User:Ganaram inukshuk/Sandbox
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Infobox test
↖ 4L 1s | ↑ 5L 1s | 6L 1s ↗ |
← 4L 2s | 5L 2s | 6L 2s → |
↙ 4L 3s | ↓ 5L 3s | 6L 3s ↘ |
┌╥╥╥┬╥╥┬┐ │║║║│║║││ │││││││││ └┴┴┴┴┴┴┴┘
sLLsLLL
See side. Preparation for making mos pages.
Collapsed and equalized fields are the following: denote the bright generator as a substring as the brightest mode. Collapsed is the number of L's in the string, and equalized is the length of the string.
Math symbols test
Isolated symbols
[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]
Sample text
Pulled from muddle page.
Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.
The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.
Interval and degree tables
The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.
Mode | UDP | Rotational order | mosunison | 1-mosstep | 2-mosstep | 3-mosstep | 4-mosstep | 5-mosstep | 6-mosstep | mosoctave |
---|---|---|---|---|---|---|---|---|---|---|
LssLsss | 6|0 | 0 | 0 | L | L+s | L+2s | 2L+2s | 2L+3s | 2L+4s | 2L+5s |
LsssLss | 5|1 | 3 | 0 | L | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLssLss | 4|2 | 6 | 0 | s | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLsssLs | 3|3 | 2 | 0 | s | L+s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLssLs | 2|4 | 5 | 0 | s | 2s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLsssL | 1|5 | 1 | 0 | s | 2s | L+2s | L+3s | L+4s | L+5s | 2L+5s |
sssLssL | 0|6 | 4 | 0 | s | 2s | 3s | L+3s | L+4s | L+5s | 2L+5s |
Mode | UDP | Rotational order | 0-mosdegree | 1-mosdegree | 2-mosdegree | 3-mosdegree | 4-mosdegree | 5-mosdegree | 6-mosdegree | 7-mosdegree |
---|---|---|---|---|---|---|---|---|---|---|
LssLsss | 6|0 | 0 | perfect | major | major | perfect | augmented | major | major | perfect |
LsssLss | 5|1 | 3 | perfect | major | major | perfect | perfect | major | major | perfect |
sLssLss | 4|2 | 6 | perfect | minor | major | perfect | perfect | major | major | perfect |
sLsssLs | 3|3 | 2 | perfect | minor | major | perfect | perfect | minor | major | perfect |
ssLssLs | 2|4 | 5 | perfect | minor | minor | perfect | perfect | minor | major | perfect |
ssLsssL | 1|5 | 1 | perfect | minor | minor | perfect | perfect | minor | minor | perfect |
sssLssL | 0|6 | 4 | perfect | minor | minor | diminished | perfect | minor | minor | perfect |
Note: don't merge cells on a table with sorting.
Mode | Mode name | UDP | Rotational order | mosunison | 1-mosstep | 2-mosstep | 3-mosstep | 4-mosstep | 5-mosstep | 6-mosstep | mosoctave |
---|---|---|---|---|---|---|---|---|---|---|---|
LssLsss | antilocrian | 6|0 | 0 | 0 | L | L+s | L+2s | 2L+2s | 2L+3s | 2L+4s | 2L+5s |
LsssLss | antiphrygian | 5|1 | 3 | 0 | L | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLssLss | anti-aeolian | 4|2 | 6 | 0 | s | L+s | L+2s | L+3s | 2L+3s | 2L+4s | 2L+5s |
sLsssLs | antidorian | 3|3 | 2 | 0 | s | L+s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLssLs | antimixolydian | 2|4 | 5 | 0 | s | 2s | L+2s | L+3s | L+4s | 2L+4s | 2L+5s |
ssLsssL | anti-ionian | 1|5 | 1 | 0 | s | 2s | L+2s | L+3s | L+4s | L+5s | 2L+5s |
sssLssL | antilydian | 0|6 | 4 | 0 | s | 2s | 3s | L+3s | L+4s | L+5s | 2L+5s |
Mode | Mode name | UDP | Rotational order | 0-mosdegree | 1-mosdegree | 2-mosdegree | 3-mosdegree | 4-mosdegree | 5-mosdegree | 6-mosdegree | 7-mosdegree |
---|---|---|---|---|---|---|---|---|---|---|---|
LssLsss | antilocrian | 6|0 | 0 | perfect | major | major | perfect | augmented | major | major | perfect |
LsssLss | antiphrygian | 5|1 | 3 | perfect | major | major | perfect | perfect | major | major | perfect |
sLssLss | anti-aeolian | 4|2 | 6 | perfect | minor | major | perfect | perfect | major | major | perfect |
sLsssLs | antidorian | 3|3 | 2 | perfect | minor | major | perfect | perfect | minor | major | perfect |
ssLssLs | antimixolydian | 2|4 | 5 | perfect | minor | minor | perfect | perfect | minor | major | perfect |
ssLsssL | anti-ionian | 1|5 | 1 | perfect | minor | minor | perfect | perfect | minor | minor | perfect |
sssLssL | antilydian | 0|6 | 4 | perfect | minor | minor | diminished | perfect | minor | minor | perfect |
Alternate mos tables
Pattern | Number of notes | Number of periods | Name | Prefix |
---|---|---|---|---|
1L 1s | 2 | 1 | trivial | triv- |
1L 1s | 2 | 1 | monowood | monowd- |
1L 2s | 3 | 1 | antrial | atri- |
2L 1s | 3 | 1 | trial | tri- |
1L 3s | 4 | 1 | antetric | atetra- |
2L 2s | 4 | 2 | biwood | biwd- |
3L 1s | 4 | 1 | tetric | tetra- |
1L 4s | 5 | 1 | pedal | ped- |
2L 3s | 5 | 1 | pentic | pent- |
3L 2s | 5 | 1 | antipentic | apent- |
4L 1s | 5 | 1 | manual | manu- |
1L 5s | 6 | 1 | antimachinoid | amech- |
2L 4s | 6 | 2 | anticitric | acitro- |
3L 3s | 6 | 3 | triwood | triwd- |
4L 2s | 6 | 2 | citric | citro- |
5L 1s | 6 | 1 | machinoid | mech- |
1L 6s | 7 | 1 | onyx | on- |
2L 5s | 7 | 1 | antidiatonic | pel- |
3L 4s | 7 | 1 | mosh | mosh- |
4L 3s | 7 | 1 | smitonic | smi- |
5L 2s | 7 | 1 | diatonic | none |
6L 1s | 7 | 1 | arch(a)eotonic | arch- |
1L 7s | 8 | 1 | antipine | apine- |
2L 6s | 8 | 2 | antiekic | anek- |
3L 5s | 8 | 1 | checkertonic | check- |
4L 4s | 8 | 4 | tetrawood; diminished | tetwd- |
5L 3s | 8 | 1 | oneirotonic | neiro- |
6L 2s | 8 | 2 | ekic | ek- |
7L 1s | 8 | 1 | pine | pine- |
1L 8s | 9 | 1 | antisubneutralic | ablu- |
2L 7s | 9 | 1 | balzano | bal- /bæl/ |
3L 6s | 9 | 3 | tcherepnin | cher- |
4L 5s | 9 | 1 | gramitonic | gram- |
5L 4s | 9 | 1 | semiquartal | cthon- |
6L 3s | 9 | 3 | hyrulic | hyru- |
7L 2s | 9 | 1 | superdiatonic | arm- |
8L 1s | 9 | 1 | subneutralic | blu- |
1L 9s | 10 | 1 | antisinatonic | asina- |
2L 8s | 10 | 2 | jaric | jara- |
3L 7s | 10 | 1 | sephiroid | seph- |
4L 6s | 10 | 2 | lime | lime- |
5L 5s | 10 | 5 | pentawood | penwd- |
6L 4s | 10 | 2 | lemon | lem- |
7L 3s | 10 | 1 | dicoid /'daɪkɔɪd/ | dico- |
8L 2s | 10 | 2 | taric | tara- |
9L 1s | 10 | 1 | sinatonic | sina- |
Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)
Generator | Bright gen. | Dark gen. | L | s | L/s | Ranges of mosses | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
1\2 | 600.000 | 600.000 | 1 | 1 | 1.000 | ||||||
6\11 | 654.545 | 545.455 | 6 | 5 | 1.200 | 2L 5s range (includes 2L 7s and 7L 2s) | |||||
5\9 | 666.667 | 533.333 | 5 | 4 | 1.250 | ||||||
9\16 | 675.000 | 525.000 | 9 | 7 | 1.286 | ||||||
4\7 | 685.714 | 514.286 | 4 | 3 | 1.333 | Basic 2L 3s | |||||
11\19 | 694.737 | 505.263 | 11 | 8 | 1.375 | 5L 2s range (includes 7L 5s and 5L 7s) | |||||
7\12 | 700.000 | 500.000 | 7 | 5 | 1.400 | ||||||
10\17 | 705.882 | 494.118 | 10 | 7 | 1.429 | ||||||
3\5 | 720.000 | 480.000 | 3 | 2 | 1.500 | Basic 2L 1s | |||||
11\18 | 733.333 | 466.667 | 11 | 7 | 1.571 | 5L 3s range | |||||
8\13 | 738.462 | 461.538 | 8 | 5 | 1.600 | ||||||
13\21 | 742.857 | 457.143 | 13 | 8 | 1.625 | ||||||
5\8 | 750.000 | 450.000 | 5 | 3 | 1.667 | Basic 3L 2s | |||||
12\19 | 757.895 | 442.105 | 12 | 7 | 1.714 | 3L 5s range | |||||
7\11 | 763.636 | 436.364 | 7 | 4 | 1.750 | ||||||
9\14 | 771.429 | 428.571 | 9 | 5 | 1.800 | ||||||
2\3 | 800.000 | 400.000 | 2 | 1 | 2.000 | Basic 1L 1s (dividing line between 2L 1s and 1L 2s) | |||||
9\13 | 830.769 | 369.231 | 9 | 4 | 2.250 | 3L 4s range (includes 3L 7s and 7L 3s) | |||||
7\10 | 840.000 | 360.000 | 7 | 3 | 2.333 | ||||||
12\17 | 847.059 | 352.941 | 12 | 5 | 2.400 | ||||||
5\7 | 857.143 | 342.857 | 5 | 2 | 2.500 | Basic 3L 1s | |||||
13\18 | 866.667 | 333.333 | 13 | 5 | 2.600 | 4L 3s range | |||||
8\11 | 872.727 | 327.273 | 8 | 3 | 2.667 | ||||||
11\15 | 880.000 | 320.000 | 11 | 4 | 2.750 | ||||||
3\4 | 900.000 | 300.000 | 3 | 1 | 3.000 | Basic 1L 2s | |||||
10\13 | 923.077 | 276.923 | 10 | 3 | 3.333 | Range of 1L 4s (includes 4L 5s and 5L 4s) | |||||
7\9 | 933.333 | 266.667 | 7 | 2 | 3.500 | ||||||
11\14 | 942.857 | 257.143 | 11 | 3 | 3.667 | ||||||
4\5 | 960.000 | 240.000 | 4 | 1 | 4.000 | Basic 1L 4s | |||||
9\11 | 981.818 | 218.182 | 9 | 2 | 4.500 | Range of 4L 1s (includes 5L 1s and 1L 5s) | |||||
5\6 | 1000.000 | 200.000 | 5 | 1 | 5.000 | ||||||
6\7 | 1028.571 | 171.429 | 6 | 1 | 6.000 | ||||||
1\1 | 1200.000 | 0.000 | 1 | 0 | → inf |
SB tree
As a manually-made table
Ratio |
---|
1/1 |
2/1 |
1/0 |
Using the SB module
Ratios |
---|
1/1 |
7/6 |
6/5 |
5/4 |
4/3 |
7/5 |
3/2 |
8/5 |
5/3 |
7/4 |
2/1 |
7/3 |
5/2 |
8/3 |
3/1 |
7/2 |
4/1 |
5/1 |
6/1 |
7/1 |
1/0 |