673edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 672edo 673edo 674edo →
Prime factorization 673 (prime)
Step size 1.78306¢ 
Fifth 394\673 (702.526¢)
Semitones (A1:m2) 66:49 (117.7¢ : 87.37¢)
Consistency limit 5
Distinct consistency limit 5

673 equal divisions of the octave (abbreviated 673edo or 673ed2), also called 673-tone equal temperament (673tet) or 673 equal temperament (673et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 673 equal parts of about 1.78 ¢ each. Each step represents a frequency ratio of 21/673, or the 673rd root of 2.

Theory

673edo is consistent to the 5-odd-limit. Using the 2.3.5.17.19.41 subgroup, it tempers out 4624/4617, 131072/130815, 53136/53125, 10584064/10546875 and 19178125/19131876.

Odd harmonics

Approximation of odd harmonics in 673edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.571 +0.611 -0.624 -0.641 -0.352 -0.706 -0.602 +0.245 +0.258 -0.053 -0.637
Relative (%) +32.0 +34.2 -35.0 -36.0 -19.7 -39.6 -33.7 +13.8 +14.5 -3.0 -35.7
Steps
(reduced)
1067
(394)
1563
(217)
1889
(543)
2133
(114)
2328
(309)
2490
(471)
2629
(610)
2751
(59)
2859
(167)
2956
(264)
3044
(352)

Subsets and supersets

673edo is the 122nd prime EDO. 2019edo, which triples it, gives a good correction to the 7-limit alongside primes 13 and 23.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [1067 -673 [673 1067]] -0.1801 0.1801 10.10
2.3.5 [32 -7 -9, [19 -53 28 [673 1067 1563]] -0.2077 0.1521 8.53

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 31\673 55.275 16875/16384 Escapade

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Francium