User:Ganaram inukshuk/Sandbox

From Xenharmonic Wiki
Jump to navigation Jump to search

This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Math symbols test

Isolated symbols

[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]

Sample text

Pulled from muddle page.

Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.

The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.

Interval and degree tables

The following two tables were made using a custom program (dubbed Moscalc and Modecalc) whose output is formatted for use with MediaWiki.

Intervals of 2L 5s for each mode
Mode UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s


Degrees of 2L 5s for each mode
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect major major perfect perfect major major perfect
sLssLss 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL 0|6 4 perfect minor minor diminished perfect minor minor perfect

Note: don't merge cells on a table with sorting.

Intervals of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss antilocrian 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss antiphrygian 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss anti-aeolian 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs antidorian 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs antimixolydian 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL anti-ionian 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL antilydian 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s
Degrees of 2L 5s for each mode (with mode names)
Mode Mode name UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss antilocrian 6|0 0 perfect major major perfect augmented major major perfect
LsssLss antiphrygian 5|1 3 perfect major major perfect perfect major major perfect
sLssLss anti-aeolian 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs antidorian 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs antimixolydian 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL anti-ionian 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL antilydian 0|6 4 perfect minor minor diminished perfect minor minor perfect

Alternate mos tables

Pattern Number of notes Number of periods Name Prefix
1L 1s 2 1 trivial triv-
1L 1s 2 1 monowood monowd-
1L 2s 3 1 antrial atri-
2L 1s 3 1 trial tri-
1L 3s 4 1 antetric atetra-
2L 2s 4 2 biwood biwd-
3L 1s 4 1 tetric tetra-
1L 4s 5 1 pedal ped-
2L 3s 5 1 pentic pent-
3L 2s 5 1 antipentic apent-
4L 1s 5 1 manual manu-
1L 5s 6 1 antimachinoid amech-
2L 4s 6 2 anticitric acitro-
3L 3s 6 3 triwood triwd-
4L 2s 6 2 citric citro-
5L 1s 6 1 machinoid mech-
1L 6s 7 1 onyx on-
2L 5s 7 1 antidiatonic pel-
3L 4s 7 1 mosh mosh-
4L 3s 7 1 smitonic smi-
5L 2s 7 1 diatonic none
6L 1s 7 1 arch(a)eotonic arch-
1L 7s 8 1 antipine apine-
2L 6s 8 2 antiekic anek-
3L 5s 8 1 checkertonic check-
4L 4s 8 4 tetrawood; diminished tetwd-
5L 3s 8 1 oneirotonic neiro-
6L 2s 8 2 ekic ek-
7L 1s 8 1 pine pine-
1L 8s 9 1 antisubneutralic ablu-
2L 7s 9 1 balzano bal- /bæl/
3L 6s 9 3 tcherepnin cher-
4L 5s 9 1 gramitonic gram-
5L 4s 9 1 semiquartal cthon-
6L 3s 9 3 hyrulic hyru-
7L 2s 9 1 superdiatonic arm-
8L 1s 9 1 subneutralic blu-
1L 9s 10 1 antisinatonic asina-
2L 8s 10 2 jaric jara-
3L 7s 10 1 sephiroid seph-
4L 6s 10 2 lime lime-
5L 5s 10 5 pentawood penwd-
6L 4s 10 2 lemon lem-
7L 3s 10 1 dicoid /'daɪkɔɪd/ dico-
8L 2s 10 2 taric tara-
9L 1s 10 1 sinatonic sina-

Scale trees of 1L 1s, 1L 2s, and 2L 1s (sandbox)

Generator Bright gen. Dark gen. L s L/s Ranges of mosses
1\2 600.000 600.000 1 1 1.000
6\11 654.545 545.455 6 5 1.200 2L 5s range (includes 2L 7s and 7L 2s)
5\9 666.667 533.333 5 4 1.250
9\16 675.000 525.000 9 7 1.286
4\7 685.714 514.286 4 3 1.333 Basic 2L 3s
11\19 694.737 505.263 11 8 1.375 5L 2s range (includes 7L 5s and 5L 7s)
7\12 700.000 500.000 7 5 1.400
10\17 705.882 494.118 10 7 1.429
3\5 720.000 480.000 3 2 1.500 Basic 2L 1s
11\18 733.333 466.667 11 7 1.571 5L 3s range
8\13 738.462 461.538 8 5 1.600
13\21 742.857 457.143 13 8 1.625
5\8 750.000 450.000 5 3 1.667 Basic 3L 2s
12\19 757.895 442.105 12 7 1.714 3L 5s range
7\11 763.636 436.364 7 4 1.750
9\14 771.429 428.571 9 5 1.800
2\3 800.000 400.000 2 1 2.000 Basic 1L 1s (dividing line between 2L 1s and 1L 2s)
9\13 830.769 369.231 9 4 2.250 3L 4s range (includes 3L 7s and 7L 3s)
7\10 840.000 360.000 7 3 2.333
12\17 847.059 352.941 12 5 2.400
5\7 857.143 342.857 5 2 2.500 Basic 3L 1s
13\18 866.667 333.333 13 5 2.600 4L 3s range
8\11 872.727 327.273 8 3 2.667
11\15 880.000 320.000 11 4 2.750
3\4 900.000 300.000 3 1 3.000 Basic 1L 2s
10\13 923.077 276.923 10 3 3.333 Range of 1L 4s (includes 4L 5s and 5L 4s)
7\9 933.333 266.667 7 2 3.500
11\14 942.857 257.143 11 3 3.667
4\5 960.000 240.000 4 1 4.000 Basic 1L 4s
9\11 981.818 218.182 9 2 4.500 Range of 4L 1s (includes 5L 1s and 1L 5s)
5\6 1000.000 200.000 5 1 5.000
6\7 1028.571 171.429 6 1 6.000
1\1 1200.000 0.000 1 0 → inf

Module and template sandbox

Using Module:SB tree

Ratios
1/1
7/6
6/5
5/4
4/3
7/5
3/2
8/5
5/3
7/4
2/1
7/3
5/2
8/3
3/1
7/2
4/1
5/1
6/1
7/1
1/0

Using Module:MOS modesLua error in Module:MOS_modes at line 118: attempt to get length of field 'Mode Names' (a nil value). Example use of Template:MOS modes

Lua error in Module:MOS at line 46: attempt to index local 'equave' (a nil value). Lua error in Module:MOS at line 46: attempt to index local 'equave' (a nil value).

Template text sandbox

This section is to test out possible wordings for text-based templates, such as for the edo intro template.

Mos intro text

nxL nys <p/q> is a p/q-equivalent moment-of-symmetry (or mos) consisting of x large step and y small steps that repeats n times per equivalence interval. This mos is generated using an interval ranging from g_equalized to g_collapsed cents.

The wording is meant to be as general as possible. Possible changes and additions are made based on the mos and equivalence interval.

  • Changes according to the mos:
    • If the mos nxL nys <p/q> is a multi-period mos (n is greater than 1):
      • The words multi-period are added after a p/q-equivalent.
      • The words repeats n times per equivalence interval continues with the words , or once at the period of period_cents.
      • The words repeats n times has n be replaced by the value of n itself.
        • If n is 2, then the wording becomes repeats twice.
    • If the mos nxL nys <p/q> is a single-period mos (n is exactly 1):
      • The words repeats n times is replaced with repeats at the.
  • Changes according to the equivalence interval:
    • If the equivalence interval p/q is 2/1:
      • The mos nxL nys <p/q> is replaced with nxL nys, as the absence of an equivalence interval typically refers to an octave-equivalent scale.
      • The words a p/q-equivalent are replaced with octave-equivalent.
      • The words per equivalence interval is replaced with every octave.
  • Values:
    • period_cents is the cent value of the period and is expressed both as edsteps and cent values. This value is added only for multi-period mosses.
    • g_equalized and g_collapsed refer to the sizes of the generator, expressed both as edsteps and cent values. These should be calculated using the mos module.
  • Links to other pages should also be included, mainly "moment-of-symmetry".