672edo
Jump to navigation
Jump to search
Prime factorization
25 × 3 × 7
Step size
1.78571¢
Fifth
393\672 (701.786¢) (→131\224)
Semitones (A1:m2)
63:51 (112.5¢ : 91.07¢)
Consistency limit
5
Distinct consistency limit
5
← 671edo | 672edo | 673edo → |
672 equal divisions of the octave (672edo), or 672-tone equal temperament (672tet), 672 equal temperament (672et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 672 equal parts of about 1.79 ¢ each.
Theory
672edo is a largely composite EDO. In addition, every third step of is is 224edo, which is a zeta edo.
In the 672c val it is a tuning for the hera temperament.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | -0.169 | -0.599 | +0.817 | +0.468 | +0.544 | +0.402 | +0.701 | +0.297 | +0.780 | -0.393 |
relative (%) | +0 | -9 | -34 | +46 | +26 | +30 | +22 | +39 | +17 | +44 | -22 | |
Steps (reduced) |
672 (0) |
1065 (393) |
1560 (216) |
1887 (543) |
2325 (309) |
2487 (471) |
2747 (59) |
2855 (167) |
3040 (352) |
3265 (577) |
3329 (641) |