comma or septimal semicomma. Starling has a normal list basis of [2, 3, 5]; hence a 5-limit scale can be converted to starling simply by tempering it. One way to do that, and an excellent starling tuning, is given by [[77edo]]. Other possible tunings are [[108edo]] and [[185edo]], and the nonpatent [[135edo]] val {{val| 135 214 314 379 }} (135c). | ||
In starling, (6/5)<sup>3</sup> = 126/125 × 12/7, and minor thirds/major sixths are low complexity intervals. A suitable 5-limit scale to temper via starling will be one where there are chains of minor thirds. Starling has a 6/5-6/5-6/5-7/6 versions of the diminished seventh chord which is very characteristic of it. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before 12edo established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds. | In starling, (6/5)<sup>3</sup> = 126/125 × 12/7, and minor thirds/major sixths are low complexity intervals. A suitable 5-limit scale to temper via starling will be one where there are chains of minor thirds. Starling has a 6/5-6/5-6/5-7/6 versions of the diminished seventh chord which is very characteristic of it. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before 12edo established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds. | ||
Because no appreciable tuning accuracy is lost by including [[1029/1024]] along with 126/125 in the comma list, which leads to [[ | Because no appreciable tuning accuracy is lost by including [[1029/1024]] along with 126/125 in the comma list, which leads to [[valentine]], there is a close relationship between the two. Even if tempering a 5-limit scale, one can assume valentine tempering. | ||
Temperaments discussed elsewhere include [[erato]] (→ [[Didymus rank three family #Erato|Didymus rank-3 family]]) and [[sensigh]] (→ [[Sensamagic family #Sensigh|Sensamagic family]]). Considered below are starling, thrush, thrasher, aplonis, oxpecker, treecreeper, and cuckoo. | Temperaments discussed elsewhere include [[erato]] (→ [[Didymus rank three family #Erato|Didymus rank-3 family]]) and [[sensigh]] (→ [[Sensamagic family #Sensigh|Sensamagic family]]). Considered below are starling, thrush, thrasher, aplonis, oxpecker, treecreeper, and cuckoo. | ||
== Starling == | == Starling == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: [[126/125]] | [[Comma list]]: [[126/125]] | ||
{{Mapping|legend=1| 1 0 0 -1 | 0 1 0 -2 | 0 0 1 3 }} | |||
: mapping generators: ~2, ~3, ~5 | |||
[[Mapping to lattice]]: [{{val| 0 1 0 -2 }}, {{val| 0 1 1 1 }}] | [[Mapping to lattice]]: [{{val| 0 1 0 -2 }}, {{val| 0 1 1 1 }}] | ||
Minkowski lattice basis: | [[Minkowski lattice basis]]: | ||
: 6/5 length = 1.068, 5/4 length = 1.206 | : 6/5 length = 1.068, 5/4 length = 1.206 | ||
: Angle (6/5, 5/4) = 100.364 degrees | : Angle (6/5, 5/4) = 100.364 degrees | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* 7- and [[9-odd-limit]]: 3 and 7 just, 5 1/ | * 7- and [[9-odd-limit]]: 3 and 7 just, 5 1/3-comma sharp | ||
: | : {{monzo list| 1 0 0 0 | 0 1 0 0 | 1/3 2/3 0 1/3 | 0 0 0 1 }} | ||
: | : [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.3.7 | ||
{{Optimal ET sequence|legend=1| 7d, 8d, 12, 19, 27, 31, 46, 58, 77, 135c, 166c }} | {{Optimal ET sequence|legend=1| 7d, 8d, 12, 19, 27, 31, 46, 58, 77, 135c, 166c }} | ||
Line 38: | Line 38: | ||
* [https://soundcloud.com/jdfreivald/a-seed-planted-starling-pure A Seed Planted] by [[Jake Freivald]]. The melody depends on tempering out 126/125. | * [https://soundcloud.com/jdfreivald/a-seed-planted-starling-pure A Seed Planted] by [[Jake Freivald]]. The melody depends on tempering out 126/125. | ||
{{Databox|[[Minkowski blocks]]| | |||
* 7: 25/24, 81/80 | * 7: 25/24, 81/80 | ||
* 8: 16/15, 648/625 | * 8: 16/15, 648/625 | ||
Line 55: | Line 52: | ||
* 31: 81/80, 1990656/1953125 | * 31: 81/80, 1990656/1953125 | ||
* 34: 15625/15552, 2048/2025 | * 34: 15625/15552, 2048/2025 | ||
}} | |||
== Undecimal starling == | == Undecimal starling == | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 126/125, 385/384 | [[Comma list]]: 126/125, 385/384 | ||
{{Mapping|legend=1| 1 0 0 -1 8 | 0 1 0 -2 3 | 0 0 1 3 -4 }} | |||
{{Optimal ET sequence|legend=1| 12e, 15, 19, 27, 31, 46, 77, 96d, 127d, 173d, 204de }} | {{Optimal ET sequence|legend=1| 12e, 15, 19, 27, 31, 46, 77, 96d, 127d, 173d, 204de }} | ||
Line 72: | Line 66: | ||
== Thrush == | == Thrush == | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 126/125, 176/175 | [[Comma list]]: 126/125, 176/175 | ||
{{Mapping|legend=1| 1 0 0 -1 -5 | 0 1 0 -2 -2 | 0 0 1 3 5 }} | |||
Mapping to lattice: [{{val| 0 1 1 1 3 }}, {{val| 0 1 0 -2 -2 }}] | Mapping to lattice: [{{val| 0 1 1 1 3 }}, {{val| 0 1 0 -2 -2 }}] | ||
Line 89: | Line 81: | ||
* 7- and [[9-odd-limit]] | * 7- and [[9-odd-limit]] | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 0 1 0 0 0 }}, {{monzo| 1/3 2/3 0 1/3 0 }}, {{monzo| 0 0 0 1 0 }}, {{monzo| -10/3 4/3 0 5/3 0 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 0 1 0 0 0 }}, {{monzo| 1/3 2/3 0 1/3 0 }}, {{monzo| 0 0 0 1 0 }}, {{monzo| -10/3 4/3 0 5/3 0 }}] | ||
: [[Eigenmonzo | : [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.3.7 | ||
{{Optimal ET sequence|legend=1| 12, 15, 19e, 27e, 31, 46, 58, 89, 135c, 193c, 224c }} | {{Optimal ET sequence|legend=1| 12, 15, 19e, 27e, 31, 46, 58, 89, 135c, 193c, 224c }} | ||
Line 97: | Line 89: | ||
[[Projection pair]]s: 7 125/18 11 3125/288 | [[Projection pair]]s: 7 125/18 11 3125/288 | ||
[[Associated temperament]]: [[ | [[Associated temperament]]: [[myna]] | ||
Scales: [[thrush12]] | Scales: [[thrush12]] | ||
Line 106: | Line 98: | ||
Comma list: 126/125, 176/175, 196/195 | Comma list: 126/125, 176/175, 196/195 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -5 0 | 0 1 0 -2 -2 -5 | 0 0 1 3 5 5 }} | ||
{{Optimal ET sequence|legend=1| 12f, 19e, 27e, 31, 46, 58, 104c, 135c, 193cf }} | {{Optimal ET sequence|legend=1| 12f, 19e, 27e, 31, 46, 58, 104c, 135c, 193cf }} | ||
Line 117: | Line 109: | ||
Comma list: 126/125, 144/143, 176/175 | Comma list: 126/125, 144/143, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -5 9 | 0 1 0 -2 -2 4 | 0 0 1 3 5 -5 }} | ||
{{Optimal ET sequence|legend=1| 12, 15, 27e, 31, 43, 58, 147cf, 205cceff, 263ccdeefff }} | {{Optimal ET sequence|legend=1| 12, 15, 27e, 31, 43, 58, 147cf, 205cceff, 263ccdeefff }} | ||
Line 130: | Line 122: | ||
Comma list: 66/65, 126/125, 176/175 | Comma list: 66/65, 126/125, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -5 -4 | 0 1 0 -2 -2 -1 | 0 0 1 3 5 4 }} | ||
{{Optimal ET sequence|legend=1| 12f, 15, 19e, 27eff, 31 }} | {{Optimal ET sequence|legend=1| 12f, 15, 19e, 27eff, 31 }} | ||
Line 141: | Line 133: | ||
Comma list: 91/90, 126/125, 176/175 | Comma list: 91/90, 126/125, 176/175 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -5 2 | 0 1 0 -2 -2 4 | 0 0 1 3 5 -2 }} | ||
{{Optimal ET sequence|legend=1| 12, 15, 19e, 27e, 31f, 46 }} | {{Optimal ET sequence|legend=1| 12, 15, 19e, 27e, 31f, 46 }} | ||
Line 148: | Line 140: | ||
== Thrasher == | == Thrasher == | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 56/55, 100/99 | [[Comma list]]: 56/55, 100/99 | ||
{{Mapping|legend=1| 1 0 0 -1 2 | 0 1 0 -2 -2 | 0 0 1 3 2 }} | |||
Mapping to lattice: [{{val| 0 1 0 -2 -2 }}, {{val| 0 1 1 1 0 }}] | Mapping to lattice: [{{val| 0 1 0 -2 -2 }}, {{val| 0 1 1 1 0 }}] | ||
Line 165: | Line 155: | ||
* [[11-odd-limit]] | * [[11-odd-limit]] | ||
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 3/4 0 1/4 -3/8 }}, {{monzo| 1 1/2 0 1/2 -1/4 }}, {{monzo| 0 0 0 1 0 }}, {{monzo| 2 -1/2 0 1/2 1/4 }}] | : [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 3/4 0 1/4 -3/8 }}, {{monzo| 1 1/2 0 1/2 -1/4 }}, {{monzo| 0 0 0 1 0 }}, {{monzo| 2 -1/2 0 1/2 1/4 }}] | ||
: [[Eigenmonzo | : [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7.11/9 | ||
{{Optimal ET sequence|legend=1| 7d, 8d, 12, 15, 19, 27e }} <nowiki>*</nowiki> | {{Optimal ET sequence|legend=1| 7d, 8d, 12, 15, 19, 27e }} <nowiki>*</nowiki> | ||
Line 176: | Line 166: | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 91/90, 100/99 | Comma list: 56/55, 91/90, 100/99 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 2 2 | 0 1 0 -2 -2 4 | 0 0 1 3 2 -2 }} | ||
{{Optimal ET sequence|legend=1| 7d, 8d, 12, 15, 19, 27e, 69bceef }} <nowiki>*</nowiki> | {{Optimal ET sequence|legend=1| 7d, 8d, 12, 15, 19, 27e, 69bceef }} <nowiki>*</nowiki> | ||
Line 189: | Line 179: | ||
Subgroup: 2.3.5.7.11.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 40/39, 100/99 | Comma list: 40/39, 56/55, 100/99 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 2 3 | 0 1 0 -2 -2 -1 | 0 0 1 3 2 1 }} | ||
{{Optimal ET sequence|legend=1| 7d, 8d, 12f, 15, 27eff }} | {{Optimal ET sequence|legend=1| 7d, 8d, 12f, 15, 27eff }} | ||
Line 202: | Line 192: | ||
Comma list: 78/77, 100/99, 126/125 | Comma list: 78/77, 100/99, 126/125 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 2 0 | 0 1 0 -2 -2 -5 | 0 0 1 3 2 5 }} | ||
{{Optimal ET sequence|legend=1| 7df, 8d, 12f, 19, 27e, 66cdeeef }} | {{Optimal ET sequence|legend=1| 7df, 8d, 12f, 19, 27e, 66cdeeef }} | ||
Line 209: | Line 199: | ||
== Aplonis == | == Aplonis == | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 126/125, 540/539 | [[Comma list]]: 126/125, 540/539 | ||
{{Mapping|legend=1| 1 0 0 -1 4 | 0 1 0 -2 7 | 0 0 1 3 -5 }} | |||
{{Optimal ET sequence|legend=1| 12e, 19, 27e, 31, 58, 89, 197c, 228c }} | {{Optimal ET sequence|legend=1| 12e, 19, 27e, 31, 58, 89, 197c, 228c }} | ||
Line 224: | Line 214: | ||
Comma list: 126/125, 144/143, 196/195 | Comma list: 126/125, 144/143, 196/195 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 4 0 | 0 1 0 -2 7 -5 | 0 0 1 3 -5 5 }} | ||
{{Optimal ET sequence|legend=1| 8d, 19, 27e, 31, 50, 58, 166cef, 224ceeff }} | {{Optimal ET sequence|legend=1| 8d, 19, 27e, 31, 50, 58, 166cef, 224ceeff }} | ||
Line 235: | Line 225: | ||
[[Comma list]]: 121/120, 126/125 | [[Comma list]]: 121/120, 126/125 | ||
{{Mapping|legend=1| 1 0 1 2 2 | 0 1 1 1 1 | 0 0 -2 -6 -1 }} | |||
: mapping generators: ~2, ~3, ~35/32 | |||
{{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31, 46, 77 }} | {{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31, 46, 77 }} | ||
Line 246: | Line 238: | ||
Comma list: 66/65, 121/120, 126/125 | Comma list: 66/65, 121/120, 126/125 | ||
Mapping: | Mapping: {{mapping| 1 0 1 2 2 2 | 0 1 1 1 1 1 | 0 0 -2 -6 -1 -1 }} | ||
{{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31 }} | {{Optimal ET sequence|legend=1| 7d, 8d, 15, 23de, 24d, 31 }} | ||
Line 253: | Line 245: | ||
== Treecreeper == | == Treecreeper == | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 126/125, 1232/1215 | [[Comma list]]: 126/125, 1232/1215 | ||
{{Mapping|legend=1| 1 0 0 -1 -3 | 0 1 0 -2 7 | 0 0 1 3 -2 }} | |||
{{Optimal ET sequence|legend=1| 7d, 12e, 19e, 27e, 39d, 46, 119c }} | {{Optimal ET sequence|legend=1| 7d, 12e, 19e, 27e, 39d, 46, 119c }} | ||
Line 268: | Line 260: | ||
Comma list: 91/90, 126/125, 352/351 | Comma list: 91/90, 126/125, 352/351 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -3 2 | 0 1 0 -2 7 4 | 0 0 1 3 -2 -2 }} | ||
{{Optimal ET sequence|legend=1| 7d, 12e, 19e, 27e, 46 }} | {{Optimal ET sequence|legend=1| 7d, 12e, 19e, 27e, 46 }} | ||
Line 275: | Line 267: | ||
== Cuckoo == | == Cuckoo == | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 126/125, 243/242 | [[Comma list]]: 126/125, 243/242 | ||
{{Mapping|legend=1| 1 1 0 -3 2 | 0 2 0 -4 5 | 0 0 1 3 0 }} | |||
: mapping generators: ~2, ~11/9, ~5 | |||
{{Optimal ET sequence|legend=1| 24d, 27e, 31, 58, 89, 154, 185 }} | {{Optimal ET sequence|legend=1| 24d, 27e, 31, 58, 89, 154, 185 }} | ||
Line 290: | Line 284: | ||
Comma list: 126/125, 196/195, 243/242 | Comma list: 126/125, 196/195, 243/242 | ||
Mapping: | Mapping: {{mapping| 1 1 0 -3 2 -5 | 0 2 0 -4 5 -10 | 0 0 1 3 0 5 }} | ||
{{Optimal ET sequence|legend=1| 27e, 31, 58, 96d, 154 }} | {{Optimal ET sequence|legend=1| 27e, 31, 58, 96d, 154 }} |
Revision as of 11:28, 12 August 2023
The head of the starling family is starling, which tempers out 126/125, the starling comma or septimal semicomma. Starling has a normal list basis of [2, 3, 5]; hence a 5-limit scale can be converted to starling simply by tempering it. One way to do that, and an excellent starling tuning, is given by 77edo. Other possible tunings are 108edo and 185edo, and the nonpatent 135edo val ⟨135 214 314 379] (135c).
In starling, (6/5)3 = 126/125 × 12/7, and minor thirds/major sixths are low complexity intervals. A suitable 5-limit scale to temper via starling will be one where there are chains of minor thirds. Starling has a 6/5-6/5-6/5-7/6 versions of the diminished seventh chord which is very characteristic of it. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before 12edo established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds.
Because no appreciable tuning accuracy is lost by including 1029/1024 along with 126/125 in the comma list, which leads to valentine, there is a close relationship between the two. Even if tempering a 5-limit scale, one can assume valentine tempering.
Temperaments discussed elsewhere include erato (→ Didymus rank-3 family) and sensigh (→ Sensamagic family). Considered below are starling, thrush, thrasher, aplonis, oxpecker, treecreeper, and cuckoo.
Starling
Subgroup: 2.3.5.7
Mapping: [⟨1 0 0 -1], ⟨0 1 0 -2], ⟨0 0 1 3]]
- mapping generators: ~2, ~3, ~5
Mapping to lattice: [⟨0 1 0 -2], ⟨0 1 1 1]]
- 6/5 length = 1.068, 5/4 length = 1.206
- Angle (6/5, 5/4) = 100.364 degrees
- 7- and 9-odd-limit: 3 and 7 just, 5 1/3-comma sharp
- [[1 0 0 0⟩, [0 1 0 0⟩, [1/3 2/3 0 1/3⟩, [0 0 0 1⟩]
- eigenmonzo (unchanged-interval) basis: 2.3.7
Optimal ET sequence: 7d, 8d, 12, 19, 27, 31, 46, 58, 77, 135c, 166c
Badness: 0.0699 × 10-3
Projection pair: 7 125/18
Scales: starling7, starling8, starling9, starling11, starling12, starling15, starling16, starling17, starling19
- Music
- A Seed Planted by Jake Freivald. The melody depends on tempering out 126/125.
- 7: 25/24, 81/80
- 8: 16/15, 648/625
- 9: 27/25, 128/125
- 11: 16/15, 15625/15552
- 12: 128/125, 628/625
- 15: 128/125, 250/243
- 16: 648/625, 3125/3072
- 17: 25/24, 20480/19683
- 19: 81/80, 3125/3072
- 27: 128/125, 78732/78125
- 28: 648/625, 16875/16384
- 31: 81/80, 1990656/1953125
- 34: 15625/15552, 2048/2025
Undecimal starling
Subgroup: 2.3.5.7.11
Comma list: 126/125, 385/384
Mapping: [⟨1 0 0 -1 8], ⟨0 1 0 -2 3], ⟨0 0 1 3 -4]]
Optimal ET sequence: 12e, 15, 19, 27, 31, 46, 77, 96d, 127d, 173d, 204de
Badness: 0.677 × 10-3
Thrush
Subgroup: 2.3.5.7.11
Comma list: 126/125, 176/175
Mapping: [⟨1 0 0 -1 -5], ⟨0 1 0 -2 -2], ⟨0 0 1 3 5]]
Mapping to lattice: [⟨0 1 1 1 3], ⟨0 1 0 -2 -2]]
Lattice basis:
- 5/4 length = 0.8576, 6/5 length = 0.9314
- Angle(5/4, 6/5) = 74.6239 degrees
- 7- and 9-odd-limit
- [[1 0 0 0 0⟩, [0 1 0 0 0⟩, [1/3 2/3 0 1/3 0⟩, [0 0 0 1 0⟩, [-10/3 4/3 0 5/3 0⟩]
- eigenmonzo (unchanged-interval) basis: 2.3.7
Optimal ET sequence: 12, 15, 19e, 27e, 31, 46, 58, 89, 135c, 193c, 224c
Badness: 0.353 × 10-3
Projection pairs: 7 125/18 11 3125/288
Scales: thrush12
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 176/175, 196/195
Mapping: [⟨1 0 0 -1 -5 0], ⟨0 1 0 -2 -2 -5], ⟨0 0 1 3 5 5]]
Optimal ET sequence: 12f, 19e, 27e, 31, 46, 58, 104c, 135c, 193cf
Badness: 0.677 × 10-3
Bluebird
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 144/143, 176/175
Mapping: [⟨1 0 0 -1 -5 9], ⟨0 1 0 -2 -2 4], ⟨0 0 1 3 5 -5]]
Optimal ET sequence: 12, 15, 27e, 31, 43, 58, 147cf, 205cceff, 263ccdeefff
Badness: 0.915 × 10-3
Projection pairs: 7 125/18 11 3125/288 13 41472/3125
Nightingale
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 126/125, 176/175
Mapping: [⟨1 0 0 -1 -5 -4], ⟨0 1 0 -2 -2 -1], ⟨0 0 1 3 5 4]]
Optimal ET sequence: 12f, 15, 19e, 27eff, 31
Badness: 0.837 × 10-3
Veery
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 176/175
Mapping: [⟨1 0 0 -1 -5 2], ⟨0 1 0 -2 -2 4], ⟨0 0 1 3 5 -2]]
Optimal ET sequence: 12, 15, 19e, 27e, 31f, 46
Badness: 0.991 × 10-3
Thrasher
Subgroup: 2.3.5.7.11
Comma list: 56/55, 100/99
Mapping: [⟨1 0 0 -1 2], ⟨0 1 0 -2 -2], ⟨0 0 1 3 2]]
Mapping to lattice: [⟨0 1 0 -2 -2], ⟨0 1 1 1 0]]
Lattice basis:
- 6/5 length = 0.9089, 5/4 length = 1.2007
- Angle (6/5, 5/4) = 98.8447
- [[1 0 0 0 0⟩, [1 3/4 0 1/4 -3/8⟩, [1 1/2 0 1/2 -1/4⟩, [0 0 0 1 0⟩, [2 -1/2 0 1/2 1/4⟩]
- eigenmonzo (unchanged-interval) basis: 2.7.11/9
Optimal ET sequence: 7d, 8d, 12, 15, 19, 27e *
Badness: 0.480 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 91/90, 100/99
Mapping: [⟨1 0 0 -1 2 2], ⟨0 1 0 -2 -2 4], ⟨0 0 1 3 2 -2]]
Optimal ET sequence: 7d, 8d, 12, 15, 19, 27e, 69bceef *
* optimal patent val: 34
Badness: 0.876 × 10-3
Mockingbird
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 56/55, 100/99
Mapping: [⟨1 0 0 -1 2 3], ⟨0 1 0 -2 -2 -1], ⟨0 0 1 3 2 1]]
Optimal ET sequence: 7d, 8d, 12f, 15, 27eff
Badness: 0.859 × 10-3
Catbird
Subgroup: 2.3.5.7.11.13
Comma list: 78/77, 100/99, 126/125
Mapping: [⟨1 0 0 -1 2 0], ⟨0 1 0 -2 -2 -5], ⟨0 0 1 3 2 5]]
Optimal ET sequence: 7df, 8d, 12f, 19, 27e, 66cdeeef
Badness: 0.905 × 10-3
Aplonis
Subgroup: 2.3.5.7.11
Comma list: 126/125, 540/539
Mapping: [⟨1 0 0 -1 4], ⟨0 1 0 -2 7], ⟨0 0 1 3 -5]]
Optimal ET sequence: 12e, 19, 27e, 31, 58, 89, 197c, 228c
Badness: 0.648 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 144/143, 196/195
Mapping: [⟨1 0 0 -1 4 0], ⟨0 1 0 -2 7 -5], ⟨0 0 1 3 -5 5]]
Optimal ET sequence: 8d, 19, 27e, 31, 50, 58, 166cef, 224ceeff
Badness: 0.821 × 10-3
Oxpecker
Subgroup: 2.3.5.7.11
Comma list: 121/120, 126/125
Mapping: [⟨1 0 1 2 2], ⟨0 1 1 1 1], ⟨0 0 -2 -6 -1]]
- mapping generators: ~2, ~3, ~35/32
Optimal ET sequence: 7d, 8d, 15, 23de, 24d, 31, 46, 77
Badness: 0.699 × 10-3
Woodpecker
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 121/120, 126/125
Mapping: [⟨1 0 1 2 2 2], ⟨0 1 1 1 1 1], ⟨0 0 -2 -6 -1 -1]]
Optimal ET sequence: 7d, 8d, 15, 23de, 24d, 31
Badness: 1.093 × 10-3
Treecreeper
Subgroup: 2.3.5.7.11
Comma list: 126/125, 1232/1215
Mapping: [⟨1 0 0 -1 -3], ⟨0 1 0 -2 7], ⟨0 0 1 3 -2]]
Optimal ET sequence: 7d, 12e, 19e, 27e, 39d, 46, 119c
Badness: 1.585 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 352/351
Mapping: [⟨1 0 0 -1 -3 2], ⟨0 1 0 -2 7 4], ⟨0 0 1 3 -2 -2]]
Optimal ET sequence: 7d, 12e, 19e, 27e, 46
Badness: 1.588 × 10-3
Cuckoo
Subgroup: 2.3.5.7.11
Comma list: 126/125, 243/242
Mapping: [⟨1 1 0 -3 2], ⟨0 2 0 -4 5], ⟨0 0 1 3 0]]
- mapping generators: ~2, ~11/9, ~5
Optimal ET sequence: 24d, 27e, 31, 58, 89, 154, 185
Badness: 0.933 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 196/195, 243/242
Mapping: [⟨1 1 0 -3 2 -5], ⟨0 2 0 -4 5 -10], ⟨0 0 1 3 0 5]]