186zpi
186 zeta peak index (abbreviated 186zpi), is the equal-step tuning system obtained from the 186st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 0.241233 | 11.567493 | 41edo | 1190.02021518380 | 2 | 2 |
Theory
Record on the Riemann zeta function with primes 2 and 3 removed
186zpi sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is 125zpi and the next one is 565zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with primes 2 and 3 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
125zpi | 30.6006474885974 | 39.2148564976330 | 1.468164 | 31edo | 1215.66055142662 | 30.5974484926723 | 39.2189564527704 | 3.769318 | 31edo | 1215.78765003588 |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 41edo | 1190.02021518380 | 41.3477989230936 | 29.0221010852836 | 4.469823 | 41edo | 1189.90614449663 |
565zpi | 98.6209462564991 | 12.1678005084130 | 2.305330 | 99edo | 1204.61225033289 | 98.6257548378926 | 12.1672072570942 | 4.883729 | 99edo | 1204.55351845233 |
Harmonic series
As a non-octave, non-tritave scale, 186zpi features a well-balanced harmonic series segment from 5 to 9, and performs exceptionally well across all prime harmonics from 5 to 23, with the exception of 19.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.0 | +13.7 | +9.1 | +0.1 | +3.7 | -1.9 | -0.9 | -1.7 | -9.9 | -0.8 | -6.3 | +0.3 | -11.9 | +13.8 | -10.9 |
Relative (%) | -34.4 | +47.2 | +31.2 | +0.3 | +12.8 | -6.7 | -3.2 | -5.7 | -34.1 | -2.6 | -21.6 | +1.0 | -41.1 | +47.4 | -37.5 | |
Step | 41 | 66 | 83 | 96 | 107 | 116 | 124 | 131 | 137 | 143 | 148 | 153 | 157 | 162 | 165 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.2 | -11.6 | +10.9 | +9.1 | +11.7 | -10.7 | -0.6 | +12.8 | +0.2 | -9.7 | +12.0 | +7.1 | +4.4 | +3.8 | +5.1 | +8.2 |
Relative (%) | +0.9 | -40.1 | +37.4 | +31.5 | +40.5 | -37.0 | -2.1 | +44.0 | +0.5 | -33.4 | +41.5 | +24.6 | +15.2 | +13.0 | +17.5 | +28.1 | |
Step | 169 | 172 | 176 | 179 | 182 | 184 | 187 | 190 | 192 | 194 | 197 | 199 | 201 | 203 | 205 | 207 |
Approximation of EDONOIs
Based on harmonics with less than 1 cent of error, 186zpi can be approximated by 96ed5, 124ed8 (or every 3 steps of 124edo), 143ed11, 153ed13, 169ed17, 187ed23, and 192ed25.
Intervals and notation
There are several ways to approach notation. The simplest method involves using the notations from 41edo. However, this method does not preserve octave compression when rendered by notation software. To address this issue, consider using the ups and downs notation from 124edo at every 3-degree step (i.e., the edonoi 124ed8).
It is important to note that 124edo provides two possible fifths (3/2). The closest one, from the val <124 197] (i.e. the patent val), is the fifth mapped to 73 steps of 124edo with a relative error of +46.465%. The second closest, from the val <124 196] (i.e. the val 124b), is mapped to 72 steps of 124edo with a relative error of -53.535%. This second fifth, which appears in 124ed8, also corresponds to the fifth of 31edo. Therefore, we choose to use the ups and downs notation of the 124b temperament, denoted as <124 196].
JI ratios are comprised of 32-integer limit ratios,
| |||
Step | Cents | Ratios | |
---|---|---|---|
0 | 0.000 | P1 | |
1 | 29.025 | ^^^1 | |
2 | 58.050 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24 | vvA1, ^^d2 |
3 | 87.075 | 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17 | vvvm2 |
4 | 116.100 | 17/16, 16/15, 31/29, 15/14, 29/27, 14/13 | m2 |
5 | 145.124 | 27/25, 13/12, 25/23, 12/11, 23/21 | ^^^m2 |
6 | 174.149 | 11/10, 32/29, 21/19, 31/28, 10/9 | vvM2 |
7 | 203.174 | 29/26, 19/17, 28/25, 9/8, 26/23, 17/15 | ^M2 |
8 | 232.199 | 25/22, 8/7, 31/27, 23/20 | ^4M2 |
9 | 261.224 | 15/13, 22/19, 29/25, 7/6 | ^^^d3 |
10 | 290.249 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26 | vvm3 |
11 | 319.274 | 6/5, 29/24, 23/19 | ^m3 |
12 | 348.299 | 17/14, 28/23, 11/9, 27/22, 16/13 | ~3 |
13 | 377.323 | 21/17, 26/21, 31/25, 5/4 | vM3 |
14 | 406.348 | 29/23, 24/19, 19/15, 14/11 | ^^M3 |
15 | 435.373 | 23/18, 32/25, 9/7, 31/24, 22/17 | vvvA3 |
16 | 464.398 | 13/10, 30/23, 17/13, 21/16, 25/19, 29/22 | v44 |
17 | 493.423 | 4/3 | v4 |
18 | 522.448 | 31/23, 27/20, 23/17, 19/14, 15/11 | ^^4 |
19 | 551.473 | 26/19, 11/8, 29/21, 18/13 | vvvA4 |
20 | 580.498 | 25/18, 32/23, 7/5, 31/22 | A4 |
21 | 609.523 | 24/17, 17/12, 27/19, 10/7 | vd5 |
22 | 638.547 | 23/16, 13/9, 29/20, 16/11 | ^^d5 |
23 | 667.572 | 19/13, 22/15, 25/17, 28/19, 31/21 | vvv5 |
24 | 696.597 | 3/2 | P5 |
25 | 725.622 | 32/21, 29/19, 26/17, 23/15 | ^^^5 |
26 | 754.647 | 20/13, 17/11, 31/20, 14/9 | vvA5, ^^d6 |
27 | 783.672 | 25/16, 11/7, 30/19, 19/12 | vvvm6 |
28 | 812.697 | 27/17, 8/5, 29/18 | m6 |
29 | 841.722 | 21/13, 13/8, 31/19, 18/11 | ^^^m6 |
30 | 870.746 | 23/14, 28/17, 5/3 | vvM6 |
31 | 899.771 | 32/19, 27/16, 22/13 | ^M6 |
32 | 928.796 | 17/10, 29/17, 12/7, 31/18 | ^4M6 |
33 | 957.821 | 19/11, 26/15, 7/4 | ^^^d7 |
34 | 986.846 | 30/17, 23/13, 16/9 | vvm7 |
35 | 1015.871 | 25/14, 9/5, 29/16 | ^m7 |
36 | 1044.896 | 20/11, 31/17, 11/6 | ~7 |
37 | 1073.921 | 24/13, 13/7, 28/15, 15/8 | vM7 |
38 | 1102.946 | 32/17, 17/9, 19/10 | ^^M7 |
39 | 1131.970 | 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | vvvA7 |
40 | 1160.995 | v41 +1oct | |
41 | 1190.020 | 2/1 | v1 +1oct |
42 | 1219.045 | ^^1 +1oct | |
43 | 1248.070 | 31/15, 29/14 | vvvA1 +1oct |
44 | 1277.095 | 27/13, 25/12, 23/11, 21/10 | v4m2 +1oct |
45 | 1306.120 | 19/9, 17/8, 32/15, 15/7 | vm2 +1oct |
46 | 1335.145 | 28/13, 13/6 | ^^m2 +1oct |
47 | 1364.170 | 24/11, 11/5, 31/14 | vvvM2 +1oct |
48 | 1393.194 | 20/9, 29/13, 9/4 | M2 +1oct |
49 | 1422.219 | 25/11, 16/7 | ^^^M2 +1oct |
50 | 1451.244 | 23/10, 30/13 | vvA2 +1oct, ^^d3 +1oct |
51 | 1480.269 | 7/3, 26/11 | vvvm3 +1oct |
52 | 1509.294 | 19/8, 31/13, 12/5 | m3 +1oct |
53 | 1538.319 | 29/12, 17/7, 22/9 | ^^^m3 +1oct |
54 | 1567.344 | 27/11, 32/13 | vvM3 +1oct |
55 | 1596.369 | 5/2 | ^M3 +1oct |
56 | 1625.393 | 28/11, 23/9, 18/7 | ^4M3 +1oct |
57 | 1654.418 | 31/12, 13/5 | ^^^d4 +1oct |
58 | 1683.443 | 21/8, 29/11 | vv4 +1oct |
59 | 1712.468 | 8/3, 27/10 | ^4 +1oct |
60 | 1741.493 | 19/7, 30/11, 11/4 | ~4 +1oct |
61 | 1770.518 | 25/9, 14/5 | vA4 +1oct |
62 | 1799.543 | 31/11, 17/6 | ^^A4 +1oct, vvd5 +1oct |
63 | 1828.568 | 20/7, 23/8, 26/9 | ^d5 +1oct |
64 | 1857.593 | 29/10, 32/11 | ~5 +1oct |
65 | 1886.617 | v5 +1oct | |
66 | 1915.642 | 3/1 | ^^5 +1oct |
67 | 1944.667 | 31/10 | vvvA5 +1oct |
68 | 1973.692 | 28/9, 25/8, 22/7 | v4m6 +1oct |
69 | 2002.717 | 19/6, 16/5 | vm6 +1oct |
70 | 2031.742 | 29/9, 13/4 | ^^m6 +1oct |
71 | 2060.767 | 23/7 | vvvM6 +1oct |
72 | 2089.792 | 10/3 | M6 +1oct |
73 | 2118.816 | 27/8, 17/5, 24/7 | ^^^M6 +1oct |
74 | 2147.841 | 31/9 | vvA6 +1oct, ^^d7 +1oct |
75 | 2176.866 | 7/2 | vvvm7 +1oct |
76 | 2205.891 | 32/9, 25/7, 18/5 | m7 +1oct |
77 | 2234.916 | 29/8, 11/3 | ^^^m7 +1oct |
78 | 2263.941 | 26/7 | vvM7 +1oct |
79 | 2292.966 | 15/4 | ^M7 +1oct |
80 | 2321.991 | 19/5, 23/6 | ^4M7 +1oct |
81 | 2351.016 | 27/7, 31/8 | ^^^d1 +2oct |
82 | 2380.040 | vv1 +2oct | |
83 | 2409.065 | 4/1 | ^1 +2oct |
84 | 2438.090 | ^41 +2oct | |
85 | 2467.115 | 29/7, 25/6 | ^^^d2 +2oct |
86 | 2496.140 | 21/5, 17/4 | vvm2 +2oct |
87 | 2525.165 | 30/7, 13/3 | ^m2 +2oct |
88 | 2554.190 | 22/5 | ~2 +2oct |
89 | 2583.215 | 31/7 | vM2 +2oct |
90 | 2612.239 | 9/2 | ^^M2 +2oct |
91 | 2641.264 | 32/7, 23/5 | vvvA2 +2oct |
92 | 2670.289 | 14/3 | v4m3 +2oct |
93 | 2699.314 | 19/4 | vm3 +2oct |
94 | 2728.339 | 24/5, 29/6 | ^^m3 +2oct |
95 | 2757.364 | vvvM3 +2oct | |
96 | 2786.389 | 5/1 | M3 +2oct |
97 | 2815.414 | ^^^M3 +2oct | |
98 | 2844.439 | 31/6, 26/5 | vvA3 +2oct, ^^d4 +2oct |
99 | 2873.463 | 21/4 | vvv4 +2oct |
100 | 2902.488 | 16/3 | P4 +2oct |
101 | 2931.513 | 27/5 | ^^^4 +2oct |
102 | 2960.538 | 11/2 | vvA4 +2oct |
103 | 2989.563 | 28/5, 17/3 | ^A4 +2oct |
104 | 3018.588 | 23/4 | d5 +2oct |
105 | 3047.613 | 29/5 | ^^^d5 +2oct |
106 | 3076.638 | vv5 +2oct | |
107 | 3105.663 | 6/1 | ^5 +2oct |
108 | 3134.687 | ^45 +2oct | |
109 | 3163.712 | 31/5, 25/4 | ^^^d6 +2oct |
110 | 3192.737 | 19/3 | vvm6 +2oct |
111 | 3221.762 | 32/5 | ^m6 +2oct |
112 | 3250.787 | 13/2 | ~6 +2oct |
113 | 3279.812 | 20/3 | vM6 +2oct |
114 | 3308.837 | 27/4 | ^^M6 +2oct |
115 | 3337.862 | vvvA6 +2oct | |
116 | 3366.886 | 7/1 | v4m7 +2oct |
117 | 3395.911 | vm7 +2oct | |
118 | 3424.936 | 29/4 | ^^m7 +2oct |
119 | 3453.961 | 22/3 | vvvM7 +2oct |
120 | 3482.986 | 15/2 | M7 +2oct |
121 | 3512.011 | 23/3 | ^^^M7 +2oct |
122 | 3541.036 | 31/4 | vvA7 +2oct, ^^d1 +3oct |
123 | 3570.061 | vvv1 +3oct | |
124 | 3599.086 | 8/1 | P1 +3oct |
125 | 3628.110 | ^^^1 +3oct | |
126 | 3657.135 | 25/3 | vvA1 +3oct, ^^d2 +3oct |
127 | 3686.160 | vvvm2 +3oct | |
128 | 3715.185 | 17/2 | m2 +3oct |
129 | 3744.210 | 26/3 | ^^^m2 +3oct |
130 | 3773.235 | vvM2 +3oct | |
131 | 3802.260 | 9/1 | ^M2 +3oct |
132 | 3831.285 | ^4M2 +3oct | |
133 | 3860.309 | 28/3 | ^^^d3 +3oct |
134 | 3889.334 | 19/2 | vvm3 +3oct |
135 | 3918.359 | 29/3 | ^m3 +3oct |
136 | 3947.384 | ~3 +3oct | |
137 | 3976.409 | 10/1 | vM3 +3oct |
138 | 4005.434 | ^^M3 +3oct | |
139 | 4034.459 | 31/3 | vvvA3 +3oct |
140 | 4063.484 | 21/2 | v44 +3oct |
141 | 4092.509 | 32/3 | v4 +3oct |
142 | 4121.533 | ^^4 +3oct | |
143 | 4150.558 | 11/1 | vvvA4 +3oct |
144 | 4179.583 | A4 +3oct | |
145 | 4208.608 | vd5 +3oct | |
146 | 4237.633 | 23/2 | ^^d5 +3oct |
147 | 4266.658 | vvv5 +3oct | |
148 | 4295.683 | 12/1 | P5 +3oct |
149 | 4324.708 | ^^^5 +3oct | |
150 | 4353.732 | vvA5 +3oct, ^^d6 +3oct | |
151 | 4382.757 | 25/2 | vvvm6 +3oct |
152 | 4411.782 | m6 +3oct | |
153 | 4440.807 | 13/1 | ^^^m6 +3oct |
154 | 4469.832 | vvM6 +3oct | |
155 | 4498.857 | 27/2 | ^M6 +3oct |
156 | 4527.882 | ^4M6 +3oct | |
157 | 4556.907 | 14/1 | ^^^d7 +3oct |
158 | 4585.932 | vvm7 +3oct | |
159 | 4614.956 | ^m7 +3oct | |
160 | 4643.981 | 29/2 | ~7 +3oct |
161 | 4673.006 | vM7 +3oct | |
162 | 4702.031 | 15/1 | ^^M7 +3oct |
163 | 4731.056 | 31/2 | vvvA7 +3oct |
164 | 4760.081 | v41 +4oct | |
165 | 4789.106 | 16/1 | v1 +4oct |
166 | 4818.131 | ^^1 +4oct | |
167 | 4847.156 | vvvA1 +4oct | |
168 | 4876.180 | v4m2 +4oct | |
169 | 4905.205 | 17/1 | vm2 +4oct |
170 | 4934.230 | ^^m2 +4oct | |
171 | 4963.255 | vvvM2 +4oct | |
172 | 4992.280 | 18/1 | M2 +4oct |
173 | 5021.305 | ^^^M2 +4oct | |
174 | 5050.330 | vvA2 +4oct, ^^d3 +4oct | |
175 | 5079.355 | vvvm3 +4oct | |
176 | 5108.379 | 19/1 | m3 +4oct |
177 | 5137.404 | ^^^m3 +4oct | |
178 | 5166.429 | vvM3 +4oct | |
179 | 5195.454 | 20/1 | ^M3 +4oct |
180 | 5224.479 | ^4M3 +4oct | |
181 | 5253.504 | ^^^d4 +4oct | |
182 | 5282.529 | 21/1 | vv4 +4oct |
183 | 5311.554 | ^4 +4oct | |
184 | 5340.579 | 22/1 | ~4 +4oct |
185 | 5369.603 | vA4 +4oct | |
186 | 5398.628 | ^^A4 +4oct, vvd5 +4oct | |
187 | 5427.653 | 23/1 | ^d5 +4oct |
188 | 5456.678 | ~5 +4oct | |
189 | 5485.703 | v5 +4oct | |
190 | 5514.728 | 24/1 | ^^5 +4oct |
191 | 5543.753 | vvvA5 +4oct | |
192 | 5572.778 | 25/1 | v4m6 +4oct |
193 | 5601.802 | vm6 +4oct | |
194 | 5630.827 | 26/1 | ^^m6 +4oct |
195 | 5659.852 | vvvM6 +4oct | |
196 | 5688.877 | M6 +4oct | |
197 | 5717.902 | 27/1 | ^^^M6 +4oct |
198 | 5746.927 | vvA6 +4oct, ^^d7 +4oct | |
199 | 5775.952 | 28/1 | vvvm7 +4oct |
200 | 5804.977 | m7 +4oct | |
201 | 5834.002 | 29/1 | ^^^m7 +4oct |
202 | 5863.026 | vvM7 +4oct | |
203 | 5892.051 | 30/1 | ^M7 +4oct |
204 | 5921.076 | ^4M7 +4oct | |
205 | 5950.101 | 31/1 | ^^^d1 +5oct |
206 | 5979.126 | vv1 +5oct | |
207 | 6008.151 | 32/1 | ^1 +5oct |
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 186zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) | Ups and Downs Notation |
---|---|---|---|
17/13 | 0.030 | 0.102 | |
5/1 | 0.075 | 0.259 | |
25/17 | 0.100 | 0.344 | |
25/13 | 0.129 | 0.446 | |
23/11 | 0.138 | 0.477 | |
25/1 | 0.150 | 0.517 | |
11/8 | 0.155 | 0.533 | |
17/5 | 0.175 | 0.602 | |
13/5 | 0.204 | 0.704 | |
17/1 | 0.250 | 0.861 | |
13/1 | 0.279 | 0.963 | |
9/7 | 0.289 | 0.996 | |
23/8 | 0.293 | 1.011 | |
23/1 | 0.621 | 2.140 | |
31/29 | 0.641 | 2.209 | |
30/29 | 0.642 | 2.211 | |
23/5 | 0.696 | 2.399 | |
29/6 | 0.717 | 2.470 | |
9/8 | 0.736 | 2.535 | |
11/1 | 0.760 | 2.617 | |
25/23 | 0.771 | 2.657 | |
11/5 | 0.835 | 2.876 | |
23/17 | 0.871 | 3.001 | |
21/19 | 0.881 | 3.037 | |
11/9 | 0.891 | 3.069 | |
23/13 | 0.901 | 3.103 | |
25/11 | 0.910 | 3.135 | |
8/1 | 0.914 | 3.151 | |
8/5 | 0.990 | 3.409 | |
17/11 | 1.009 | 3.478 | |
8/7 | 1.025 | 3.531 | |
23/9 | 1.029 | 3.546 | |
13/11 | 1.039 | 3.580 | |
25/8 | 1.065 | 3.668 | |
17/8 | 1.164 | 4.012 | |
27/19 | 1.171 | 4.033 | |
11/7 | 1.180 | 4.065 | |
13/8 | 1.194 | 4.114 | |
31/30 | 1.283 | 4.420 | |
23/7 | 1.318 | 4.542 | |
31/6 | 1.358 | 4.679 | |
9/1 | 1.650 | 5.686 | |
9/5 | 1.725 | 5.944 | |
20/19 | 1.726 | 5.947 | |
25/9 | 1.800 | 6.203 | |
19/4 | 1.801 | 6.205 | |
17/9 | 1.900 | 6.547 | |
24/19 | 1.906 | 6.568 | |
13/9 | 1.930 | 6.649 | |
7/1 | 1.939 | 6.682 | |
7/5 | 2.015 | 6.941 | |
31/28 | 2.060 | 7.099 | |
25/7 | 2.090 | 7.199 | |
17/7 | 2.189 | 7.543 | |
13/7 | 2.219 | 7.645 | |
21/20 | 2.607 | 8.984 | |
21/4 | 2.683 | 9.242 | |
29/28 | 2.702 | 9.308 | |
32/19 | 2.716 | 9.356 | |
19/3 | 2.821 | 9.719 | |
19/15 | 2.896 | 9.977 | |
27/20 | 2.897 | 9.980 | |
27/4 | 2.972 | 10.238 | |
32/31 | 3.085 | 10.630 | |
15/14 | 3.343 | 11.519 | |
14/3 | 3.418 | 11.777 | |
13/6 | 3.428 | 11.811 | |
17/6 | 3.458 | 11.913 | |
30/13 | 3.503 | 12.069 | |
30/17 | 3.533 | 12.171 | |
25/6 | 3.557 | 12.256 | |
32/21 | 3.597 | 12.393 | |
6/5 | 3.632 | 12.515 | |
6/1 | 3.708 | 12.774 | |
32/29 | 3.726 | 12.839 | |
28/19 | 3.741 | 12.887 | |
30/1 | 3.783 | 13.032 | |
32/27 | 3.886 | 13.389 | |
31/4 | 4.000 | 13.781 | |
31/20 | 4.075 | 14.039 | |
29/13 | 4.145 | 14.280 | |
29/17 | 4.174 | 14.382 | |
29/25 | 4.274 | 14.726 | |
23/6 | 4.329 | 14.914 | |
12/7 | 4.333 | 14.928 | |
29/5 | 4.349 | 14.985 | |
16/15 | 4.368 | 15.050 | |
30/23 | 4.404 | 15.172 | |
29/1 | 4.424 | 15.243 | |
16/3 | 4.443 | 15.309 | |
11/6 | 4.467 | 15.391 | |
22/15 | 4.523 | 15.583 | |
30/11 | 4.542 | 15.649 | |
20/3 | 4.547 | 15.666 | |
22/3 | 4.598 | 15.842 | |
4/3 | 4.622 | 15.924 | |
29/4 | 4.641 | 15.990 | |
15/4 | 4.697 | 16.183 | |
29/20 | 4.716 | 16.248 | |
31/13 | 4.786 | 16.489 | |
31/17 | 4.816 | 16.591 | |
28/27 | 4.911 | 16.920 | |
31/25 | 4.915 | 16.935 | |
31/5 | 4.990 | 17.194 | |
29/23 | 5.046 | 17.383 | |
31/1 | 5.066 | 17.452 | |
27/14 | 5.069 | 17.463 | |
29/11 | 5.184 | 17.860 | |
15/2 | 5.283 | 18.201 | |
29/8 | 5.339 | 18.394 | |
3/2 | 5.358 | 18.459 | |
10/3 | 5.433 | 18.718 | |
12/11 | 5.513 | 18.993 | |
32/3 | 5.536 | 19.075 | |
26/15 | 5.562 | 19.164 | |
32/15 | 5.612 | 19.334 | |
26/3 | 5.637 | 19.422 | |
7/6 | 5.647 | 19.456 | |
23/12 | 5.651 | 19.470 | |
31/23 | 5.687 | 19.592 | |
30/7 | 5.722 | 19.714 | |
31/19 | 5.801 | 19.986 | |
31/11 | 5.825 | 20.069 | |
31/8 | 5.980 | 20.603 | |
29/9 | 6.075 | 20.929 | |
27/16 | 6.094 | 20.994 | |
19/14 | 6.239 | 21.496 | |
27/22 | 6.248 | 21.528 | |
12/1 | 6.272 | 21.610 | |
12/5 | 6.347 | 21.869 | |
29/7 | 6.364 | 21.925 | |
21/16 | 6.383 | 21.991 | |
25/12 | 6.422 | 22.127 | |
29/19 | 6.442 | 22.195 | |
17/12 | 6.522 | 22.471 | |
19/18 | 6.528 | 22.492 | |
22/21 | 6.538 | 22.524 | |
13/12 | 6.552 | 22.573 | |
28/3 | 6.561 | 22.606 | |
28/15 | 6.637 | 22.865 | |
31/21 | 6.682 | 23.023 | |
31/9 | 6.716 | 23.138 | |
28/13 | 6.846 | 23.588 | |
28/17 | 6.876 | 23.690 | |
31/27 | 6.972 | 24.019 | |
28/25 | 6.976 | 24.034 | |
31/7 | 7.005 | 24.134 | |
27/2 | 7.008 | 24.145 | |
28/5 | 7.051 | 24.292 | |
27/10 | 7.083 | 24.404 | |
30/19 | 7.084 | 24.406 | |
28/1 | 7.126 | 24.551 | |
19/6 | 7.159 | 24.665 | |
19/16 | 7.264 | 25.027 | |
27/26 | 7.288 | 25.108 | |
21/2 | 7.297 | 25.141 | |
29/21 | 7.324 | 25.232 | |
21/10 | 7.372 | 25.400 | |
22/19 | 7.419 | 25.561 | |
26/21 | 7.577 | 26.104 | |
29/27 | 7.613 | 26.228 | |
31/24 | 7.707 | 26.554 | |
28/23 | 7.747 | 26.691 | |
26/7 | 7.761 | 26.739 | |
32/13 | 7.871 | 27.119 | |
28/11 | 7.886 | 27.168 | |
32/17 | 7.901 | 27.221 | |
10/7 | 7.965 | 27.443 | |
32/25 | 8.001 | 27.565 | |
7/2 | 8.040 | 27.702 | |
26/9 | 8.050 | 27.735 | |
32/5 | 8.076 | 27.824 | |
32/1 | 8.151 | 28.082 | |
19/2 | 8.179 | 28.178 | |
19/10 | 8.254 | 28.437 | |
10/9 | 8.254 | 28.439 | |
9/2 | 8.329 | 28.698 | |
29/24 | 8.348 | 28.763 | |
26/19 | 8.458 | 29.141 | |
31/3 | 8.622 | 29.705 | |
31/15 | 8.697 | 29.964 | |
32/23 | 8.772 | 30.222 | |
28/9 | 8.776 | 30.237 | |
13/4 | 8.786 | 30.270 | |
22/7 | 8.800 | 30.319 | |
17/4 | 8.815 | 30.372 | |
20/13 | 8.861 | 30.529 | |
20/17 | 8.891 | 30.631 | |
32/11 | 8.910 | 30.699 | |
25/4 | 8.915 | 30.716 | |
26/11 | 8.941 | 30.803 | |
16/7 | 8.955 | 30.852 | |
5/4 | 8.990 | 30.974 | |
4/1 | 9.065 | 31.233 | |
26/23 | 9.079 | 31.281 | |
22/9 | 9.089 | 31.315 | |
20/1 | 9.140 | 31.492 | |
11/10 | 9.145 | 31.508 | |
11/2 | 9.220 | 31.766 | |
16/9 | 9.244 | 31.848 | |
29/3 | 9.263 | 31.914 | |
23/10 | 9.284 | 31.985 | |
29/15 | 9.338 | 32.173 | |
23/2 | 9.359 | 32.243 | |
23/4 | 9.686 | 33.373 | |
18/7 | 9.691 | 33.387 | |
26/1 | 9.700 | 33.421 | |
23/20 | 9.762 | 33.632 | |
26/5 | 9.775 | 33.679 | |
32/9 | 9.801 | 33.768 | |
11/4 | 9.825 | 33.850 | |
26/25 | 9.850 | 33.938 | |
20/11 | 9.900 | 34.109 | |
10/1 | 9.905 | 34.125 | |
26/17 | 9.950 | 34.282 | |
2/1 | 9.980 | 34.384 | |
5/2 | 10.055 | 34.642 | |
32/7 | 10.090 | 34.764 | |
23/22 | 10.118 | 34.861 | |
25/2 | 10.130 | 34.901 | |
16/11 | 10.135 | 34.917 | |
17/10 | 10.155 | 34.986 | |
13/10 | 10.184 | 35.088 | |
17/2 | 10.230 | 35.244 | |
13/2 | 10.259 | 35.346 | |
14/9 | 10.269 | 35.380 | |
23/16 | 10.273 | 35.394 | |
19/13 | 10.587 | 36.475 | |
19/17 | 10.617 | 36.577 | |
29/12 | 10.697 | 36.853 | |
9/4 | 10.716 | 36.919 | |
25/19 | 10.716 | 36.921 | |
22/1 | 10.739 | 37.001 | |
20/9 | 10.791 | 37.177 | |
19/5 | 10.791 | 37.180 | |
22/5 | 10.814 | 37.259 | |
19/1 | 10.866 | 37.438 | |
18/11 | 10.870 | 37.452 | |
25/22 | 10.890 | 37.518 | |
16/1 | 10.894 | 37.534 | |
16/5 | 10.969 | 37.793 | |
22/17 | 10.989 | 37.862 | |
7/4 | 11.005 | 37.915 | |
23/18 | 11.009 | 37.929 | |
22/13 | 11.019 | 37.964 | |
25/16 | 11.044 | 38.052 | |
20/7 | 11.080 | 38.174 | |
17/16 | 11.144 | 38.395 | |
14/11 | 11.160 | 38.448 | |
16/13 | 11.174 | 38.497 | |
23/14 | 11.298 | 38.925 | |
31/12 | 11.338 | 39.062 | |
21/13 | 11.468 | 39.512 | |
23/19 | 11.488 | 39.579 | |
21/17 | 11.498 | 39.614 | |
25/21 | 11.598 | 39.958 | |
19/11 | 11.626 | 40.056 | |
18/1 | 11.630 | 40.069 | |
21/5 | 11.673 | 40.216 | |
18/5 | 11.705 | 40.328 | |
21/1 | 11.748 | 40.475 | |
27/13 | 11.758 | 40.508 | |
25/18 | 11.780 | 40.587 | |
19/8 | 11.781 | 40.589 | |
27/17 | 11.787 | 40.610 | |
18/17 | 11.880 | 40.930 | |
19/12 | 11.886 | 40.952 | |
27/25 | 11.887 | 40.954 | |
18/13 | 11.910 | 41.032 | |
14/1 | 11.919 | 41.066 | |
27/5 | 11.962 | 41.213 | |
14/5 | 11.994 | 41.324 | |
27/1 | 12.037 | 41.471 | |
31/14 | 12.040 | 41.482 | |
25/14 | 12.069 | 41.583 | |
17/14 | 12.169 | 41.926 | |
14/13 | 12.199 | 42.028 | |
31/18 | 12.329 | 42.478 | |
23/21 | 12.369 | 42.615 | |
24/13 | 12.493 | 43.044 | |
21/11 | 12.507 | 43.092 | |
19/9 | 12.517 | 43.124 | |
24/17 | 12.523 | 43.146 | |
25/24 | 12.623 | 43.489 | |
27/23 | 12.658 | 43.611 | |
21/8 | 12.662 | 43.626 | |
29/14 | 12.681 | 43.691 | |
24/5 | 12.698 | 43.748 | |
24/1 | 12.773 | 44.006 | |
27/11 | 12.797 | 44.089 | |
19/7 | 12.806 | 44.120 | |
27/8 | 12.951 | 44.622 | |
29/18 | 12.970 | 44.687 | |
31/16 | 13.065 | 45.014 | |
31/22 | 13.220 | 45.547 | |
15/7 | 13.323 | 45.902 | |
24/23 | 13.394 | 46.147 | |
7/3 | 13.398 | 46.161 | |
13/3 | 13.408 | 46.194 | |
17/3 | 13.437 | 46.296 | |
15/13 | 13.483 | 46.453 | |
17/15 | 13.513 | 46.555 | |
24/11 | 13.532 | 46.624 | |
25/3 | 13.537 | 46.640 | |
5/3 | 13.612 | 46.898 | |
3/1 | 13.687 | 47.157 | |
29/16 | 13.706 | 47.223 | |
15/1 | 13.762 | 47.416 | |
29/22 | 13.861 | 47.756 | |
27/7 | 13.976 | 48.153 | |
31/2 | 13.980 | 48.164 | |
31/10 | 14.055 | 48.423 | |
29/26 | 14.125 | 48.664 | |
31/26 | 14.259 | 49.127 | |
23/3 | 14.308 | 49.297 | |
24/7 | 14.313 | 49.312 | |
29/10 | 14.329 | 49.368 | |
15/8 | 14.348 | 49.434 | |
23/15 | 14.384 | 49.556 | |
29/2 | 14.404 | 49.627 | |
8/3 | 14.423 | 49.692 | |
11/3 | 14.447 | 49.774 | |
15/11 | 14.503 | 49.967 |