385/384

From Xenharmonic Wiki
Revision as of 21:49, 16 December 2021 by Aura (talk | contribs)
Jump to navigation Jump to search
Interval information
Ratio 385/384
Factorization 2-7 × 3-1 × 5 × 7 × 11
Monzo [-7 -1 1 1 1
Size in cents 4.502562¢
Name keenanisma
FJS name [math]\displaystyle{ \text{P1}^{5,7,11} }[/math]
Special properties superparticular,
reduced
Tenney height (log2 nd) 17.1737
Weil height (log2 max(n, d)) 17.1774
Wilson height (sopfr(nd)) 40
Open this interval in xen-calc

The keenanisma is the 11-limit comma 385/384 = [-7 -1 1 1 1 of 4.503 cents. It is both the interval that separates 77/64 and 6/5 and the sum of the Schisma and the Symbiotic comma. Tempering it out leads to a temperament of the 11-limit rank four Keenanismic family.

In addition to equating 77/64 and 6/5, tempering out the keenanisma equates 48/35 with 11/8, 35/24 with 16/11, and 12/11 with 35/32; these are 7-limit intervals of low complexity, lying across from 1/1 in the hexanies 8/7-6/5-48/35-8/5-12/7-2 and 7/6-5/4-35/24-5/3-7/4-2. Hence keenanismic tempering allows the hexany to be viewed as containing some 11-limit harmony. The hexany is a fundamental construct in the 3D lattice of 7-limit pitch classes, the "deep holes" of the lattice as opposed to the "holes" represented by major and minor tetrads, and in terms of the cubic lattice of 7-limit tetrads, the otonal tetrad with root 11 (or 11/8) is represented by [-2 0 0]: 1-6/5-48/35-12/7-2. In terms of 7-limit chord relationships, this complexity is as low as possible for an 11-limit projection comma, equaling the [0 1 -1] of 56/55 and less than the other alternatives. Since keenanismic temperament is also quite accurate, this singles it out as being of special interest.

EDOs with patent vals tempering out the keenansima include 15, 19, 22, 31, 34, 37, 41, 53, 68, 72, 118, 159, 190, 212 and 284.

Characteristic of keenanismic tempering are the keenanismic tetrads, 385/384-tempered versions of 1-5/4-3/2-12/7, 1-5/4-10/7-12/7, 1-6/5-3/2-7/4, 1-5/4-16/11-7/4, and 1-14/11-16/11-7/4. These are essentially tempered dyadic chords, where every dyad of the chord is a keenanismic tempered version of an interval of the 11-odd-limit tonality diamond, and hence regarded as an 11-odd-limit consonance.

See also