130edo: Difference between revisions
Update infobox |
Add lumatone mapping link. |
||
(41 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
130edo is a [[zeta peak edo]], a [[zeta peak integer edo]], and a [[zeta integral edo]] but not a gap edo. It can be used to tune a variety of temperaments, including [[hemiwürschmidt]], [[sesquiquartififths]], [[harry]] and [[hemischis]]. It also can be used to tune the rank- | 130edo is a [[zeta peak edo]], a [[zeta peak integer edo]], and a [[zeta integral edo]] but not a gap edo. It is [[distinctly consistent]] to the [[15-odd-limit]] and is the first [[trivial temperament|nontrivial edo]] to be consistent in the 14-[[odd prime sum limit|odd-prime-sum-limit]]. As an equal temperament, it [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[19683/19600]] in the 7-limit; [[243/242]], [[441/440]], [[540/539]], and [[4000/3993]] in the 11-limit; and [[351/350]], [[364/363]], [[676/675]], [[729/728]], [[1001/1000]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]] in the 13-limit. It can be used to tune a variety of temperaments, including [[hemiwürschmidt]], [[sesquiquartififths]], [[harry]] and [[hemischis]]. It also can be used to tune the [[rank-3 temperament]] [[jove]], tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and [[595/594]] for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[hemiwürschmidt]] and [[Schismatic family #Sesquiquartififths|sesquart]] and 13-limit [[harry]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{ | {{Harmonics in equal|130|columns=9}} | ||
{{Harmonics in equal|130|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 130edo (continued)}} | |||
=== Subsets and supersets === | |||
Since 130 factors into 2 × 5 × 13, 130edo has subset edos {{EDOs| 2, 5, 10, 13, 26, and 65 }}. | |||
[[260edo]], which divides the edostep in two, provides a strong correction for the 29th harmonic. | |||
== Intervals == | == Intervals == | ||
Line 21: | Line 19: | ||
! Degree | ! Degree | ||
! Cents | ! Cents | ||
! Approximate | ! Approximate ratios | ||
|- | |- | ||
| 0 | | 0 | ||
| 0. | | 0.00 | ||
| 1/1 | | 1/1 | ||
|- | |- | ||
| 1 | | 1 | ||
| 9. | | 9.23 | ||
| 126/125, 225/224 | | ''126/125'', 144/143, 169/168, 176/175, 196/195, 225/224 | ||
|- | |- | ||
| 2 | | 2 | ||
| 18. | | 18.46 | ||
| 81/80 | | 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 | ||
|- | |- | ||
| 3 | | 3 | ||
| 27. | | 27.69 | ||
| 64/63 | | 56/55, 64/63, 65/64, 66/65 | ||
|- | |- | ||
| 4 | | 4 | ||
| 36. | | 36.92 | ||
| 49/48, 50/49 | | 45/44, 49/48, 50/49, ''55/54'' | ||
|- | |- | ||
| 5 | | 5 | ||
| 46. | | 46.15 | ||
| 36/35 | | 36/35, 40/39 | ||
|- | |- | ||
| 6 | | 6 | ||
| 55. | | 55.38 | ||
| 33/32 | | 33/32 | ||
|- | |- | ||
| 7 | | 7 | ||
| 64. | | 64.62 | ||
| 28/27 | | 27/26, 28/27 | ||
|- | |- | ||
| 8 | | 8 | ||
| 73. | | 73.85 | ||
| 25/24 | | 25/24, 26/25 | ||
|- | |- | ||
| 9 | | 9 | ||
| 83. | | 83.08 | ||
| 21/20, 22/21 | | 21/20, 22/21 | ||
|- | |- | ||
| 10 | | 10 | ||
| 92. | | 92.31 | ||
| 135/128 | | 135/128 | ||
|- | |- | ||
| 11 | | 11 | ||
| 101. | | 101.54 | ||
| 35/33 | | 35/33 | ||
|- | |- | ||
| 12 | | 12 | ||
| 110. | | 110.77 | ||
| 16/15 | | 16/15 | ||
|- | |- | ||
| 13 | | 13 | ||
| 120. | | 120.00 | ||
| 15/14 | | 15/14 | ||
|- | |- | ||
| 14 | | 14 | ||
| 129. | | 129.23 | ||
| 14/13 | | 14/13 | ||
|- | |- | ||
| 15 | | 15 | ||
| 138. | | 138.46 | ||
| 13/12 | | 13/12 | ||
|- | |- | ||
| 16 | | 16 | ||
| 147. | | 147.69 | ||
| 12/11 | | 12/11 | ||
|- | |- | ||
| 17 | | 17 | ||
| 156. | | 156.92 | ||
| 35/32 | | 35/32 | ||
|- | |- | ||
| 18 | | 18 | ||
| 166. | | 166.15 | ||
| 11/10 | | 11/10 | ||
|- | |- | ||
| 19 | | 19 | ||
| 175. | | 175.38 | ||
| 72/65 | | 72/65 | ||
|- | |- | ||
| 20 | | 20 | ||
| 184. | | 184.62 | ||
| 10/9 | | 10/9 | ||
|- | |- | ||
| 21 | | 21 | ||
| 193. | | 193.85 | ||
| 28/25 | | 28/25 | ||
|- | |- | ||
| 22 | | 22 | ||
| 203. | | 203.08 | ||
| 9/8 | | 9/8 | ||
|- | |- | ||
| 23 | | 23 | ||
| 212. | | 212.31 | ||
| 44/39 | | 44/39 | ||
|- | |- | ||
| 24 | | 24 | ||
| 221. | | 221.54 | ||
| 25/22 | | 25/22 | ||
|- | |- | ||
| 25 | | 25 | ||
| 230. | | 230.77 | ||
| 8/7 | | 8/7 | ||
|- | |- | ||
| 26 | | 26 | ||
| 240. | | 240.00 | ||
| 55/48 | | 55/48 | ||
|- | |- | ||
| 27 | | 27 | ||
| 249. | | 249.23 | ||
| 15/13 | | 15/13 | ||
|- | |- | ||
| 28 | | 28 | ||
| 258. | | 258.46 | ||
| 64/55 | | 64/55 | ||
|- | |- | ||
| 29 | | 29 | ||
| 267. | | 267.69 | ||
| 7/6 | | 7/6 | ||
|- | |- | ||
| 30 | | 30 | ||
| 276. | | 276.92 | ||
| 75/64 | | 75/64 | ||
|- | |- | ||
| 31 | | 31 | ||
| 286. | | 286.15 | ||
| 13/11 | | 13/11 | ||
|- | |- | ||
| 32 | | 32 | ||
| 295. | | 295.38 | ||
| 32/27 | | 32/27 | ||
|- | |- | ||
| 33 | | 33 | ||
| 304. | | 304.62 | ||
| 25/21 | | 25/21 | ||
|- | |- | ||
| 34 | | 34 | ||
| 313. | | 313.85 | ||
| 6/5 | | 6/5 | ||
|- | |- | ||
| 35 | | 35 | ||
| 323. | | 323.08 | ||
| 65/54 | | 65/54 | ||
|- | |- | ||
| 36 | | 36 | ||
| 332. | | 332.31 | ||
| 40/33 | | 40/33 | ||
|- | |- | ||
| 37 | | 37 | ||
| 341. | | 341.54 | ||
| 39/32 | | 39/32 | ||
|- | |- | ||
| 38 | | 38 | ||
| 350. | | 350.77 | ||
| 11/9, 27/22 | | 11/9, 27/22 | ||
|- | |- | ||
| 39 | | 39 | ||
| 360. | | 360.00 | ||
| 16/13 | | 16/13 | ||
|- | |- | ||
| 40 | | 40 | ||
| 369. | | 369.23 | ||
| 26/21 | | 26/21 | ||
|- | |- | ||
| 41 | | 41 | ||
| 378. | | 378.46 | ||
| 56/45 | | 56/45 | ||
|- | |- | ||
| 42 | | 42 | ||
| 387. | | 387.69 | ||
| 5/4 | | 5/4 | ||
|- | |- | ||
| 43 | | 43 | ||
| 396. | | 396.92 | ||
| | | 44/35 | ||
|- | |- | ||
| 44 | | 44 | ||
| 406. | | 406.15 | ||
| 81/64 | | 81/64 | ||
|- | |- | ||
| 45 | | 45 | ||
| 415. | | 415.38 | ||
| 14/11 | | 14/11 | ||
|- | |- | ||
| 46 | | 46 | ||
| 424. | | 424.62 | ||
| 32/25 | | 32/25 | ||
|- | |- | ||
| 47 | | 47 | ||
| 433. | | 433.85 | ||
| 9/7 | | 9/7 | ||
|- | |- | ||
| 48 | | 48 | ||
| 443. | | 443.08 | ||
| 128/99 | | 84/65, 128/99 | ||
|- | |- | ||
| 49 | | 49 | ||
| 452. | | 452.31 | ||
| 13/10 | | 13/10 | ||
|- | |- | ||
| 50 | | 50 | ||
| 461. | | 461.54 | ||
| 72/55 | | 64/49, ''72/55'' | ||
|- | |- | ||
| 51 | | 51 | ||
| 470. | | 470.77 | ||
| 21/16 | | 21/16 | ||
|- | |- | ||
| 52 | | 52 | ||
| 480. | | 480.00 | ||
| 33/25 | | 33/25 | ||
|- | |- | ||
| 53 | | 53 | ||
| 489. | | 489.23 | ||
| | | 65/49 | ||
|- | |- | ||
| 54 | | 54 | ||
| 498. | | 498.46 | ||
| 4/3 | | 4/3 | ||
|- | |- | ||
| 55 | | 55 | ||
| 507. | | 507.69 | ||
| 75/56 | | 75/56 | ||
|- | |- | ||
| 56 | | 56 | ||
| 516. | | 516.92 | ||
| 27/20 | | 27/20 | ||
|- | |- | ||
| 57 | | 57 | ||
| 526. | | 526.15 | ||
| 65/48 | | 65/48 | ||
|- | |- | ||
| 58 | | 58 | ||
| 535. | | 535.38 | ||
| 15/11 | | 15/11 | ||
|- | |- | ||
| 59 | | 59 | ||
| 544. | | 544.62 | ||
| 48/35 | | 48/35 | ||
|- | |- | ||
| 60 | | 60 | ||
| 553. | | 553.85 | ||
| 11/8 | | 11/8 | ||
|- | |- | ||
| 61 | | 61 | ||
| 563. | | 563.08 | ||
| 18/13 | | 18/13 | ||
|- | |- | ||
| 62 | | 62 | ||
| 572. | | 572.31 | ||
| 25/18 | | 25/18 | ||
|- | |- | ||
| 63 | | 63 | ||
| 581. | | 581.54 | ||
| 7/5 | | 7/5 | ||
|- | |- | ||
| 64 | | 64 | ||
| 590. | | 590.77 | ||
| 45/32 | | 45/32 | ||
|- | |- | ||
| 65 | | 65 | ||
| 600. | | 600.00 | ||
| 99/70, 140/99 | | 99/70, 140/99 | ||
|- | |- | ||
Line 291: | Line 289: | ||
|… | |… | ||
|} | |} | ||
== Notation == | |||
=== Sagittal notation === | |||
{| class="wikitable center-all" | |||
! Steps | |||
| 0 | |||
| 1 | |||
| 2 | |||
| 3 | |||
| 4 | |||
| 5 | |||
| 6 | |||
| 7 | |||
| 8 | |||
| 9 | |||
| 10 | |||
| 11 | |||
| 12 | |||
|- | |||
! Symbol | |||
| [[File:Sagittal natural.png]] | |||
| [[File:Sagittal nai.png]] | |||
| [[File:Sagittal pai.png]] | |||
| [[File:Sagittal tai.png]] | |||
| [[File:Sagittal phai.png]] | |||
| [[File:Sagittal patai.png]] | |||
| [[File:Sagittal pakai.png]] | |||
| [[File:Sagittal jakai.png]] | |||
| [[File:Sagittal sharp phao.png]] | |||
| [[File:Sagittal sharp tao.png]] | |||
| [[File:Sagittal sharp pao.png]] | |||
| [[File:Sagittal sharp nao.png]] | |||
| [[File:Sagittal sharp.png]] | |||
|} | |||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 796 | |||
| steps = 130.003910460506 | |||
| step size = 9.23049157328654 | |||
| tempered height = 10.355108 | |||
| pure height = 10.339572 | |||
| integral = 1.634018 | |||
| gap = 19.594551 | |||
| octave = 1199.96390452725 | |||
| consistent = 16 | |||
| distinct = 16 | |||
}} | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
Line 305: | Line 353: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 3136/3125, 19683/19600 | | 2401/2400, 3136/3125, 19683/19600 | ||
| | | {{Mapping| 130 206 302 365 }} | ||
| | | −0.119 | ||
| 0.311 | | 0.311 | ||
| 3.37 | | 3.37 | ||
Line 312: | Line 360: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 243/242, 441/440, 3136/3125, 4000/3993 | | 243/242, 441/440, 3136/3125, 4000/3993 | ||
| | | {{Mapping| 130 206 302 365 450 }} | ||
| | | −0.241 | ||
| 0.370 | | 0.370 | ||
| 4.02 | | 4.02 | ||
Line 319: | Line 367: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 243/242, 351/350, 364/363, 441/440, 3136/3125 | | 243/242, 351/350, 364/363, 441/440, 3136/3125 | ||
| | | {{Mapping| 130 206 302 365 450 481 }} | ||
| | | −0.177 | ||
| 0.367 | | 0.367 | ||
| 3.98 | | 3.98 | ||
Line 329: | Line 377: | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br>per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! | ! Associated<br>ratio* | ||
! Temperament | |||
|- | |- | ||
| 1 | | 1 | ||
Line 341: | Line 390: | ||
| 64/63 | | 64/63 | ||
| [[Arch]] | | [[Arch]] | ||
|- | |||
| 1 | |||
| 7\130 | |||
| 64.62 | |||
| 26/25 | |||
| [[Rectified hebrew]] | |||
|- | |- | ||
| 1 | | 1 | ||
Line 346: | Line 401: | ||
| 83.08 | | 83.08 | ||
| 21/20 | | 21/20 | ||
| [[ | | [[Sextilifourths]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 358: | Line 413: | ||
| 193.85 | | 193.85 | ||
| 28/25 | | 28/25 | ||
| [[ | | [[Hemiwürschmidt]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 376: | Line 431: | ||
| 55.38 | | 55.38 | ||
| 33/32 | | 33/32 | ||
| [[ | | [[Septisuperfourth]] | ||
|- | |- | ||
| 2 | | 2 | ||
Line 406: | Line 461: | ||
| 249.23<br>(9.23) | | 249.23<br>(9.23) | ||
| 81/70<br>(176/175) | | 81/70<br>(176/175) | ||
| [[ | | [[Hemiquintile]] | ||
|- | |- | ||
| 10 | | 10 | ||
Line 418: | Line 473: | ||
| 498.46<br>(18.46) | | 498.46<br>(18.46) | ||
| 4/3<br>(81/80) | | 4/3<br>(81/80) | ||
| [[ | | [[Decile]] | ||
|- | |- | ||
| 26 | | 26 | ||
Line 426: | Line 481: | ||
| [[Bosonic]] | | [[Bosonic]] | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+14-tone temperament of "Narrative Wars"<br>as an example of using 130edo: | |+ style="font-size: 105%;" | 14-tone temperament of "Narrative Wars"<br />as an example of using 130edo: | ||
|- | |||
! Step | ! Step | ||
! Cents | ! Cents | ||
! Distance to the nearest JI interval<br>(selected ratios) | ! Distance to the nearest JI interval<br />(selected ratios) | ||
|- | |- | ||
| 13 (13/130) | | 13 (13/130) | ||
| 120.000 | | 120.000 | ||
| [[15/14]] (+0.557 | | [[15/14]] (+0.557{{c}}) | ||
|- | |- | ||
| 7 (20/130) | | 7 (20/130) | ||
| 184.615 | | 184.615 | ||
| [[10/9]] (+2.211 | | [[10/9]] (+2.211{{c}}) | ||
|- | |- | ||
| 9 (29/130) | | 9 (29/130) | ||
| 267.692 | | 267.692 | ||
| [[7/6]] (+0,821 | | [[7/6]] (+0,821{{c}}) | ||
|- | |- | ||
| 9 (38/130) | | 9 (38/130) | ||
| 350.769 | | 350.769 | ||
| [[11/9]] (+3.361 | | [[11/9]] (+3.361{{c}}) | ||
|- | |- | ||
| 9 (47/130) | | 9 (47/130) | ||
| 433.846 | | 433.846 | ||
| [[9/7]] ( | | [[9/7]] (−1.238{{c}}) | ||
|- | |- | ||
| 7 (54/130) | | 7 (54/130) | ||
| 498.462 | | 498.462 | ||
| [[4/3]] (+0.417 | | [[4/3]] (+0.417{{c}}) | ||
|- | |- | ||
| 13 (67/130) | | 13 (67/130) | ||
| 618.462 | | 618.462 | ||
| [[10/7]] (+0.974 | | [[10/7]] (+0.974{{c}}) | ||
|- | |- | ||
| 9 (76/130) | | 9 (76/130) | ||
| 701.538 | | 701.538 | ||
| [[3/2]] ( | | [[3/2]] (−0.417{{c}}) | ||
|- | |- | ||
| 7 (83/130) | | 7 (83/130) | ||
| 766.154 | | 766.154 | ||
| [[14/9]] (+1.238 | | [[14/9]] (+1.238{{c}}) | ||
|- | |- | ||
| 13 (96/130) | | 13 (96/130) | ||
| 886.154 | | 886.154 | ||
| [[5/3]] (+1.795 | | [[5/3]] (+1.795{{c}}) | ||
|- | |- | ||
| 5 (101/130) | | 5 (101/130) | ||
| 932.308 | | 932.308 | ||
| [[12/7]] ( | | [[12/7]] (−0.821{{c}}) | ||
|- | |- | ||
| 13 (114/130) | | 13 (114/130) | ||
| 1052.308 | | 1052.308 | ||
| [[11/6]] (+2.945 | | [[11/6]] (+2.945{{c}}) | ||
|- | |- | ||
| 7 (121/130) | | 7 (121/130) | ||
| 1116.923 | | 1116.923 | ||
| [[21/11]] ( | | [[21/11]] (−2.540{{c}}) | ||
|- | |- | ||
| 9 (130/130) | | 9 (130/130) | ||
| 1200.000 | | 1200.000 | ||
| [[Octave]] (2/1, | | [[Octave]] (2/1, 0{{c}}) | ||
|} | |} | ||
== Instruments == | |||
[[Lumatone mapping for 130edo]] | |||
== Music == | == Music == | ||
* [ | {{Catrel|130edo tracks}} | ||
; [[birdshite stalactite]] | |||
* [https://www.youtube.com/watch?v=q41n5XI6YA4 ''wazzock''] (2024) | |||
; [[Sevish]] | |||
* [https://www.youtube.com/watch?v=30UQVYWnsDU Narrative Wars] | |||
; [[Gene Ward Smith]] | |||
* [https://www.archive.org/details/TheParadiseOfCantor ''The Paradise of Cantor''] [https://www.archive.org/download/TheParadiseOfCantor/cantor.mp3 play] (2006) | |||
[[Category:Harry]] | [[Category:Harry]] | ||
[[Category:Hemischis]] | [[Category:Hemischis]] | ||
[[Category:Hemiwürschmidt]] | [[Category:Hemiwürschmidt]] | ||
[[Category:Listen]] | |||
[[Category:Sesquiquartififths]] | [[Category:Sesquiquartififths]] | ||
Latest revision as of 10:27, 11 May 2025
← 129edo | 130edo | 131edo → |
130 equal divisions of the octave (abbreviated 130edo or 130ed2), also called 130-tone equal temperament (130tet) or 130 equal temperament (130et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 130 equal parts of about 9.23 ¢ each. Each step represents a frequency ratio of 21/130, or the 130th root of 2.
Theory
130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It is distinctly consistent to the 15-odd-limit and is the first nontrivial edo to be consistent in the 14-odd-prime-sum-limit. As an equal temperament, it tempers out 2401/2400, 3136/3125, 6144/6125, and 19683/19600 in the 7-limit; 243/242, 441/440, 540/539, and 4000/3993 in the 11-limit; and 351/350, 364/363, 676/675, 729/728, 1001/1000, 1575/1573, 1716/1715, 2080/2079, 4096/4095, and 4225/4224 in the 13-limit. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischis. It also can be used to tune the rank-3 temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.42 | +1.38 | +0.40 | +2.53 | -0.53 | -3.42 | -2.13 | -0.58 |
Relative (%) | +0.0 | -4.5 | +14.9 | +4.4 | +27.4 | -5.7 | -37.0 | -23.1 | -6.3 | |
Steps (reduced) |
130 (0) |
206 (76) |
302 (42) |
365 (105) |
450 (60) |
481 (91) |
531 (11) |
552 (32) |
588 (68) |
Harmonic | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.27 | -0.42 | -2.11 | -4.45 | -3.83 | -0.89 | +3.42 | +2.37 | +0.04 |
Relative (%) | +46.2 | -4.6 | -22.9 | -48.2 | -41.4 | -9.7 | +37.0 | +25.6 | +0.4 | |
Steps (reduced) |
632 (112) |
644 (124) |
677 (27) |
696 (46) |
705 (55) |
722 (72) |
745 (95) |
765 (115) |
771 (121) |
Subsets and supersets
Since 130 factors into 2 × 5 × 13, 130edo has subset edos 2, 5, 10, 13, 26, and 65.
260edo, which divides the edostep in two, provides a strong correction for the 29th harmonic.
Intervals
Degree | Cents | Approximate ratios |
---|---|---|
0 | 0.00 | 1/1 |
1 | 9.23 | 126/125, 144/143, 169/168, 176/175, 196/195, 225/224 |
2 | 18.46 | 78/77, 81/80, 91/90, 99/98, 100/99, 105/104, 121/120 |
3 | 27.69 | 56/55, 64/63, 65/64, 66/65 |
4 | 36.92 | 45/44, 49/48, 50/49, 55/54 |
5 | 46.15 | 36/35, 40/39 |
6 | 55.38 | 33/32 |
7 | 64.62 | 27/26, 28/27 |
8 | 73.85 | 25/24, 26/25 |
9 | 83.08 | 21/20, 22/21 |
10 | 92.31 | 135/128 |
11 | 101.54 | 35/33 |
12 | 110.77 | 16/15 |
13 | 120.00 | 15/14 |
14 | 129.23 | 14/13 |
15 | 138.46 | 13/12 |
16 | 147.69 | 12/11 |
17 | 156.92 | 35/32 |
18 | 166.15 | 11/10 |
19 | 175.38 | 72/65 |
20 | 184.62 | 10/9 |
21 | 193.85 | 28/25 |
22 | 203.08 | 9/8 |
23 | 212.31 | 44/39 |
24 | 221.54 | 25/22 |
25 | 230.77 | 8/7 |
26 | 240.00 | 55/48 |
27 | 249.23 | 15/13 |
28 | 258.46 | 64/55 |
29 | 267.69 | 7/6 |
30 | 276.92 | 75/64 |
31 | 286.15 | 13/11 |
32 | 295.38 | 32/27 |
33 | 304.62 | 25/21 |
34 | 313.85 | 6/5 |
35 | 323.08 | 65/54 |
36 | 332.31 | 40/33 |
37 | 341.54 | 39/32 |
38 | 350.77 | 11/9, 27/22 |
39 | 360.00 | 16/13 |
40 | 369.23 | 26/21 |
41 | 378.46 | 56/45 |
42 | 387.69 | 5/4 |
43 | 396.92 | 44/35 |
44 | 406.15 | 81/64 |
45 | 415.38 | 14/11 |
46 | 424.62 | 32/25 |
47 | 433.85 | 9/7 |
48 | 443.08 | 84/65, 128/99 |
49 | 452.31 | 13/10 |
50 | 461.54 | 64/49, 72/55 |
51 | 470.77 | 21/16 |
52 | 480.00 | 33/25 |
53 | 489.23 | 65/49 |
54 | 498.46 | 4/3 |
55 | 507.69 | 75/56 |
56 | 516.92 | 27/20 |
57 | 526.15 | 65/48 |
58 | 535.38 | 15/11 |
59 | 544.62 | 48/35 |
60 | 553.85 | 11/8 |
61 | 563.08 | 18/13 |
62 | 572.31 | 25/18 |
63 | 581.54 | 7/5 |
64 | 590.77 | 45/32 |
65 | 600.00 | 99/70, 140/99 |
… | … | … |
Notation
Sagittal notation
Steps | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Approximation to JI
Zeta peak index
Tuning | Strength | Octave (cents) | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per 8ve |
Step size (cents) |
Height | Integral | Gap | Size | Stretch | Consistent | Distinct | |
Tempered | Pure | |||||||||
796zpi | 130.00391 | 9.230492 | 10.355108 | 10.339572 | 1.634018 | 19.594551 | 1199.963905 | −0.036095 | 16 | 16 |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 3136/3125, 19683/19600 | [⟨130 206 302 365]] | −0.119 | 0.311 | 3.37 |
2.3.5.7.11 | 243/242, 441/440, 3136/3125, 4000/3993 | [⟨130 206 302 365 450]] | −0.241 | 0.370 | 4.02 |
2.3.5.7.11.13 | 243/242, 351/350, 364/363, 441/440, 3136/3125 | [⟨130 206 302 365 450 481]] | −0.177 | 0.367 | 3.98 |
Rank-2 temperaments
Note: temperaments supported by 65et are not included.
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 3\130 | 27.69 | 64/63 | Arch |
1 | 7\130 | 64.62 | 26/25 | Rectified hebrew |
1 | 9\130 | 83.08 | 21/20 | Sextilifourths |
1 | 19\130 | 175.38 | 72/65 | Sesquiquartififths / sesquart |
1 | 21\130 | 193.85 | 28/25 | Hemiwürschmidt |
1 | 27\130 | 249.23 | 15/13 | Hemischis |
1 | 41\130 | 378.46 | 56/45 | Subpental |
2 | 6\130 | 55.38 | 33/32 | Septisuperfourth |
2 | 9\130 | 83.08 | 21/20 | Harry |
2 | 17\130 | 156.92 | 35/32 | Bison |
2 | 19\130 | 175.38 | 448/405 | Bisesqui |
2 | 54\130 (11\130) |
498.46 (101.54) |
4/3 (35/33) |
Bischismic |
5 | 27\130 (1\130) |
249.23 (9.23) |
81/70 (176/175) |
Hemiquintile |
10 | 27\130 (1\130) |
249.23 (9.23) |
15/13 (176/175) |
Decoid |
10 | 54\130 (2\130) |
498.46 (18.46) |
4/3 (81/80) |
Decile |
26 | 54\130 (1\130) |
498.46 (9.23) |
4/3 (225/224) |
Bosonic |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
Step | Cents | Distance to the nearest JI interval (selected ratios) |
---|---|---|
13 (13/130) | 120.000 | 15/14 (+0.557 ¢) |
7 (20/130) | 184.615 | 10/9 (+2.211 ¢) |
9 (29/130) | 267.692 | 7/6 (+0,821 ¢) |
9 (38/130) | 350.769 | 11/9 (+3.361 ¢) |
9 (47/130) | 433.846 | 9/7 (−1.238 ¢) |
7 (54/130) | 498.462 | 4/3 (+0.417 ¢) |
13 (67/130) | 618.462 | 10/7 (+0.974 ¢) |
9 (76/130) | 701.538 | 3/2 (−0.417 ¢) |
7 (83/130) | 766.154 | 14/9 (+1.238 ¢) |
13 (96/130) | 886.154 | 5/3 (+1.795 ¢) |
5 (101/130) | 932.308 | 12/7 (−0.821 ¢) |
13 (114/130) | 1052.308 | 11/6 (+2.945 ¢) |
7 (121/130) | 1116.923 | 21/11 (−2.540 ¢) |
9 (130/130) | 1200.000 | Octave (2/1, 0 ¢) |
Instruments
Music
- See also: Category:130edo tracks
- wazzock (2024)
- The Paradise of Cantor play (2006)