Porcupine family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 330734362 - Original comment: **
Porcupine: base the sharpness on 4/3 rather than 3/2 (see talk). Hystrix isn't actually flat of 8d
 
(92 intermediate revisions by 22 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{interwiki
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| de = Porcupine
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-05-06 14:49:08 UTC</tt>.<br>
| en = Porcupine family
: The original revision id was <tt>330734362</tt>.<br>
| es =
: The revision comment was: <tt></tt><br>
| ja =
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
}}
<h4>Original Wikitext content:</h4>
{{Technical data page}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
The '''porcupine family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[porcupine comma]], [[250/243]], also called the maximal diesis.  
----
The 5-limit parent comma for the porcupine family is 250/243, the maximal [[diesis]] or porcupine comma. Its [[monzo]] is |1 -5 3&gt;, and flipping that yields &lt;&lt;3 5 1|| for the [[wedgie]]. This tells us the [[generator]] is a minor whole tone, the [[10_9|10/9]] interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.


[[POTE tuning|POTE generator]]: 163.950
== Porcupine ==
{{Main| Porcupine }}


Map: [&lt;1 2 3|, &lt;0 -3 -5|]
The [[generator]] of porcupine is a minor whole tone, the [[10/9]] interval, and three of these add up to a perfect fourth ([[4/3]]), with two more giving the minor sixth ([[8/5]]). In fact, {{nowrap| (10/9)<sup>3</sup> {{=}} (4/3)⋅(250/243) }}, and {{nowrap| (10/9)<sup>5</sup> {{=}} (8/5)⋅(250/243)<sup>2</sup> }}. Its [[ploidacot]] is omega-tricot. [[22edo|3\22]] is a very recommendable generator, and [[mos scale]]s of 7, 8 and 15 notes make for some nice scale possibilities.


EDOs: [[15edo|15]], [[22edo|22]], [[95edo|95c]], [[117edo|117bc]], [[139edo|139bc]], [[161edo|161bc]], [[183edo|183bc]]
[[Subgroup]]: 2.3.5


==Seven limit children==
[[Comma list]]: 250/243
The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. That means [[64_63|64/63]], the [[Archyta's comma]], for [[Porcupine family#Porcupine|porcupine]], [[36_35|36/35]], the [[septimal quarter tone]], for [[Porcupine family#Hystrix|hystrix]], [[50_49|50/49]], the [[jubilisma]], for [[Porcupine family#Hedgehog|hedgehog]], and [[49_48|49/48]], the [[slendro diesis]], for [[Porcupine family#Nautilus|nautilus]].


=Porcupine=
{{Mapping|legend=1| 1 2 3 | 0 -3 -5 }}
[[Porcupine]], with wedgie &lt;&lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to [[7_4|7/4]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.


Commas: 250/243, 64/63
: mapping generators: ~2, ~10/9


[[POTE tuning|POTE generator]]: ~10/9 = 162.880
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~10/9 = 164.166
: [[error map]]: {{val| 0.000 +5.547 -7.143 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 163.950
: error map: {{val| 0.000 +6.194 -6.065 }}


Map: [&lt;1 2 3 2|, &lt;0 -3 -5 6|]
[[Tuning ranges]]:  
EDOs: 22, [[59edo|59]], [[81edo|81bd]], [[140edo|140bd]]
* [[5-odd-limit]] [[diamond monotone]]: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
* 5-odd-limit [[diamond tradeoff]]: ~10/9 = [157.821, 166.015]


==11-limit==
{{Optimal ET sequence|legend=1| 7, 15, 22, 95c }}
Commas: 55/54, 64/63, 100/99


POTE generator: ~10/9 = 162.747
[[Badness]] (Smith): 0.030778


Map: [&lt;1 2 3 2 4|, &lt;0 -3 -5 6 -4|]
=== Overview to extensions ===
EDOs: [[7edo|7]], 15, 22, [[37edo|37]], [[59edo|59]]
==== 7-limit extensions ====
Badness: 0.0217
The second comma defines which [[7-limit]] family member we are looking at.
* [[#Hystrix|Hystrix]] adds [[36/35]], the mint comma, for an exotemperament tuning around 8d-edo;  
* [[#Opossum|Opossum]] adds [[28/27]], the trienstonic comma, for a tuning between 8d-edo and 15edo;
* [[#Septimal porcupine|Septimal porcupine]] adds [[64/63]], the archytas comma, for a tuning between 15edo and 22edo;
* [[#Porky|Porky]] adds [[225/224]], the marvel comma, for a tuning between 22edo and 29edo;
* [[#Coendou|Coendou]] adds [[525/512]], the avicennma, for a tuning sharp of 29edo.  


==13-limit==
Those all share the same generator with porcupine.
Commas: 40/39, 55/54, 64/63, 66/65


POTE generator: ~10/9 = 162.708
[[#Nautilus|nautilus]] tempers out [[49/48]] and splits the generator in two. [[#Hedgehog|hedgehog]] tempers out [[50/49]] with a semi-octave period. Finally, [[#Ammonite|ammonite]] tempers out [[686/675]] and [[#Ceratitid|ceratitid]] tempers out [[1728/1715]]. Those split the generator in three.  


Map: [&lt;1 2 3 2 4 4|, &lt;0 -3 -5 6 -4 -2|]
Temperaments discussed elsewhere include:  
EDOs: 7, 15, 22f, 37f
* [[Oxygen]] → [[Very low accuracy temperaments #Oxygen|Very low accuracy temperaments]].
Badness: 0.0213
* [[Jamesbond]] → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]].


==Porcupinefish==  
==== Subgroup extensions ====
See also: [[The Biosphere]]
Noting that {{nowrap| 250/243 {{=}} ([[55/54]])⋅([[100/99]]) {{=}} S10<sup>2</sup>⋅[[121/120|S11]] }}, the temperament thus extends naturally to the 2.3.5.11 [[subgroup]], sometimes known as ''porkypine'', given right below.
Commas: 55/54, 64/63, 91/90, 100/99


POTE generator: ~10/9 = 162.277
=== 2.3.5.11 subgroup (porkypine) ===
Subgroup: 2.3.5.11


Map: [&lt;1 2 3 2 4 6|, &lt;0 -3 -5 6 -4 -17|]
Comma list: 55/54, 100/99
EDOs: 15, 22, 37, 59, 96b
&lt;span style="background-color: #ffffff;"&gt;Badness: 0.0253&lt;/span&gt;


==Porkpie==
Sval mapping: {{mapping| 1 2 3 4 | 0 -3 -5 -4 }}
Commas: 55/54, 64/63, 65/63, 100/99


POTE generator: ~10/9 = 163.688
Gencom mapping: {{mapping| 1 2 3 0 4 | 0 -3 -5 0 -4 }}


Map: [&lt;1 2 3 2 4 3|, &lt;0 -3 -5 6 -4 5|]
: gencom: [2 10/9; 55/54, 100/99]
EDOs: 7, 15f, 22
Badness: 0.0260


=Hystrix=  
Optimal tunings:
Hystrix, with wedgie &lt;&lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried [[15edo]]. They can try the even sharper fifth of hystrix in [[68edo]] and see how that suits.
* CTE: ~2 = 1200.000, ~11/10 = 163.887
* POTE: ~2 = 1200.000, ~11/10 = 164.078


Commas: 36/35, 160/147
{{Optimal ET sequence|legend=0| 7, 15, 22, 73ce, 95ce }}


[[POTE tuning|POTE generator]]: 158.868
Badness (Smith): 0.0097


Map: [&lt;1 2 3 3|, &lt;0 -3 -5 -1|]
==== Undecimation ====
Subgroup: 2.3.5.11.13


EDOs: 10d, 12, 13d, 15
Comma list: 55/54, 100/99, 512/507


=Hedgehog=
Sval mapping: {{mapping| 1 5 8 8 2 | 0 -6 -10 -8 3 }}
Hedgehog, with wedgie &lt;&lt;6 10 10 2 -1 -5||, has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22et provides the obvious tuning, but if you are looking for an alternative, you could try the &lt;146 232 338 411| val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.


Commas: 50/49, 245/243
: sval mapping generators: ~2, ~65/44


[[POTE tuning|POTE generator]]: ~9/7 = 435.648
Optimal tunings:
* CTE: ~2 = 1200.000, ~88/65 = 518.086
* POTE: ~2 = 1200.000, ~88/65 = 518.209


Map: [&lt;2 1 1 2|, &lt;0 3 5 5|]
{{Optimal ET sequence|legend=0| 7, 23bc, 30, 37, 44 }}
Wedgie: &lt;&lt;6 10 10 2 -1 -5||
EDOs: 22, [[146edo|146]]
Badness: 0.0440


==11-limit==
Badness (Smith): 0.0305
Commas: 50/49, 55/54, 99/98


POTE generator: ~9/7 = 435.386
== Septimal porcupine ==
{{Main| Porcupine }}


Map: [&lt;2 1 1 2 4|, &lt;0 3 5 5 4|]
Septimal porcupine uses six of its minor tone generator steps to get to [[7/4]]. Here, we share the same mapping of 7/4 in terms of fifths as [[archy]]. For this to work you need a small minor tone such as [[22edo]] provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.  
EDOs: 14c, 22, 58ce, 80ce, 102cde
Badness: 0.0231


==13-limit==
[[Subgroup]]: 2.3.5.7
Commas: 50/49, 55/54, 65/63, 99/98


POTE generator: ~9/7 = 435.861
[[Comma list]]: 64/63, 250/243


Map: [&lt;2 1 1 2 4 3|, &lt;0 3 5 5 4 6|]
{{Mapping|legend=1| 1 2 3 2 | 0 -3 -5 6 }}
EDOs: 14cf, 22
Badness: 0.0215


==Urchin==
[[Optimal tuning]]s:
Commas: 40/39, 50/49, 55/54, 66/65
* [[CTE]]: ~2 = 1200.000, ~10/9 = 163.203
: [[error map]]: {{val| 0.000 +8.435 -2.330 +10.394 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 162.880
: error map: {{val| 0.000 +9.405 -0.714 +8.455 }}


POTE generator: ~9/7 = 437.078
[[Minimax tuning]]:
* [[7-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~10/9 = {{monzo| 1/6 -1/6 0 1/12 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7


Map: [&lt;2 1 1 2 4 6|, &lt;0 3 5 5 4 2|]
[[Tuning ranges]]:  
EDOs: 14c, 22f
* 7- and 9-odd-limit [[diamond monotone]]: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
Badness: 0.0252
* 7-odd-limit [[diamond tradeoff]]: ~10/9 = [157.821, 166.015]
* 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]


==Hedgepig==
{{Optimal ET sequence|legend=1| 7, 15, 22, 37, 59, 81bd }}
Commas: 50/49, 245/243, 385/384


POTE generator: ~9/7 = 435.425
[[Badness]] (Smith): 0.041057


Map: [&lt;2 1 1 2 12|, &lt;0 3 5 5 -7|]
=== 11-limit ===
EDOs: 22, 80c, 102cd, 124cd
Subgroup: 2.3.5.7.11
Badness: 0.0684


===Music===
Comma list: 55/54, 64/63, 100/99
[[http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3|Phobos Light]] by Chris Vaisvil in Hedgehog[14] [[hedgehog14|tuned]] to 22edo.


=Nautilus=
Mapping: {{mapping| 1 2 3 2 4 | 0 -3 -5 6 -4 }}
Commas: 49/48, 250/243


Pote generator: ~21/20 = 82.505
Optimal tunings:  
* CTE: ~2 = 1200.000, ~11/10 = 163.105
* POTE: ~2 = 1200.000, ~11/10 = 162.747


Map: [&lt;1 2 3 3|, &lt;0 -6 -10 -3|]
Minimax tuning:  
Wedgie: &lt;&lt;6 10 3 2 -12 -21||
* 11-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
EDOs: 10, 15, 19, [[29edo|29]], [[102edo|102cd]]
: unchanged-interval (eigenmonzo) basis: 2.9/7


==11-limit==
Tuning ranges:
Commas: 49/48, 55/54, 245/242
* 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
* 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]


POTE generator: ~21/20 = 82.504
{{Optimal ET sequence|legend=0| 7, 15, 22, 37, 59 }}


Map: [&lt;1 2 3 3 4|, &lt;0 -6 -10 -3 -8|]
Badness (Smith): 0.021562
EDOs: 10e, 14c, 15, 19, 22d, 29, 102cde


==13-limit==  
==== Porcupinefowl ====
Commas: 49/48, 55/54, 91/90, 100/99
This extension used to be ''tridecimal porcupine''.


POTE generator: ~21/20 = 62.530
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 2 3 3 4 5|, &lt;0 -6 -10 -3 -8 -19|]
Comma list: 40/39, 55/54, 64/63, 66/65
EDOs: 10e, 15f, 17d, 19, 22d, 29, 102cde
Badness: 0.0223


==Belauensis==
Mapping: {{mapping| 1 2 3 2 4 4 | 0 -3 -5 6 -4 -2 }}
Commas: 40/39, 49/48, 55/54, 66/65


POTE generator: ~21/20 = ~14/13 = 81.759
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 163.442
* POTE: ~2 = 1200.000, ~11/10 = 162.708


Map: [&lt;1 2 3 3 4 4|, &lt;0 -6 -10 -3 -8 -4|]
Minimax tuning:  
EDOs: 14c, 15, 29f, 44df
* 13- and 15-odd-limit: ~10/9 = {{monzo| 1 0 0 0 -1/4 }}
Badness: 0.0298
: unchanged-interval (eigenmonzo) basis: 2.11


[[http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3|Nautilus Reverie]] by [[IgliashonJones|Igliashon Calvin Jones-Coolidge]]
Tuning ranges:
=Ammonite=  
* 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
Commas: 250/243, 686/675
* 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
* 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]


POTE generator: ~9/7 = 454.448
{{Optimal ET sequence|legend=0| 7, 15, 22f, 37f }}


Map: [&lt;1 5 8 10|, &lt;0 -9 -15 -19|]
Badness (Smith): 0.021276
Wedgie: &lt;&lt;9 15 19 3 5 2||
EDOs: 29, 37, 66
Badness: 0.1077


==11-limit==  
==== Porcupinefish ====
Commas: 55/54, 100/99, 686/675
{{See also| The Biosphere }}


POTE generator: ~9/7 = 454.512
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 5 8 10 8|, &lt;0 -9 -15 -19 -12|]
Comma list: 55/54, 64/63, 91/90, 100/99
EDOs: 29, 37, 66
Badness: 0.0457


==13-limit==
Mapping: {{mapping| 1 2 3 2 4 6 | 0 -3 -5 6 -4 -17 }}
Commas: 55/54, 91/90, 100/99, 169/168


POTE generator: ~13/10 = 454.429
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 162.636
* POTE: ~2 = 1200.000, ~11/10 = 162.277


Map: [&lt;1 5 8 10 8 9|, &lt;0 -9 -15 -19 -12 -14|]
Minimax tuning:  
EDOs: 29, 37, 66
* 13- and 15-odd-limit: ~10/9 = {{monzo| 2/13 0 0 0 1/13 -1/13 }}
Badness: 0.0272
: unchanged-interval (eigenmonzo) basis: 2.13/11


=Ceratitid=
Tuning ranges:
Commas: 250/243, 1728/1715
* 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
* 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
* 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]


POTE generator: ~36/35 = 54.384
{{Optimal ET sequence|legend=0| 15, 22, 37 }}


Map: [&lt;1 2 3 3|, &lt;0 -9 -15 -4|]
Badness (Smith): 0.025314
Wedgie: &lt;&lt;9 15 4 3 -19 -33||
EDOs: 22
Badness: 0.115


==11-limit==
==== Pourcup ====
Commas: 55/54, 100/99, 5324/5145
Subgroup: 2.3.5.7.11.13


POTE generator: ~36/35 = 54.376
Comma list: 55/54, 64/63, 100/99, 196/195


Map: [&lt;1 2 3 3 4|, &lt;0 -9 -15 -4 -12|]
Mapping: {{mapping| 1 2 3 2 4 1 | 0 -3 -5 6 -4 20 }}
EDOs: 22
Badness: 0.0513


==13-limit==
Optimal tunings:
Commas: 55/54, 65/63, 100/99, 352/343
* CTE: ~2 = 1200.000, ~11/10 = 163.378
* POTE: ~2 = 1200.000, ~11/10 = 162.482


POTE generator: ~36/35 = 54.665
Minimax tuning:
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/14 0 0 -1/14 0 1/14 }}
: unchanged-interval (eigenmonzo) basis: 2.13/7


Map: [&lt;1 2 3 3 4 4|, &lt;0 -9 -15 -4 -12 -7|]
{{Optimal ET sequence|legend=0| 15f, 22f, 37, 59f }}
EDOs: 22
Badness: 0.0447


=Porky=
Badness (Smith): 0.035130
Commas: 225/224, 250/243


POTE generator: ~10/9 = 164.412
==== Porkpie ====
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 2 3 5|, &lt;0 -3 -5 -16|]
Comma list: 55/54, 64/63, 65/63, 100/99
Wedgie: &lt;&lt;3 5 16 1 17 23||
EDOS: 7, 8, 15, 22, 29, 51, 73
Badness: 0.0544


==11-limit==
Mapping: {{mapping| 1 2 3 2 4 3 | 0 -3 -5 6 -4 5 }}
Commas: 55/54, 100/99, 225/224


POTE generator: ~10/9 = 164.552
Optimal tunings:
* CTE: ~2 = 1200.000, ~11/10 = 163.678
* POTE: ~2 = 1200.000, ~11/10 = 163.688


Map: [&lt;1 2 3 5 4|, &lt;0 -3 -5 -16 -4|]
Minimax tuning:  
EDOs: 7, 8, 15, 22, 29, 51, 73
* 13- and 15-odd-limit: ~11/10 = {{monzo| 1/6 -1/6 0 1/12 }}
Badness: 0.0273
: unchanged-interval (eigenmonzo) basis: 2.9/7


=Coendou=
{{Optimal ET sequence|legend=0| 7, 15f, 22 }}
Commas: 250/243, 525/512


POTE generator: ~10/9 = 166.041
Badness (Smith): 0.026043


Map: [&lt;1 2 3 1|, &lt;0 -3 -5 13|]
== Opossum ==
Wedgie: &lt;&lt;3 5 -13 1 -29 -44||
Opossum can be described as {{nowrap| 8d & 15 }}. Tempering out [[28/27]], the perfect fifth of three generator steps is conflated with not [[32/21]] as in porcupine but [[14/9]]. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.  
EDOs: 7, 29, 65c, 94cd
Badness: 0.1183


==11-limit==
[[Subgroup]]: 2.3.5.7
Commas: 55/54, 100/99, 525/512


POTE generator: ~10/9 = 165.981
[[Comma list]]: 28/27, 126/125


Map: [&lt;1 2 3 1 4|, &lt;0 -3 -5 13 -4|]
{{Mapping|legend=1| 1 2 3 4 | 0 -3 -5 -9 }}
EDOs: 7, 29, 65ce, 94cde
Badness: 0.0497


==13-limit==  
[[Optimal tuning]]s:
Commas: 55/54, 65/64, 100/99, 105/104
* [[CTE]]: ~2 = 1200.000, ~10/9 = 161.306
: [[error map]]: {{val| 0.000 +14.126 +7.155 -20.583 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 159.691
: error map: {{val| 0.000 +18.971 +15.229 -6.048 }}


POTE generator: ~10/9 = 165.974
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7


Map: [&lt;1 2 3 1 4 3|, &lt;0 -3 -5 13 -4 5|]
{{Optimal ET sequence|legend=1| 7d, 8d, 15 }}
EDOs: 7, 29, 65cef, 94cdef
 
Badness: 0.0302</pre></div>
[[Badness]] (Smith): 0.040650
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Porcupine family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:56:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:56 --&gt;&lt;!-- ws:start:WikiTextTocRule:57: --&gt;&lt;!-- ws:end:WikiTextTocRule:57 --&gt;&lt;!-- ws:start:WikiTextTocRule:58: --&gt; | &lt;a href="#Porcupine"&gt;Porcupine&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:58 --&gt;&lt;!-- ws:start:WikiTextTocRule:59: --&gt;&lt;!-- ws:end:WikiTextTocRule:59 --&gt;&lt;!-- ws:start:WikiTextTocRule:60: --&gt;&lt;!-- ws:end:WikiTextTocRule:60 --&gt;&lt;!-- ws:start:WikiTextTocRule:61: --&gt;&lt;!-- ws:end:WikiTextTocRule:61 --&gt;&lt;!-- ws:start:WikiTextTocRule:62: --&gt;&lt;!-- ws:end:WikiTextTocRule:62 --&gt;&lt;!-- ws:start:WikiTextTocRule:63: --&gt; | &lt;a href="#Hystrix"&gt;Hystrix&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:63 --&gt;&lt;!-- ws:start:WikiTextTocRule:64: --&gt; | &lt;a href="#Hedgehog"&gt;Hedgehog&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:64 --&gt;&lt;!-- ws:start:WikiTextTocRule:65: --&gt;&lt;!-- ws:end:WikiTextTocRule:65 --&gt;&lt;!-- ws:start:WikiTextTocRule:66: --&gt;&lt;!-- ws:end:WikiTextTocRule:66 --&gt;&lt;!-- ws:start:WikiTextTocRule:67: --&gt;&lt;!-- ws:end:WikiTextTocRule:67 --&gt;&lt;!-- ws:start:WikiTextTocRule:68: --&gt;&lt;!-- ws:end:WikiTextTocRule:68 --&gt;&lt;!-- ws:start:WikiTextTocRule:69: --&gt;&lt;!-- ws:end:WikiTextTocRule:69 --&gt;&lt;!-- ws:start:WikiTextTocRule:70: --&gt; | &lt;a href="#Nautilus"&gt;Nautilus&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:70 --&gt;&lt;!-- ws:start:WikiTextTocRule:71: --&gt;&lt;!-- ws:end:WikiTextTocRule:71 --&gt;&lt;!-- ws:start:WikiTextTocRule:72: --&gt;&lt;!-- ws:end:WikiTextTocRule:72 --&gt;&lt;!-- ws:start:WikiTextTocRule:73: --&gt;&lt;!-- ws:end:WikiTextTocRule:73 --&gt;&lt;!-- ws:start:WikiTextTocRule:74: --&gt; | &lt;a href="#Ammonite"&gt;Ammonite&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:74 --&gt;&lt;!-- ws:start:WikiTextTocRule:75: --&gt;&lt;!-- ws:end:WikiTextTocRule:75 --&gt;&lt;!-- ws:start:WikiTextTocRule:76: --&gt;&lt;!-- ws:end:WikiTextTocRule:76 --&gt;&lt;!-- ws:start:WikiTextTocRule:77: --&gt; | &lt;a href="#Ceratitid"&gt;Ceratitid&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:77 --&gt;&lt;!-- ws:start:WikiTextTocRule:78: --&gt;&lt;!-- ws:end:WikiTextTocRule:78 --&gt;&lt;!-- ws:start:WikiTextTocRule:79: --&gt;&lt;!-- ws:end:WikiTextTocRule:79 --&gt;&lt;!-- ws:start:WikiTextTocRule:80: --&gt; | &lt;a href="#Porky"&gt;Porky&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:80 --&gt;&lt;!-- ws:start:WikiTextTocRule:81: --&gt;&lt;!-- ws:end:WikiTextTocRule:81 --&gt;&lt;!-- ws:start:WikiTextTocRule:82: --&gt; | &lt;a href="#Coendou"&gt;Coendou&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:82 --&gt;&lt;!-- ws:start:WikiTextTocRule:83: --&gt;&lt;!-- ws:end:WikiTextTocRule:83 --&gt;&lt;!-- ws:start:WikiTextTocRule:84: --&gt;&lt;!-- ws:end:WikiTextTocRule:84 --&gt;&lt;!-- ws:start:WikiTextTocRule:85: --&gt;
=== 11-limit ===
&lt;!-- ws:end:WikiTextTocRule:85 --&gt;&lt;hr /&gt;
Subgroup: 2.3.5.7.11
The 5-limit parent comma for the porcupine family is 250/243, the maximal &lt;a class="wiki_link" href="/diesis"&gt;diesis&lt;/a&gt; or porcupine comma. Its &lt;a class="wiki_link" href="/monzo"&gt;monzo&lt;/a&gt; is |1 -5 3&amp;gt;, and flipping that yields &amp;lt;&amp;lt;3 5 1|| for the &lt;a class="wiki_link" href="/wedgie"&gt;wedgie&lt;/a&gt;. This tells us the &lt;a class="wiki_link" href="/generator"&gt;generator&lt;/a&gt; is a minor whole tone, the &lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt; interval, and that three of these add up to a fourth, with two more giving the minor sixth. In fact, (10/9)^3 = 4/3 * 250/243, and (10/9)^5 = 8/5 * (250/243)^2. 3/22 is a very recommendable generator, and MOS of 7, 8 and 15 notes make for some nice scale possibilities.&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 28/27, 55/54, 77/75
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 163.950&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 4 4 | 0 -3 -5 -9 -4 }}
Map: [&amp;lt;1 2 3|, &amp;lt;0 -3 -5|]&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:  
EDOs: &lt;a class="wiki_link" href="/15edo"&gt;15&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/95edo"&gt;95c&lt;/a&gt;, &lt;a class="wiki_link" href="/117edo"&gt;117bc&lt;/a&gt;, &lt;a class="wiki_link" href="/139edo"&gt;139bc&lt;/a&gt;, &lt;a class="wiki_link" href="/161edo"&gt;161bc&lt;/a&gt;, &lt;a class="wiki_link" href="/183edo"&gt;183bc&lt;/a&gt;&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 161.365
&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 159.807
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
 
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; family member we are looking at. That means &lt;a class="wiki_link" href="/64_63"&gt;64/63&lt;/a&gt;, the &lt;a class="wiki_link" href="/Archyta%27s%20comma"&gt;Archyta's comma&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Porcupine"&gt;porcupine&lt;/a&gt;, &lt;a class="wiki_link" href="/36_35"&gt;36/35&lt;/a&gt;, the &lt;a class="wiki_link" href="/septimal%20quarter%20tone"&gt;septimal quarter tone&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Hystrix"&gt;hystrix&lt;/a&gt;, &lt;a class="wiki_link" href="/50_49"&gt;50/49&lt;/a&gt;, the &lt;a class="wiki_link" href="/jubilisma"&gt;jubilisma&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Hedgehog"&gt;hedgehog&lt;/a&gt;, and &lt;a class="wiki_link" href="/49_48"&gt;49/48&lt;/a&gt;, the &lt;a class="wiki_link" href="/slendro%20diesis"&gt;slendro diesis&lt;/a&gt;, for &lt;a class="wiki_link" href="/Porcupine%20family#Nautilus"&gt;nautilus&lt;/a&gt;.&lt;br /&gt;
Minimax tuning:
&lt;br /&gt;
* 11-odd-limit unchanged-interval (eigenmonzo) basis: 2.7
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Porcupine"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Porcupine&lt;/h1&gt;
 
&lt;a class="wiki_link" href="/Porcupine"&gt;Porcupine&lt;/a&gt;, with wedgie &amp;lt;&amp;lt;3 5 -6 1 -18 -28||, uses six of its minor tone generator steps to get to &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt;. For this to work you need a small minor tone such as &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7d, 8d, 15 }}
&lt;br /&gt;
 
Commas: 250/243, 64/63&lt;br /&gt;
Badness (Smith): 0.022325
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~10/9 = 162.880&lt;br /&gt;
=== 13-limit ===
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
Map: [&amp;lt;1 2 3 2|, &amp;lt;0 -3 -5 6|]&lt;br /&gt;
 
EDOs: 22, &lt;a class="wiki_link" href="/59edo"&gt;59&lt;/a&gt;, &lt;a class="wiki_link" href="/81edo"&gt;81bd&lt;/a&gt;, &lt;a class="wiki_link" href="/140edo"&gt;140bd&lt;/a&gt;&lt;br /&gt;
Comma list: 28/27, 40/39, 55/54, 66/65
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Porcupine-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;11-limit&lt;/h2&gt;
Mapping: {{mapping| 1 2 3 4 4 4 | 0 -3 -5 -9 -4 -2 }}
Commas: 55/54, 64/63, 100/99&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:  
POTE generator: ~10/9 = 162.747&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 161.631
&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 158.805
Map: [&amp;lt;1 2 3 2 4|, &amp;lt;0 -3 -5 6 -4|]&lt;br /&gt;
 
EDOs: &lt;a class="wiki_link" href="/7edo"&gt;7&lt;/a&gt;, 15, 22, &lt;a class="wiki_link" href="/37edo"&gt;37&lt;/a&gt;, &lt;a class="wiki_link" href="/59edo"&gt;59&lt;/a&gt;&lt;br /&gt;
Minimax tuning:  
Badness: 0.0217&lt;br /&gt;
* 13- and 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.7
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Porcupine-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;13-limit&lt;/h2&gt;
{{Optimal ET sequence|legend=0| 7d, 8d, 15, 38bceff }}
Commas: 40/39, 55/54, 64/63, 66/65&lt;br /&gt;
 
&lt;br /&gt;
Badness (Smith): 0.019389
POTE generator: ~10/9 = 162.708&lt;br /&gt;
 
&lt;br /&gt;
== Porky ==
Map: [&amp;lt;1 2 3 2 4 4|, &amp;lt;0 -3 -5 6 -4 -2|]&lt;br /&gt;
Porky can be described as {{nowrap| 22 & 29 }}, suggesting a less sharp perfect fifth. 7\51 is a good generator.
EDOs: 7, 15, 22f, 37f&lt;br /&gt;
 
Badness: 0.0213&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Porcupine-Porcupinefish"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Porcupinefish&lt;/h2&gt;
[[Comma list]]: 225/224, 250/243
See also: &lt;a class="wiki_link" href="/The%20Biosphere"&gt;The Biosphere&lt;/a&gt;&lt;br /&gt;
 
Commas: 55/54, 64/63, 91/90, 100/99&lt;br /&gt;
{{Mapping|legend=1| 1 2 3 5 | 0 -3 -5 -16 }}
&lt;br /&gt;
 
POTE generator: ~10/9 = 162.277&lt;br /&gt;
[[Optimal tuning]]s:  
&lt;br /&gt;
* [[CTE]]: ~2 = 1200.000, ~10/9 = 164.391
Map: [&amp;lt;1 2 3 2 4 6|, &amp;lt;0 -3 -5 6 -4 -17|]&lt;br /&gt;
: [[error map]]: {{val| 0.000 +4.871 -8.270 +0.913 }}
EDOs: 15, 22, 37, 59, 96b&lt;br /&gt;
* [[POTE]]: ~2 = 1200.000, ~10/9 = 164.412
&lt;span style="background-color: #ffffff;"&gt;Badness: 0.0253&lt;/span&gt;&lt;br /&gt;
: error map: {{val| 0.000 +4.809 -8.375 +0.580 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Porcupine-Porkpie"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Porkpie&lt;/h2&gt;
[[Minimax tuning]]:  
Commas: 55/54, 64/63, 65/63, 100/99&lt;br /&gt;
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/11 0 1/11 -1/11 }}
&lt;br /&gt;
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5
POTE generator: ~10/9 = 163.688&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }}
Map: [&amp;lt;1 2 3 2 4 3|, &amp;lt;0 -3 -5 6 -4 5|]&lt;br /&gt;
 
EDOs: 7, 15f, 22&lt;br /&gt;
[[Badness]] (Smith): 0.054389
Badness: 0.0260&lt;br /&gt;
 
&lt;br /&gt;
=== 11-limit ===
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Hystrix"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Hystrix&lt;/h1&gt;
Subgroup: 2.3.5.7.11
Hystrix, with wedgie &amp;lt;&amp;lt;3 5 1 1 -7 -12||, provides a less complex avenue to the 7-limit. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried &lt;a class="wiki_link" href="/15edo"&gt;15edo&lt;/a&gt;. They can try the even sharper fifth of hystrix in &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt; and see how that suits.&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 55/54, 100/99, 225/224
Commas: 36/35, 160/147&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 5 4 | 0 -3 -5 -16 -4 }}
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 158.868&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:  
Map: [&amp;lt;1 2 3 3|, &amp;lt;0 -3 -5 -1|]&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 164.321
&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 164.552
EDOs: 10d, 12, 13d, 15&lt;br /&gt;
 
&lt;br /&gt;
Minimax tuning:  
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Hedgehog"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Hedgehog&lt;/h1&gt;
* 11-odd-limit: ~11/10 = {{monzo| 2/11 0 1/11 -1/11 }}
Hedgehog, with wedgie &amp;lt;&amp;lt;6 10 10 2 -1 -5||, has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22et provides the obvious tuning, but if you are looking for an alternative, you could try the &amp;lt;146 232 338 411| val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14 note MOS gives scope for harmony while stopping well short of 22.&lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.7/5
&lt;br /&gt;
 
Commas: 50/49, 245/243&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7d, 15d, 22, 51 }}
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~9/7 = 435.648&lt;br /&gt;
Badness (Smith): 0.027268
&lt;br /&gt;
 
Map: [&amp;lt;2 1 1 2|, &amp;lt;0 3 5 5|]&lt;br /&gt;
=== 13-limit ===
Wedgie: &amp;lt;&amp;lt;6 10 10 2 -1 -5||&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
EDOs: 22, &lt;a class="wiki_link" href="/146edo"&gt;146&lt;/a&gt;&lt;br /&gt;
 
Badness: 0.0440&lt;br /&gt;
Comma list: 55/54, 65/64, 91/90, 100/99
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Hedgehog-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;11-limit&lt;/h2&gt;
Mapping: {{mapping| 1 2 3 5 4 3 | 0 -3 -5 -16 -4 5 }}
Commas: 50/49, 55/54, 99/98&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:  
POTE generator: ~9/7 = 435.386&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 164.478
&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 164.953
Map: [&amp;lt;2 1 1 2 4|, &amp;lt;0 3 5 5 4|]&lt;br /&gt;
 
EDOs: 14c, 22, 58ce, 80ce, 102cde&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7d, 22, 29, 51f, 80cdeff }}
Badness: 0.0231&lt;br /&gt;
 
&lt;br /&gt;
Badness (Smith): 0.026543
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Hedgehog-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;13-limit&lt;/h2&gt;
 
Commas: 50/49, 55/54, 65/63, 99/98&lt;br /&gt;
; Music
&lt;br /&gt;
* [https://www.youtube.com/watch?v=CN4cLOyaVGE ''Improvisation in 29edo''] (2024) by [[Budjarn Lambeth]] – in Palace scale, 29edo tuning
POTE generator: ~9/7 = 435.861&lt;br /&gt;
 
&lt;br /&gt;
== Coendou ==
Map: [&amp;lt;2 1 1 2 4 3|, &amp;lt;0 3 5 5 4 6|]&lt;br /&gt;
Coendou can be described as {{nowrap| 29 & 36c }}, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
EDOs: 14cf, 22&lt;br /&gt;
 
Badness: 0.0215&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Hedgehog-Urchin"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Urchin&lt;/h2&gt;
[[Comma list]]: 250/243, 525/512
Commas: 40/39, 50/49, 55/54, 66/65&lt;br /&gt;
 
&lt;br /&gt;
{{Mapping|legend=1| 1 2 3 1 | 0 -3 -5 13 }}
POTE generator: ~9/7 = 437.078&lt;br /&gt;
 
&lt;br /&gt;
[[Optimal tuning]]s:  
Map: [&amp;lt;2 1 1 2 4 6|, &amp;lt;0 3 5 5 4 2|]&lt;br /&gt;
* [[CTE]]: ~2 = 1200.000, ~10/9 = 166.094
EDOs: 14c, 22f&lt;br /&gt;
: [[error map]]: {{val| 0.000 -0.236 -16.783 -9.607 }}
Badness: 0.0252&lt;br /&gt;
* [[POTE]]: ~2 = 1200.000, ~10/9 = 166.041
&lt;br /&gt;
: error map: {{val| 0.000 -0.077 -16.516 -10.299 }}
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc11"&gt;&lt;a name="Hedgehog-Hedgepig"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Hedgepig&lt;/h2&gt;
 
Commas: 50/49, 245/243, 385/384&lt;br /&gt;
[[Minimax tuning]]:  
&lt;br /&gt;
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 2/3 -1/3 }}
POTE generator: ~9/7 = 435.425&lt;br /&gt;
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3
&lt;br /&gt;
 
Map: [&amp;lt;2 1 1 2 12|, &amp;lt;0 3 5 5 -7|]&lt;br /&gt;
{{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }}
EDOs: 22, 80c, 102cd, 124cd&lt;br /&gt;
 
Badness: 0.0684&lt;br /&gt;
[[Badness]] (Smith): 0.118344
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc12"&gt;&lt;a name="Hedgehog-Hedgepig-Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Music&lt;/h3&gt;
=== 11-limit ===
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3" rel="nofollow"&gt;Phobos Light&lt;/a&gt; by Chris Vaisvil in Hedgehog[14] &lt;a class="wiki_link" href="/hedgehog14"&gt;tuned&lt;/a&gt; to 22edo.&lt;br /&gt;
Subgroup: 2.3.5.7.11
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Nautilus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Nautilus&lt;/h1&gt;
Comma list: 55/54, 100/99, 525/512
Commas: 49/48, 250/243&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 1 4 | 0 -3 -5 13 -4 }}
Pote generator: ~21/20 = 82.505&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:  
Map: [&amp;lt;1 2 3 3|, &amp;lt;0 -6 -10 -3|]&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 165.925
Wedgie: &amp;lt;&amp;lt;6 10 3 2 -12 -21||&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 165.981
EDOs: 10, 15, 19, &lt;a class="wiki_link" href="/29edo"&gt;29&lt;/a&gt;, &lt;a class="wiki_link" href="/102edo"&gt;102cd&lt;/a&gt;&lt;br /&gt;
 
&lt;br /&gt;
Minimax tuning:  
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Nautilus-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;11-limit&lt;/h2&gt;
* 11-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
Commas: 49/48, 55/54, 245/242&lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.3
&lt;br /&gt;
 
POTE generator: ~21/20 = 82.504&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65ce }}
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 3 4|, &amp;lt;0 -6 -10 -3 -8|]&lt;br /&gt;
Badness (Smith): 0.049669
EDOs: 10e, 14c, 15, 19, 22d, 29, 102cde&lt;br /&gt;
 
&lt;br /&gt;
=== 13-limit ===
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Nautilus-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;13-limit&lt;/h2&gt;
Subgroup: 2.3.5.7.11.13
Commas: 49/48, 55/54, 91/90, 100/99&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 55/54, 65/64, 100/99, 105/104
POTE generator: ~21/20 = 62.530&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 1 4 3 | 0 -3 -5 13 -4 5 }}
Map: [&amp;lt;1 2 3 3 4 5|, &amp;lt;0 -6 -10 -3 -8 -19|]&lt;br /&gt;
 
EDOs: 10e, 15f, 17d, 19, 22d, 29, 102cde&lt;br /&gt;
Optimal tunings:
Badness: 0.0223&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 166.046
&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 165.974
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Nautilus-Belauensis"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;Belauensis&lt;/h2&gt;
 
Commas: 40/39, 49/48, 55/54, 66/65&lt;br /&gt;
Minimax tuning:  
&lt;br /&gt;
* 13- and 15-odd-limit: ~11/10 = {{monzo| 2/3 -1/3 }}
POTE generator: ~21/20 = ~14/13 = 81.759&lt;br /&gt;
: unchanged-interval (eigenmonzo) basis: 2.3
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 3 4 4|, &amp;lt;0 -6 -10 -3 -8 -4|]&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7, 22d, 29, 65cef }}
EDOs: 14c, 15, 29f, 44df&lt;br /&gt;
 
Badness: 0.0298&lt;br /&gt;
Badness (Smith): 0.030233
&lt;br /&gt;
 
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3" rel="nofollow"&gt;Nautilus Reverie&lt;/a&gt; by &lt;a class="wiki_link" href="/IgliashonJones"&gt;Igliashon Calvin Jones-Coolidge&lt;/a&gt;&lt;br /&gt;
== Hystrix ==
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc17"&gt;&lt;a name="Ammonite"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;Ammonite&lt;/h1&gt;
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix is very high in [[error]] due to the large disparity between typical porcupine generators and a justly-tuned 8/7, and is usually considered an [[exotemperament]]. A generator of 2\15 or 9\68 can be used for hystrix.
Commas: 250/243, 686/675&lt;br /&gt;
 
&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
POTE generator: ~9/7 = 454.448&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 36/35, 160/147
Map: [&amp;lt;1 5 8 10|, &amp;lt;0 -9 -15 -19|]&lt;br /&gt;
 
Wedgie: &amp;lt;&amp;lt;9 15 19 3 5 2||&lt;br /&gt;
{{Mapping|legend=1| 1 2 3 3 | 0 -3 -5 -1 }}
EDOs: 29, 37, 66&lt;br /&gt;
 
Badness: 0.1077&lt;br /&gt;
[[Optimal tuning]]s:  
&lt;br /&gt;
* [[CTE]]: ~2 = 1200.000, ~10/9 = 165.185
&lt;!-- ws:start:WikiTextHeadingRule:36:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc18"&gt;&lt;a name="Ammonite-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:36 --&gt;11-limit&lt;/h2&gt;
: [[error map]]: {{val| 0.000 +2.491 -12.236 +65.990 }}
Commas: 55/54, 100/99, 686/675&lt;br /&gt;
* [[POTE]]: ~2 = 1200.000, ~10/9 = 158.868
&lt;br /&gt;
: error map: {{val| 0.000 +21.442 +19.348 +72.306 }}
POTE generator: ~9/7 = 454.512&lt;br /&gt;
 
&lt;br /&gt;
[[Minimax tuning]]:
Map: [&amp;lt;1 5 8 10 8|, &amp;lt;0 -9 -15 -19 -12|]&lt;br /&gt;
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/9 = {{monzo| 3/5 0 -1/5 }}
EDOs: 29, 37, 66&lt;br /&gt;
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
Badness: 0.0457&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 7, 8d, 15d }}
&lt;!-- ws:start:WikiTextHeadingRule:38:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Ammonite-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:38 --&gt;13-limit&lt;/h2&gt;
 
Commas: 55/54, 91/90, 100/99, 169/168&lt;br /&gt;
[[Badness]] (Smith): 0.044944
&lt;br /&gt;
 
POTE generator: ~13/10 = 454.429&lt;br /&gt;
=== 11-limit ===
&lt;br /&gt;
Subgroup: 2.3.5.7.11
Map: [&amp;lt;1 5 8 10 8 9|, &amp;lt;0 -9 -15 -19 -12 -14|]&lt;br /&gt;
 
EDOs: 29, 37, 66&lt;br /&gt;
Comma list: 22/21, 36/35, 80/77
Badness: 0.0272&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 2 3 3 4 | 0 -3 -5 -1 -4 }}
&lt;!-- ws:start:WikiTextHeadingRule:40:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc20"&gt;&lt;a name="Ceratitid"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:40 --&gt;Ceratitid&lt;/h1&gt;
 
Commas: 250/243, 1728/1715&lt;br /&gt;
Optimal tunings:  
&lt;br /&gt;
* CTE: ~2 = 1200.000, ~11/10 = 164.768
POTE generator: ~36/35 = 54.384&lt;br /&gt;
* POTE: ~2 = 1200.000, ~11/10 = 158.750
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 3|, &amp;lt;0 -9 -15 -4|]&lt;br /&gt;
{{Optimal ET sequence|legend=0| 7, 8d, 15d }}
Wedgie: &amp;lt;&amp;lt;9 15 4 3 -19 -33||&lt;br /&gt;
 
EDOs: 22&lt;br /&gt;
Badness (Smith): 0.026790
Badness: 0.115&lt;br /&gt;
 
&lt;br /&gt;
== Hedgehog ==
&lt;!-- ws:start:WikiTextHeadingRule:42:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc21"&gt;&lt;a name="Ceratitid-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:42 --&gt;11-limit&lt;/h2&gt;
{{See also| Sensamagic clan | Stearnsmic clan }}
Commas: 55/54, 100/99, 5324/5145&lt;br /&gt;
 
&lt;br /&gt;
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out [[245/243]], the sensamagic comma. It is a strong extension of [[BPS]] (as BPS has no 2 or sqrt(2)). Its ploidacot is diploid omega-tricot.
POTE generator: ~36/35 = 54.376&lt;br /&gt;
 
&lt;br /&gt;
22edo provides an obvious tuning, which happens to be the only [[patent val|patent-val]] tuning, but if you are looking for an alternative you could try the {{val| 146 232 338 411 }} (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is [[echidna]], which offers much more accuracy. They merge on 22edo.
Map: [&amp;lt;1 2 3 3 4|, &amp;lt;0 -9 -15 -4 -12|]&lt;br /&gt;
 
EDOs: 22&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
Badness: 0.0513&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 50/49, 245/243
&lt;!-- ws:start:WikiTextHeadingRule:44:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc22"&gt;&lt;a name="Ceratitid-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:44 --&gt;13-limit&lt;/h2&gt;
 
Commas: 55/54, 65/63, 100/99, 352/343&lt;br /&gt;
{{Mapping|legend=1| 2 1 1 2 | 0 3 5 5 }}
&lt;br /&gt;
 
POTE generator: ~36/35 = 54.665&lt;br /&gt;
: mapping generators: ~7/5, ~9/7
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 3 4 4|, &amp;lt;0 -9 -15 -4 -12 -7|]&lt;br /&gt;
[[Optimal tuning]]s:
EDOs: 22&lt;br /&gt;
* [[CTE]]: ~7/5 = 600.000, ~9/7 = 435.258
Badness: 0.0447&lt;br /&gt;
: [[error map]]: {{val| 0.000 +3.819 -10.024 +7.464 }}
&lt;br /&gt;
* [[POTE]]: ~7/5 = 600.000, ~9/7 = 435.648
&lt;!-- ws:start:WikiTextHeadingRule:46:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc23"&gt;&lt;a name="Porky"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:46 --&gt;Porky&lt;/h1&gt;
: error map: {{val| 0.000 +4.989 -8.074 +9.414 }}
Commas: 225/224, 250/243&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 8d, 14c, 22 }}
POTE generator: ~10/9 = 164.412&lt;br /&gt;
 
&lt;br /&gt;
[[Badness]] (Smith): 0.043983
Map: [&amp;lt;1 2 3 5|, &amp;lt;0 -3 -5 -16|]&lt;br /&gt;
 
Wedgie: &amp;lt;&amp;lt;3 5 16 1 17 23||&lt;br /&gt;
=== 11-limit ===
EDOS: 7, 8, 15, 22, 29, 51, 73&lt;br /&gt;
Subgroup: 2.3.5.7.11
Badness: 0.0544&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 50/49, 55/54, 99/98
&lt;!-- ws:start:WikiTextHeadingRule:48:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc24"&gt;&lt;a name="Porky-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:48 --&gt;11-limit&lt;/h2&gt;
 
Commas: 55/54, 100/99, 225/224&lt;br /&gt;
Mapping: {{mapping| 2 1 1 2 4 | 0 3 5 5 4 }}
&lt;br /&gt;
 
POTE generator: ~10/9 = 164.552&lt;br /&gt;
Optimal tunings:  
&lt;br /&gt;
* CTE: ~7/5 = 600.000, ~9/7 = 435.528
Map: [&amp;lt;1 2 3 5 4|, &amp;lt;0 -3 -5 -16 -4|]&lt;br /&gt;
* POTE: ~7/5 = 600.000, ~9/7 = 435.386
EDOs: 7, 8, 15, 22, 29, 51, 73&lt;br /&gt;
 
Badness: 0.0273&lt;br /&gt;
{{Optimal ET sequence|legend=0| 8d, 14c, 22, 58ce }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:50:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc25"&gt;&lt;a name="Coendou"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:50 --&gt;Coendou&lt;/h1&gt;
Badness (Smith): 0.023095
Commas: 250/243, 525/512&lt;br /&gt;
 
&lt;br /&gt;
==== 13-limit ====
POTE generator: ~10/9 = 166.041&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 1|, &amp;lt;0 -3 -5 13|]&lt;br /&gt;
Comma list: 50/49, 55/54, 65/63, 99/98
Wedgie: &amp;lt;&amp;lt;3 5 -13 1 -29 -44||&lt;br /&gt;
 
EDOs: 7, 29, 65c, 94cd&lt;br /&gt;
Mapping: {{mapping| 2 1 1 2 4 3 | 0 3 5 5 4 6 }}
Badness: 0.1183&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:
&lt;!-- ws:start:WikiTextHeadingRule:52:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc26"&gt;&lt;a name="Coendou-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:52 --&gt;11-limit&lt;/h2&gt;
* CTE: ~7/5 = 600.000, ~9/7 = 436.309
Commas: 55/54, 100/99, 525/512&lt;br /&gt;
* POTE: ~7/5 = 600.000, ~9/7 = 435.861
&lt;br /&gt;
 
POTE generator: ~10/9 = 165.981&lt;br /&gt;
{{Optimal ET sequence|legend=0| 8d, 14cf, 22 }}
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 1 4|, &amp;lt;0 -3 -5 13 -4|]&lt;br /&gt;
Badness (Smith): 0.021516
EDOs: 7, 29, 65ce, 94cde&lt;br /&gt;
 
Badness: 0.0497&lt;br /&gt;
==== Urchin ====
&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
&lt;!-- ws:start:WikiTextHeadingRule:54:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc27"&gt;&lt;a name="Coendou-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:54 --&gt;13-limit&lt;/h2&gt;
 
Commas: 55/54, 65/64, 100/99, 105/104&lt;br /&gt;
Comma list: 40/39, 50/49, 55/54, 66/65
&lt;br /&gt;
 
POTE generator: ~10/9 = 165.974&lt;br /&gt;
Mapping: {{mapping| 2 1 1 2 4 6 | 0 3 5 5 4 2 }}
&lt;br /&gt;
 
Map: [&amp;lt;1 2 3 1 4 3|, &amp;lt;0 -3 -5 13 -4 5|]&lt;br /&gt;
Optimal tunings:
EDOs: 7, 29, 65cef, 94cdef&lt;br /&gt;
* CTE: ~7/5 = 600.000, ~9/7 = 435.186
Badness: 0.0302&lt;/body&gt;&lt;/html&gt;</pre></div>
* POTE: ~7/5 = 600.000, ~9/7 = 437.078
 
{{Optimal ET sequence|legend=0| 14c, 22f }}
 
Badness (Smith): 0.025233
 
=== Hedgepig ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 245/243, 385/384
 
Mapping: {{mapping| 2 1 1 2 12 | 0 3 5 5 -7 }}
 
Optimal tunings:
* CTE: ~7/5 = 600.000, ~9/7 = 435.329
* POTE: ~7/5 = 600.000, ~9/7 = 435.425
 
{{Optimal ET sequence|legend=0| 22 }}
 
Badness (Smith): 0.068406
 
; Music
* [http://micro.soonlabel.com/22-ET/20120207-phobos-light-hedgehog14.mp3 ''Phobos Light''] by [[Chris Vaisvil]] – in [[hedgehog14|hedgehog[14]]], 22edo tuning.
 
== Nautilus ==
Nautilus tempers out 49/48 and may be described as the {{nowrap| 14c & 15 }} temperament. Its ploidacot is omega-hexacot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 49/48, 250/243
 
{{Mapping|legend=1| 1 2 3 3 | 0 -6 -10 -3 }}
 
: mapping generators: ~2, ~21/20
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~21/20 = 81.914
: [[error map]]: {{val| 0.000 +6.559 -5.457 -14.569 }}
* [[POTE]]: ~2 = 1200.000, ~21/20 = 82.505
: error map: {{val| 0.000 +3.012 -11.368 -16.342 }}
 
{{Optimal ET sequence|legend=1| 14c, 15, 29, 44d }}
 
[[Badness]] (Smith): 0.057420
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 49/48, 55/54, 245/242
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -6 -10 -3 -8 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~21/20 = 81.802
* POTE: ~2 = 1200.000, ~21/20 = 82.504
 
{{Optimal ET sequence|legend=0| 14c, 15, 29, 44d }}
 
Badness (Smith): 0.026023
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 49/48, 55/54, 91/90, 100/99
 
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -6 -10 -3 -8 -19 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~21/20 = 81.912
* POTE: ~2 = 1200.000, ~21/20 = 82.530
 
{{Optimal ET sequence|legend=0| 14cf, 15, 29, 44d }}
 
Badness (Smith): 0.022285
 
==== Belauensis ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 40/39, 49/48, 55/54, 66/65
 
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -6 -10 -3 -8 -4 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~21/20 = 82.034
* POTE: ~2 = 1200.000, ~21/20 = 81.759
 
{{Optimal ET sequence|legend=0| 14c, 15, 29f, 44dff }}
 
Badness (Smith): 0.029816
 
; Music
* [http://micro.soonlabel.com/gene_ward_smith/Others/Igs/NautilusReverie.mp3 ''Nautilus Reverie''] by [[Igliashon Jones|Igliashon Calvin Jones-Coolidge]]
 
== Ammonite ==
Ammonite adds 686/675 to the comma list and may be described as the {{nowrap| 8d & 29 }} temperament. Its ploidacot is epsilon-enneacot. [[37edo]] provides an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 250/243, 686/675
 
{{Mapping|legend=1| 1 5 8 10 | 0 -9 -15 -19 }}
 
: mapping generators: ~2, ~9/7
 
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~9/7 = 454.550
: [[error map]]: {{val| 0.000 +7.095 -4.564 -5.276 }}
* [[POTE]]: ~2 = 1200.000, ~9/7 = 454.448
: error map: {{val| 0.000 +8.009 -3.040 -3.346 }}
 
{{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }}
 
[[Badness]] (Smith): 0.107686
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 100/99, 686/675
 
Mapping: {{mapping| 1 5 8 10 8 | 0 -9 -15 -19 -12 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~9/7 = 454.505
* POTE: ~2 = 1200.000, ~9/7 = 454.512
 
{{Optimal ET sequence|legend=0| 8d, 21cde, 29, 37, 66 }}
 
Badness (Smith): 0.045694
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 91/90, 100/99, 169/168
 
Mapping: {{mapping| 1 5 8 10 8 9 | 0 -9 -15 -19 -12 -14 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~13/10 = 454.480
* POTE: ~2 = 1200.000, ~13/10 = 454.529
 
{{Optimal ET sequence|legend=0| 8d, 21cdef, 29, 37, 66 }}
 
Badness (Smith): 0.027168
 
== Ceratitid ==
Ceratitid adds 1728/1715 to the comma list and may be described as the {{nowrap| 21c & 22 }} temperament. Its ploidacot is omega-enneacot. [[22edo]] provides an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 250/243, 1728/1715
 
{{Mapping|legend=1| 1 2 3 3 | 0 -9 -15 -4 }}
 
: mapping generators: ~2, ~36/35
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1200.000, ~36/35 = 54.804
: [[error map]]: {{val| 0.000 +4.809 -8.374 +11.958 }}
* [[POTE]]: ~2 = 1200.000, ~36/35 = 54.384
: error map: {{val| 0.000 +8.585 -2.081 +13.636 }}
 
{{Optimal ET sequence|legend=1| 1c, 21c, 22 }}
 
[[Badness]] (Smith): 0.115304
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 55/54, 100/99, 352/343
 
Mapping: {{mapping| 1 2 3 3 4 | 0 -9 -15 -4 -12 }}
 
Optimal tunings:
* CTE: ~2 = 1200.000, ~36/35 = 54.702
* POTE: ~2 = 1200.000, ~36/35 = 54.376
 
{{Optimal ET sequence|legend=0| 1ce, 21ce, 22 }}
 
Badness (Smith): 0.051319
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 55/54, 65/63, 100/99, 352/343
 
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -9 -15 -4 -12 -7 }}
 
Optimal tunings:  
* CTE: ~2 = 1200.000, ~36/35 = 54.575
* POTE: ~2 = 1200.000, ~36/35 = 54.665
 
{{Optimal ET sequence|legend=0| 1ce, 21cef, 22 }}
 
Badness (Smith): 0.044739
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Porcupine family| ]] <!-- main article -->
[[Category:Porcupine| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 10:23, 29 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The porcupine family of temperaments tempers out the porcupine comma, 250/243, also called the maximal diesis.

Porcupine

The generator of porcupine is a minor whole tone, the 10/9 interval, and three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = (4/3)⋅(250/243), and (10/9)5 = (8/5)⋅(250/243)2. Its ploidacot is omega-tricot. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.

Subgroup: 2.3.5

Comma list: 250/243

Mapping[1 2 3], 0 -3 -5]]

mapping generators: ~2, ~10/9

Optimal tunings:

  • CTE: ~2 = 1200.000, ~10/9 = 164.166
error map: 0.000 +5.547 -7.143]
  • POTE: ~2 = 1200.000, ~10/9 = 163.950
error map: 0.000 +6.194 -6.065]

Tuning ranges:

Optimal ET sequence7, 15, 22, 95c

Badness (Smith): 0.030778

Overview to extensions

7-limit extensions

The second comma defines which 7-limit family member we are looking at.

  • Hystrix adds 36/35, the mint comma, for an exotemperament tuning around 8d-edo;
  • Opossum adds 28/27, the trienstonic comma, for a tuning between 8d-edo and 15edo;
  • Septimal porcupine adds 64/63, the archytas comma, for a tuning between 15edo and 22edo;
  • Porky adds 225/224, the marvel comma, for a tuning between 22edo and 29edo;
  • Coendou adds 525/512, the avicennma, for a tuning sharp of 29edo.

Those all share the same generator with porcupine.

nautilus tempers out 49/48 and splits the generator in two. hedgehog tempers out 50/49 with a semi-octave period. Finally, ammonite tempers out 686/675 and ceratitid tempers out 1728/1715. Those split the generator in three.

Temperaments discussed elsewhere include:

Subgroup extensions

Noting that 250/243 = (55/54)⋅(100/99) = S102S11, the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine, given right below.

2.3.5.11 subgroup (porkypine)

Subgroup: 2.3.5.11

Comma list: 55/54, 100/99

Sval mapping: [1 2 3 4], 0 -3 -5 -4]]

Gencom mapping: [1 2 3 0 4], 0 -3 -5 0 -4]]

gencom: [2 10/9; 55/54, 100/99]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 163.887
  • POTE: ~2 = 1200.000, ~11/10 = 164.078

Optimal ET sequence: 7, 15, 22, 73ce, 95ce

Badness (Smith): 0.0097

Undecimation

Subgroup: 2.3.5.11.13

Comma list: 55/54, 100/99, 512/507

Sval mapping: [1 5 8 8 2], 0 -6 -10 -8 3]]

sval mapping generators: ~2, ~65/44

Optimal tunings:

  • CTE: ~2 = 1200.000, ~88/65 = 518.086
  • POTE: ~2 = 1200.000, ~88/65 = 518.209

Optimal ET sequence: 7, 23bc, 30, 37, 44

Badness (Smith): 0.0305

Septimal porcupine

Septimal porcupine uses six of its minor tone generator steps to get to 7/4. Here, we share the same mapping of 7/4 in terms of fifths as archy. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.

Subgroup: 2.3.5.7

Comma list: 64/63, 250/243

Mapping[1 2 3 2], 0 -3 -5 6]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~10/9 = 163.203
error map: 0.000 +8.435 -2.330 +10.394]
  • POTE: ~2 = 1200.000, ~10/9 = 162.880
error map: 0.000 +9.405 -0.714 +8.455]

Minimax tuning:

unchanged-interval (eigenmonzo) basis: 2.5
unchanged-interval (eigenmonzo) basis: 2.9/7

Tuning ranges:

  • 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
  • 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
  • 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]

Optimal ET sequence7, 15, 22, 37, 59, 81bd

Badness (Smith): 0.041057

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 100/99

Mapping: [1 2 3 2 4], 0 -3 -5 6 -4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 163.105
  • POTE: ~2 = 1200.000, ~11/10 = 162.747

Minimax tuning:

  • 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12
unchanged-interval (eigenmonzo) basis: 2.9/7

Tuning ranges:

  • 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
  • 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]

Optimal ET sequence: 7, 15, 22, 37, 59

Badness (Smith): 0.021562

Porcupinefowl

This extension used to be tridecimal porcupine.

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 66/65

Mapping: [1 2 3 2 4 4], 0 -3 -5 6 -4 -2]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 163.442
  • POTE: ~2 = 1200.000, ~11/10 = 162.708

Minimax tuning:

  • 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4
unchanged-interval (eigenmonzo) basis: 2.11

Tuning ranges:

  • 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
  • 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
  • 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]

Optimal ET sequence: 7, 15, 22f, 37f

Badness (Smith): 0.021276

Porcupinefish

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 100/99

Mapping: [1 2 3 2 4 6], 0 -3 -5 6 -4 -17]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 162.636
  • POTE: ~2 = 1200.000, ~11/10 = 162.277

Minimax tuning:

  • 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13
unchanged-interval (eigenmonzo) basis: 2.13/11

Tuning ranges:

  • 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
  • 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
  • 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]

Optimal ET sequence: 15, 22, 37

Badness (Smith): 0.025314

Pourcup

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 100/99, 196/195

Mapping: [1 2 3 2 4 1], 0 -3 -5 6 -4 20]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 163.378
  • POTE: ~2 = 1200.000, ~11/10 = 162.482

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14
unchanged-interval (eigenmonzo) basis: 2.13/7

Optimal ET sequence: 15f, 22f, 37, 59f

Badness (Smith): 0.035130

Porkpie

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 100/99

Mapping: [1 2 3 2 4 3], 0 -3 -5 6 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 163.678
  • POTE: ~2 = 1200.000, ~11/10 = 163.688

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12
unchanged-interval (eigenmonzo) basis: 2.9/7

Optimal ET sequence: 7, 15f, 22

Badness (Smith): 0.026043

Opossum

Opossum can be described as 8d & 15. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.

Subgroup: 2.3.5.7

Comma list: 28/27, 126/125

Mapping[1 2 3 4], 0 -3 -5 -9]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~10/9 = 161.306
error map: 0.000 +14.126 +7.155 -20.583]
  • POTE: ~2 = 1200.000, ~10/9 = 159.691
error map: 0.000 +18.971 +15.229 -6.048]

Minimax tuning:

Optimal ET sequence7d, 8d, 15

Badness (Smith): 0.040650

11-limit

Subgroup: 2.3.5.7.11

Comma list: 28/27, 55/54, 77/75

Mapping: [1 2 3 4 4], 0 -3 -5 -9 -4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 161.365
  • POTE: ~2 = 1200.000, ~11/10 = 159.807

Minimax tuning:

  • 11-odd-limit unchanged-interval (eigenmonzo) basis: 2.7

Optimal ET sequence: 7d, 8d, 15

Badness (Smith): 0.022325

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 28/27, 40/39, 55/54, 66/65

Mapping: [1 2 3 4 4 4], 0 -3 -5 -9 -4 -2]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 161.631
  • POTE: ~2 = 1200.000, ~11/10 = 158.805

Minimax tuning:

  • 13- and 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.7

Optimal ET sequence: 7d, 8d, 15, 38bceff

Badness (Smith): 0.019389

Porky

Porky can be described as 22 & 29, suggesting a less sharp perfect fifth. 7\51 is a good generator.

Subgroup: 2.3.5.7

Comma list: 225/224, 250/243

Mapping[1 2 3 5], 0 -3 -5 -16]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~10/9 = 164.391
error map: 0.000 +4.871 -8.270 +0.913]
  • POTE: ~2 = 1200.000, ~10/9 = 164.412
error map: 0.000 +4.809 -8.375 +0.580]

Minimax tuning:

unchanged-interval (eigenmonzo) basis: 2.7/5

Optimal ET sequence7d, 15d, 22, 29, 51, 73c

Badness (Smith): 0.054389

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 225/224

Mapping: [1 2 3 5 4], 0 -3 -5 -16 -4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 164.321
  • POTE: ~2 = 1200.000, ~11/10 = 164.552

Minimax tuning:

  • 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11
unchanged-interval (eigenmonzo) basis: 2.7/5

Optimal ET sequence: 7d, 15d, 22, 51

Badness (Smith): 0.027268

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 91/90, 100/99

Mapping: [1 2 3 5 4 3], 0 -3 -5 -16 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 164.478
  • POTE: ~2 = 1200.000, ~11/10 = 164.953

Optimal ET sequence: 7d, 22, 29, 51f, 80cdeff

Badness (Smith): 0.026543

Music

Coendou

Coendou can be described as 29 & 36c, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.

Subgroup: 2.3.5.7

Comma list: 250/243, 525/512

Mapping[1 2 3 1], 0 -3 -5 13]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~10/9 = 166.094
error map: 0.000 -0.236 -16.783 -9.607]
  • POTE: ~2 = 1200.000, ~10/9 = 166.041
error map: 0.000 -0.077 -16.516 -10.299]

Minimax tuning:

unchanged-interval (eigenmonzo) basis: 2.3

Optimal ET sequence7, 22d, 29, 65c, 94cd

Badness (Smith): 0.118344

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 525/512

Mapping: [1 2 3 1 4], 0 -3 -5 13 -4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 165.925
  • POTE: ~2 = 1200.000, ~11/10 = 165.981

Minimax tuning:

  • 11-odd-limit: ~11/10 = [2/3 -1/3
unchanged-interval (eigenmonzo) basis: 2.3

Optimal ET sequence: 7, 22d, 29, 65ce

Badness (Smith): 0.049669

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/64, 100/99, 105/104

Mapping: [1 2 3 1 4 3], 0 -3 -5 13 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 166.046
  • POTE: ~2 = 1200.000, ~11/10 = 165.974

Minimax tuning:

  • 13- and 15-odd-limit: ~11/10 = [2/3 -1/3
unchanged-interval (eigenmonzo) basis: 2.3

Optimal ET sequence: 7, 22d, 29, 65cef

Badness (Smith): 0.030233

Hystrix

Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix is very high in error due to the large disparity between typical porcupine generators and a justly-tuned 8/7, and is usually considered an exotemperament. A generator of 2\15 or 9\68 can be used for hystrix.

Subgroup: 2.3.5.7

Comma list: 36/35, 160/147

Mapping[1 2 3 3], 0 -3 -5 -1]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~10/9 = 165.185
error map: 0.000 +2.491 -12.236 +65.990]
  • POTE: ~2 = 1200.000, ~10/9 = 158.868
error map: 0.000 +21.442 +19.348 +72.306]

Minimax tuning:

unchanged-interval (eigenmonzo) basis: 2.5

Optimal ET sequence7, 8d, 15d

Badness (Smith): 0.044944

11-limit

Subgroup: 2.3.5.7.11

Comma list: 22/21, 36/35, 80/77

Mapping: [1 2 3 3 4], 0 -3 -5 -1 -4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~11/10 = 164.768
  • POTE: ~2 = 1200.000, ~11/10 = 158.750

Optimal ET sequence: 7, 8d, 15d

Badness (Smith): 0.026790

Hedgehog

Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. It is a strong extension of BPS (as BPS has no 2 or sqrt(2)). Its ploidacot is diploid omega-tricot.

22edo provides an obvious tuning, which happens to be the only patent-val tuning, but if you are looking for an alternative you could try the 146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22. A related temperament is echidna, which offers much more accuracy. They merge on 22edo.

Subgroup: 2.3.5.7

Comma list: 50/49, 245/243

Mapping[2 1 1 2], 0 3 5 5]]

mapping generators: ~7/5, ~9/7

Optimal tunings:

  • CTE: ~7/5 = 600.000, ~9/7 = 435.258
error map: 0.000 +3.819 -10.024 +7.464]
  • POTE: ~7/5 = 600.000, ~9/7 = 435.648
error map: 0.000 +4.989 -8.074 +9.414]

Optimal ET sequence8d, 14c, 22

Badness (Smith): 0.043983

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 99/98

Mapping: [2 1 1 2 4], 0 3 5 5 4]]

Optimal tunings:

  • CTE: ~7/5 = 600.000, ~9/7 = 435.528
  • POTE: ~7/5 = 600.000, ~9/7 = 435.386

Optimal ET sequence: 8d, 14c, 22, 58ce

Badness (Smith): 0.023095

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 99/98

Mapping: [2 1 1 2 4 3], 0 3 5 5 4 6]]

Optimal tunings:

  • CTE: ~7/5 = 600.000, ~9/7 = 436.309
  • POTE: ~7/5 = 600.000, ~9/7 = 435.861

Optimal ET sequence: 8d, 14cf, 22

Badness (Smith): 0.021516

Urchin

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 50/49, 55/54, 66/65

Mapping: [2 1 1 2 4 6], 0 3 5 5 4 2]]

Optimal tunings:

  • CTE: ~7/5 = 600.000, ~9/7 = 435.186
  • POTE: ~7/5 = 600.000, ~9/7 = 437.078

Optimal ET sequence: 14c, 22f

Badness (Smith): 0.025233

Hedgepig

Subgroup: 2.3.5.7.11

Comma list: 50/49, 245/243, 385/384

Mapping: [2 1 1 2 12], 0 3 5 5 -7]]

Optimal tunings:

  • CTE: ~7/5 = 600.000, ~9/7 = 435.329
  • POTE: ~7/5 = 600.000, ~9/7 = 435.425

Optimal ET sequence: 22

Badness (Smith): 0.068406

Music

Nautilus

Nautilus tempers out 49/48 and may be described as the 14c & 15 temperament. Its ploidacot is omega-hexacot.

Subgroup: 2.3.5.7

Comma list: 49/48, 250/243

Mapping[1 2 3 3], 0 -6 -10 -3]]

mapping generators: ~2, ~21/20

Optimal tunings:

  • CTE: ~2 = 1200.000, ~21/20 = 81.914
error map: 0.000 +6.559 -5.457 -14.569]
  • POTE: ~2 = 1200.000, ~21/20 = 82.505
error map: 0.000 +3.012 -11.368 -16.342]

Optimal ET sequence14c, 15, 29, 44d

Badness (Smith): 0.057420

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 55/54, 245/242

Mapping: [1 2 3 3 4], 0 -6 -10 -3 -8]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~21/20 = 81.802
  • POTE: ~2 = 1200.000, ~21/20 = 82.504

Optimal ET sequence: 14c, 15, 29, 44d

Badness (Smith): 0.026023

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 55/54, 91/90, 100/99

Mapping: [1 2 3 3 4 5], 0 -6 -10 -3 -8 -19]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~21/20 = 81.912
  • POTE: ~2 = 1200.000, ~21/20 = 82.530

Optimal ET sequence: 14cf, 15, 29, 44d

Badness (Smith): 0.022285

Belauensis

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 49/48, 55/54, 66/65

Mapping: [1 2 3 3 4 4], 0 -6 -10 -3 -8 -4]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~21/20 = 82.034
  • POTE: ~2 = 1200.000, ~21/20 = 81.759

Optimal ET sequence: 14c, 15, 29f, 44dff

Badness (Smith): 0.029816

Music

Ammonite

Ammonite adds 686/675 to the comma list and may be described as the 8d & 29 temperament. Its ploidacot is epsilon-enneacot. 37edo provides an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 250/243, 686/675

Mapping[1 5 8 10], 0 -9 -15 -19]]

mapping generators: ~2, ~9/7

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 454.550
error map: 0.000 +7.095 -4.564 -5.276]
  • POTE: ~2 = 1200.000, ~9/7 = 454.448
error map: 0.000 +8.009 -3.040 -3.346]

Optimal ET sequence8d, 21cd, 29, 37, 66

Badness (Smith): 0.107686

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 686/675

Mapping: [1 5 8 10 8], 0 -9 -15 -19 -12]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~9/7 = 454.505
  • POTE: ~2 = 1200.000, ~9/7 = 454.512

Optimal ET sequence: 8d, 21cde, 29, 37, 66

Badness (Smith): 0.045694

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 91/90, 100/99, 169/168

Mapping: [1 5 8 10 8 9], 0 -9 -15 -19 -12 -14]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~13/10 = 454.480
  • POTE: ~2 = 1200.000, ~13/10 = 454.529

Optimal ET sequence: 8d, 21cdef, 29, 37, 66

Badness (Smith): 0.027168

Ceratitid

Ceratitid adds 1728/1715 to the comma list and may be described as the 21c & 22 temperament. Its ploidacot is omega-enneacot. 22edo provides an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 250/243, 1728/1715

Mapping[1 2 3 3], 0 -9 -15 -4]]

mapping generators: ~2, ~36/35

Optimal tunings:

  • CTE: ~2 = 1200.000, ~36/35 = 54.804
error map: 0.000 +4.809 -8.374 +11.958]
  • POTE: ~2 = 1200.000, ~36/35 = 54.384
error map: 0.000 +8.585 -2.081 +13.636]

Optimal ET sequence1c, 21c, 22

Badness (Smith): 0.115304

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 100/99, 352/343

Mapping: [1 2 3 3 4], 0 -9 -15 -4 -12]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~36/35 = 54.702
  • POTE: ~2 = 1200.000, ~36/35 = 54.376

Optimal ET sequence: 1ce, 21ce, 22

Badness (Smith): 0.051319

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 65/63, 100/99, 352/343

Mapping: [1 2 3 3 4 4], 0 -9 -15 -4 -12 -7]]

Optimal tunings:

  • CTE: ~2 = 1200.000, ~36/35 = 54.575
  • POTE: ~2 = 1200.000, ~36/35 = 54.665

Optimal ET sequence: 1ce, 21cef, 22

Badness (Smith): 0.044739