Gravity family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 251255716 - Original comment: **
 
(42 intermediate revisions by 13 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The '''gravity family''' tempers out [[graviton]], the 5-limit comma 129140163/128000000 = {{monzo| -13 17 -6 }}. The graviton equals (81/80)<sup>4</sup>/(25/24), so that four 81/80 commas come to a classic chromatic semitone. The generator of gravity temperament is a grave fifth of [[~]][[40/27]], and hence the name. It is part of the [[syntonic&ndash;chromatic equivalence continuum]], whereby (81/80)<sup>''k''</sup> = 25/24.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-06 14:07:45 UTC</tt>.<br>
: The original revision id was <tt>251255716</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]


=Gravity=
== Gravity ==
The gravity family tempers out [[graviton]], the 5-limit comma 129140163/128000000 = |-13 17 -6&gt;. The graviton equals (81/80)^4/(25/24), so that four 81/80 commas come to a chromatic semitone. The generator of gravity temperament is a grave fifth of 40/27, and hence the name. It is part of the Mavila -&gt; Dicot -&gt; Porcupine -&gt; Tetracot -&gt; Amity continuum, whereby (81/80)^n = 25/24.
{{main|Gravity}}


Comma: 129140163/128000000
[[Subgroup]]: 2.3.5


POTE generator: ~40/27 = 683.156
[[Comma list]]: 129140163/128000000


Map: [&lt;1 5 12|, &lt;0 -6 -17|]
{{Mapping|legend=1| 1 5 12 | 0 -6 -17 }}
EDOs: [[7edo|7]], [[58edo|58]], [[65edo|65]], [[137edo|137]], [[202edo|202]], [[267edo|267]], [[469edo|469]]
Badness: 0.0932


=Harry=
: mapping generators: ~2, ~40/27
Commas: 2401/2400, 19683/19600


POTE generator: ~21/20 = 83.156
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/20 = 516.844


Map: [&lt;2 4 7 7|, &lt;0 -6 -17 -10|]
{{Optimal ET sequence|legend=1| 7, 37cc, 44c, 51c, 58, 65, 137, 202, 267, 469 }}
Wedgie: &lt;&lt;12 34 20 26 -2 -49||
EDOs: 58, 72, 130, 202, 534
Badness: 0.0341


==11-limit==
[[Badness]]: 0.093184
Commas: 243/242, 441/440, 4000/3993


POTE generator: ~21/20 = 83.167
=== Overview to extensions ===
Full 7-limit extensions of gravity include marvo (65d &amp; 72), zarvo (65 &amp; 72), gravid (58 &amp; 65), and harry (58 &amp; 72), all considered below. A notable subgroup extension is larry.


Map: [&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]
There is also an unnamed 58 & 65d extension by tempering [[176/175]] to extend larry to include prime 7 and tempering [[847/845]] to extend it to the 13-limit, with an [[S-expression]]-based comma list of {[[5120/5103|S8/S9]], [[8019/8000|S9/S10]], [[4000/3993|S10/S11]], ([[847/845|S11/S13]],) [[144/143|S12]]}.
EDOs: 58, 72, 130, 202
Badness: 0.0159


==13-limit==
=== 2.3.5.11 subgroup (larry) ===
Commas: 243/242, 351/350, 441/440, 676/675
Subgroup: 2.3.5.11


POTE generator: ~21/20 = 83.116
Comma list: 243/242, 4000/3993


Map: [&lt;2 4 7 7 9 11|, &lt;0 -6 -17 -10 -15 -26|]
Sval mapping: {{mapping| 1 5 12 12 | 0 -6 -17 -15 }}
EDOs: 58, 72, 130
Badness: 0.0130


</pre></div>
Gencom mapping: {{mapping| 1 5 12 0 12 | 0 -6 -17 0 -15 }}
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Gravity family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Gravity"&gt;Gravity&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#Harry"&gt;Harry&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
: gencom: [2 40/27; 243/242 4000/3993]
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Gravity"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Gravity&lt;/h1&gt;
Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.834
The gravity family tempers out &lt;a class="wiki_link" href="/graviton"&gt;graviton&lt;/a&gt;, the 5-limit comma 129140163/128000000 = |-13 17 -6&amp;gt;. The graviton equals (81/80)^4/(25/24), so that four 81/80 commas come to a chromatic semitone. The generator of gravity temperament is a grave fifth of 40/27, and hence the name. It is part of the Mavila -&amp;gt; Dicot -&amp;gt; Porcupine -&amp;gt; Tetracot -&amp;gt; Amity continuum, whereby (81/80)^n = 25/24.&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 7, 37ccee, 44ce, 51ce, 58, 65, 137, 202 }}
Comma: 129140163/128000000&lt;br /&gt;
 
&lt;br /&gt;
Badness: 0.0125
POTE generator: ~40/27 = 683.156&lt;br /&gt;
 
&lt;br /&gt;
== Marvo ==
Map: [&amp;lt;1 5 12|, &amp;lt;0 -6 -17|]&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
EDOs: &lt;a class="wiki_link" href="/7edo"&gt;7&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58&lt;/a&gt;, &lt;a class="wiki_link" href="/65edo"&gt;65&lt;/a&gt;, &lt;a class="wiki_link" href="/137edo"&gt;137&lt;/a&gt;, &lt;a class="wiki_link" href="/202edo"&gt;202&lt;/a&gt;, &lt;a class="wiki_link" href="/267edo"&gt;267&lt;/a&gt;, &lt;a class="wiki_link" href="/469edo"&gt;469&lt;/a&gt;&lt;br /&gt;
 
Badness: 0.0932&lt;br /&gt;
[[Comma list]]: 225/224, 78125000/78121827
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Harry"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Harry&lt;/h1&gt;
{{Mapping|legend=1| 1 5 12 29 | 0 -6 -17 -46 }}
Commas: 2401/2400, 19683/19600&lt;br /&gt;
 
&lt;br /&gt;
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/20 = 516.694
POTE generator: ~21/20 = 83.156&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 65d, 72, 137, 209, 281, 569bcc }}
Map: [&amp;lt;2 4 7 7|, &amp;lt;0 -6 -17 -10|]&lt;br /&gt;
 
Wedgie: &amp;lt;&amp;lt;12 34 20 26 -2 -49||&lt;br /&gt;
[[Badness]]: 0.097627
EDOs: 58, 72, 130, 202, 534&lt;br /&gt;
 
Badness: 0.0341&lt;br /&gt;
=== 11-limit ===
&lt;br /&gt;
Subgroup: 2.3.5.7.11
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Harry-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;11-limit&lt;/h2&gt;
 
Commas: 243/242, 441/440, 4000/3993&lt;br /&gt;
Comma list: 225/224, 243/242, 4000/3993
&lt;br /&gt;
 
POTE generator: ~21/20 = 83.167&lt;br /&gt;
Mapping: {{mapping| 1 5 12 29 12 | 0 -6 -17 -46 -15 }}
&lt;br /&gt;
 
Map: [&amp;lt;2 4 7 7 9|, &amp;lt;0 -6 -17 -10 -15|]&lt;br /&gt;
Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.699
EDOs: 58, 72, 130, 202&lt;br /&gt;
 
Badness: 0.0159&lt;br /&gt;
{{Optimal ET sequence|legend=1| 65d, 72, 281, 353c, 425bc, 497bc }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Harry-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;13-limit&lt;/h2&gt;
Badness: 0.031685
Commas: 243/242, 351/350, 441/440, 676/675&lt;br /&gt;
 
&lt;br /&gt;
=== 13-limit ===
POTE generator: ~21/20 = 83.116&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
&lt;br /&gt;
 
Map: [&amp;lt;2 4 7 7 9 11|, &amp;lt;0 -6 -17 -10 -15 -26|]&lt;br /&gt;
Comma list: 225/224, 243/242, 351/350, 1625/1617
EDOs: 58, 72, 130&lt;br /&gt;
 
Badness: 0.0130&lt;/body&gt;&lt;/html&gt;</pre></div>
Mapping: {{mapping| 1 5 12 29 12 39 | 0 -6 -17 -46 -15 -62 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.730
 
{{Optimal ET sequence|legend=1| 65d, 72, 137, 209, 281f, 490bcf }}
 
Badness: 0.026882
 
== Zarvo ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 33075/32768
 
{{Mapping|legend=1| 1 5 12 -12 | 0 -6 -17 26 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/20 = 516.702
 
{{Optimal ET sequence|legend=1| 65, 72, 281d, 353cd, 425bcdd, 497bcdd }}
 
[[Badness]]: 0.096840
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 385/384, 4000/3993
 
Mapping: {{mapping| 1 5 12 -12 12 | 0 -6 -17 26 -15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.691
 
{{Optimal ET sequence|legend=1| 65, 72, 353cd }}
 
Badness: 0.034773
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 243/242, 325/324, 385/384
 
Mapping: {{mapping| 1 5 12 -12 12 -2 | 0 -6 -17 26 -15 10 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.667
 
{{Optimal ET sequence|legend=1| 65f, 72 }}
 
Badness: 0.027584
 
== Gravid ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 126/125, 1605632/1594323
 
{{Mapping|legend=1| 1 5 12 25 | 0 -6 -17 -39 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/20 = 517.140
 
{{Optimal ET sequence|legend=1| 58, 123, 181c }}
 
[[Badness]]: 0.131153
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 243/242, 896/891
 
Mapping: {{mapping| 1 5 12 25 12 | 0 -6 -17 -39 -15 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 517.155
 
{{Optimal ET sequence|legend=1| 58, 123, 181ce }}
 
Badness: 0.047283
 
== Harry ==
{{Main| Harry }}
 
Harry adds the [[breedsma]], 2401/2400, and the [[cataharry comma]], 19683/19600, to the set of commas, and may be described as the 58 &amp; 72 temperament. The [[period]] is half an [[octave]], and the generator ~21/20, with generator tunings of [[130edo|9\130]] or [[202edo|14\202]] being good choices. [[Mos]] of size 14, 16, 30, 44 or 58 are among the scale choices.
 
It becomes much more interesting as we move to the 11-limit, where we can add [[243/242]], [[441/440]] and [[540/539]] to the set of commas. 9\130 and especially 14\202 still make for good tuning choices.
 
Similar comments apply to the 13-limit, where we can add [[351/350]], [[364/363]], and [[729/728]] to the commas. 130edo is again a good tuning choice, but even better might be tuning the harmonic 7 justly, which can be done via a generator of 83.1174 [[cent]]s. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 2401/2400, 19683/19600
 
{{Mapping|legend=1| 2 4 7 7 | 0 -6 -17 -10 }}
 
: mapping generators: ~567/400, ~21/20
 
[[Optimal tuning]] ([[POTE]]): ~567/400 = 1\2, ~27/20 = 516.844 (~21/20 = 83.156)
 
{{Optimal ET sequence|legend=1| 14c, 58, 72, 130, 202, 534, 736b, 938b }}
 
[[Badness]]: 0.034077
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 441/440, 4000/3993
 
Mapping: {{mapping| 2 4 7 7 9 | 0 -6 -17 -10 -15 }}
 
Optimal tuning (POTE): ~99/70 = 1\2, ~27/20 = 516.833 (~21/20 = 83.167)
 
{{Optimal ET sequence|legend=1| 14c, 58, 72, 130, 202 }}
 
Badness: 0.015867
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 243/242, 351/350, 364/363, 441/440
 
Mapping: {{mapping| 2 4 7 7 9 11 | 0 -6 -17 -10 -15 -26 }}
 
Optimal tuning (POTE): ~55/39 = 1\2, ~27/20 = 516.884 (~21/20 = 83.116)
 
{{Optimal ET sequence|legend=1| 14cf, 58, 72, 130, 332f, 462ef }}
 
Badness: 0.013046
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 221/220, 243/242, 289/288, 351/350, 441/440
 
Mapping: {{mapping| 2 4 7 7 9 11 9 | 0 -6 -17 -10 -15 -26 -6 }}
 
Optimal tuning (POTE): ~17/12 = 1\2, ~27/20 = 516.832 (~21/20 = 83.168)
 
{{Optimal ET sequence|legend=1| 14cf, 58, 72, 130, 202g }}
 
Badness: 0.012657
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Gravity family| ]] <!-- main article -->
[[Category:Gravity| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 00:36, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The gravity family tempers out graviton, the 5-limit comma 129140163/128000000 = [-13 17 -6. The graviton equals (81/80)4/(25/24), so that four 81/80 commas come to a classic chromatic semitone. The generator of gravity temperament is a grave fifth of ~40/27, and hence the name. It is part of the syntonic–chromatic equivalence continuum, whereby (81/80)k = 25/24.

Gravity

Subgroup: 2.3.5

Comma list: 129140163/128000000

Mapping[1 5 12], 0 -6 -17]]

mapping generators: ~2, ~40/27

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.844

Optimal ET sequence7, 37cc, 44c, 51c, 58, 65, 137, 202, 267, 469

Badness: 0.093184

Overview to extensions

Full 7-limit extensions of gravity include marvo (65d & 72), zarvo (65 & 72), gravid (58 & 65), and harry (58 & 72), all considered below. A notable subgroup extension is larry.

There is also an unnamed 58 & 65d extension by tempering 176/175 to extend larry to include prime 7 and tempering 847/845 to extend it to the 13-limit, with an S-expression-based comma list of {S8/S9, S9/S10, S10/S11, (S11/S13,) S12}.

2.3.5.11 subgroup (larry)

Subgroup: 2.3.5.11

Comma list: 243/242, 4000/3993

Sval mapping: [1 5 12 12], 0 -6 -17 -15]]

Gencom mapping: [1 5 12 0 12], 0 -6 -17 0 -15]]

gencom: [2 40/27; 243/242 4000/3993]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.834

Optimal ET sequence7, 37ccee, 44ce, 51ce, 58, 65, 137, 202

Badness: 0.0125

Marvo

Subgroup: 2.3.5.7

Comma list: 225/224, 78125000/78121827

Mapping[1 5 12 29], 0 -6 -17 -46]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.694

Optimal ET sequence65d, 72, 137, 209, 281, 569bcc

Badness: 0.097627

11-limit

Subgroup: 2.3.5.7.11

Comma list: 225/224, 243/242, 4000/3993

Mapping: [1 5 12 29 12], 0 -6 -17 -46 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.699

Optimal ET sequence65d, 72, 281, 353c, 425bc, 497bc

Badness: 0.031685

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 225/224, 243/242, 351/350, 1625/1617

Mapping: [1 5 12 29 12 39], 0 -6 -17 -46 -15 -62]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.730

Optimal ET sequence65d, 72, 137, 209, 281f, 490bcf

Badness: 0.026882

Zarvo

Subgroup: 2.3.5.7

Comma list: 4375/4374, 33075/32768

Mapping[1 5 12 -12], 0 -6 -17 26]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.702

Optimal ET sequence65, 72, 281d, 353cd, 425bcdd, 497bcdd

Badness: 0.096840

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 385/384, 4000/3993

Mapping: [1 5 12 -12 12], 0 -6 -17 26 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.691

Optimal ET sequence65, 72, 353cd

Badness: 0.034773

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 243/242, 325/324, 385/384

Mapping: [1 5 12 -12 12 -2], 0 -6 -17 26 -15 10]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 516.667

Optimal ET sequence65f, 72

Badness: 0.027584

Gravid

Subgroup: 2.3.5.7

Comma list: 126/125, 1605632/1594323

Mapping[1 5 12 25], 0 -6 -17 -39]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 517.140

Optimal ET sequence58, 123, 181c

Badness: 0.131153

11-limit

Subgroup: 2.3.5.7.11

Comma list: 126/125, 243/242, 896/891

Mapping: [1 5 12 25 12], 0 -6 -17 -39 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~27/20 = 517.155

Optimal ET sequence58, 123, 181ce

Badness: 0.047283

Harry

Harry adds the breedsma, 2401/2400, and the cataharry comma, 19683/19600, to the set of commas, and may be described as the 58 & 72 temperament. The period is half an octave, and the generator ~21/20, with generator tunings of 9\130 or 14\202 being good choices. Mos of size 14, 16, 30, 44 or 58 are among the scale choices.

It becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 9\130 and especially 14\202 still make for good tuning choices.

Similar comments apply to the 13-limit, where we can add 351/350, 364/363, and 729/728 to the commas. 130edo is again a good tuning choice, but even better might be tuning the harmonic 7 justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 19683/19600

Mapping[2 4 7 7], 0 -6 -17 -10]]

mapping generators: ~567/400, ~21/20

Optimal tuning (POTE): ~567/400 = 1\2, ~27/20 = 516.844 (~21/20 = 83.156)

Optimal ET sequence14c, 58, 72, 130, 202, 534, 736b, 938b

Badness: 0.034077

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 4000/3993

Mapping: [2 4 7 7 9], 0 -6 -17 -10 -15]]

Optimal tuning (POTE): ~99/70 = 1\2, ~27/20 = 516.833 (~21/20 = 83.167)

Optimal ET sequence14c, 58, 72, 130, 202

Badness: 0.015867

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 364/363, 441/440

Mapping: [2 4 7 7 9 11], 0 -6 -17 -10 -15 -26]]

Optimal tuning (POTE): ~55/39 = 1\2, ~27/20 = 516.884 (~21/20 = 83.116)

Optimal ET sequence14cf, 58, 72, 130, 332f, 462ef

Badness: 0.013046

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 221/220, 243/242, 289/288, 351/350, 441/440

Mapping: [2 4 7 7 9 11 9], 0 -6 -17 -10 -15 -26 -6]]

Optimal tuning (POTE): ~17/12 = 1\2, ~27/20 = 516.832 (~21/20 = 83.168)

Optimal ET sequence14cf, 58, 72, 130, 202g

Badness: 0.012657