2016edo

From Xenharmonic Wiki
Jump to navigation Jump to search

2016 equal division divides the octave into steps of 595 millicents, or 25/42 cent each.

2016 is a significantly composite number, with its divisors being 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 32, 36, 42, 48, 56, 63, 72, 84, 96, 112, 126, 144, 168, 224, 252, 288, 336, 504, 672, 1008.

Theory

Approximation of prime intervals in 2016 EDO
Prime number 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61
Error absolute (¢) +0.000 -0.169 -0.004 +0.222 -0.127 -0.051 -0.194 +0.106 +0.297 +0.185 +0.203 -0.154 +0.104 -0.208 -0.030 -0.290 -0.243 -0.218
relative (%) +0 -28 -1 +37 -21 -9 -33 +18 +50 +31 +34 -26 +18 -35 -5 -49 -41 -37
Steps (reduced) 2016 (0) 3195 (1179) 4681 (649) 5660 (1628) 6974 (926) 7460 (1412) 8240 (176) 8564 (500) 9120 (1056) 9794 (1730) 9988 (1924) 10502 (422) 10801 (721) 10939 (859) 11198 (1118) 11547 (1467) 11859 (1779) 11956 (1876)

2016 shares the mapping for 3 with 224edo, albeit with a 28 relative cent error. Using the 2016f val gives the same mapping for 13 as 224edo, and unleashes the full power of 224edo's 13 limit chords.