Ragismic microtemperaments: Difference between revisions
m +link to unlit |
→Ennealimmal: normalize generators and de-emphasise wedgies |
||
Line 27: | Line 27: | ||
{{Main| Ennealimmal }} | {{Main| Ennealimmal }} | ||
[[Ennealimmal]] | [[Ennealimmal]] tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the [[ennealimma]], {{monzo|1 -27 18}}, which leads to the identification of (27/25)<sup>9</sup> with the octave, and gives ennealimmal a period of 1/9 octave. Its [[pergen]] is (P8/9, P5/2). While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit. | ||
Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40 | Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference. | ||
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS. | If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS. | ||
Line 40: | Line 40: | ||
[[Comma list]]: 2401/2400, 4375/4374 | [[Comma list]]: 2401/2400, 4375/4374 | ||
[[Mapping]]: [{{val|9 1 1 12}}, {{val|0 2 3 2}}] | [[Mapping]]: [{{val| 9 1 1 12 }}, {{val| 0 2 3 2 }}] | ||
{{Multival|legend=1|18 27 18 1 -22 -34}} | {{Multival|legend=1| 18 27 18 1 -22 -34 }} | ||
Mapping generators: ~27/25, ~5/3 | Mapping generators: ~27/25, ~5/3 | ||
[[POTE generator]]s: ~ | [[POTE generator]]s: ~5/3 = 884.3129 | ||
[[Tuning ranges]]: | [[Tuning ranges]]: | ||
Line 65: | Line 65: | ||
Comma list: 2401/2400, 4375/4374, 5632/5625 | Comma list: 2401/2400, 4375/4374, 5632/5625 | ||
Mapping: [{{val|9 1 1 12 -75}}, {{val|0 2 3 2 16}}] | Mapping: [{{val| 9 1 1 12 -75 }}, {{val| 0 2 3 2 16 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 884.4679 | ||
Vals: {{Val list| 99e, 171e, 270, 909, 1179, 1449c, 1719c }} | Vals: {{Val list| 99e, 171e, 270, 909, 1179, 1449c, 1719c }} | ||
Line 78: | Line 78: | ||
Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374 | Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374 | ||
Mapping: [{{val|9 1 1 12 -75 93}}, {{val|0 2 3 2 16 -9}}] | Mapping: [{{val| 9 1 1 12 -75 93 }}, {{val| 0 2 3 2 16 -9 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 884.4304 | ||
Vals: {{Val list| 99e, 171e, 270 }} | Vals: {{Val list| 99e, 171e, 270 }} | ||
Line 93: | Line 93: | ||
Comma list: 2401/2400, 4375/4374, 131072/130977 | Comma list: 2401/2400, 4375/4374, 131072/130977 | ||
Mapping: [{{val|9 1 1 12 124}}, {{val|0 2 3 2 -14}}] | Mapping: [{{val| 9 1 1 12 124 }}, {{val| 0 2 3 2 -14 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 884.4089 | ||
Vals: {{Val list| 99, 171, 270, 711, 981, 1251, 2232e }} | Vals: {{Val list| 99, 171, 270, 711, 981, 1251, 2232e }} | ||
Line 106: | Line 106: | ||
Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374 | Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374 | ||
Mapping: [{{val|9 1 1 12 124 93}}, {{val|0 2 3 2 -14 -9}}] | Mapping: [{{val| 9 1 1 12 124 93 }}, {{val| 0 2 3 2 -14 -9 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 884.3997 | ||
Vals: {{Val list| 99, 171, 270, 711, 981, 1692e, 2673e }} | Vals: {{Val list| 99, 171, 270, 711, 981, 1692e, 2673e }} | ||
Line 121: | Line 121: | ||
Comma list: 243/242, 441/440, 4375/4356 | Comma list: 243/242, 441/440, 4375/4356 | ||
Mapping: [{{val|9 1 1 12 -2}}, {{val|0 2 3 2 5}}] | Mapping: [{{val| 9 1 1 12 -2 }}, {{val| 0 2 3 2 5 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 883.9386 | ||
Tuning ranges: | Tuning ranges: | ||
Line 139: | Line 139: | ||
Comma list: 243/242, 364/363, 441/440, 625/624 | Comma list: 243/242, 364/363, 441/440, 625/624 | ||
Mapping: [{{val|9 1 1 12 -2 -33}}, {{val|0 2 3 2 5 10}}] | Mapping: [{{val| 9 1 1 12 -2 -33 }}, {{val| 0 2 3 2 5 10 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 883.9920 | ||
Tuning ranges: | Tuning ranges: | ||
Line 157: | Line 157: | ||
Comma list: 243/242, 364/363, 375/374, 441/440, 595/594 | Comma list: 243/242, 364/363, 375/374, 441/440, 595/594 | ||
Mapping: [{{val|9 1 1 12 -2 -33 -3}}, {{val|0 2 3 2 5 10 6}}] | Mapping: [{{val| 9 1 1 12 -2 -33 -3 }}, {{val| 0 2 3 2 5 10 6 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 883.9981 | ||
Tuning ranges: | Tuning ranges: | ||
Line 171: | Line 171: | ||
==== Ennealim ==== | ==== Ennealim ==== | ||
Subgroup: 2.3.5.7.13 | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 169/168, 243/242, 325/324, 441/440 | Comma list: 169/168, 243/242, 325/324, 441/440 | ||
Mapping: [{{val|9 1 1 12 -2 20}}, {{val|0 2 3 2 5 2}}] | Mapping: [{{val| 9 1 1 12 -2 20 }}, {{val| 0 2 3 2 5 2 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 883.6257 | ||
Vals: {{Val list| 27e, 45ef, 72 }} | Vals: {{Val list| 27e, 45ef, 72 }} | ||
Line 188: | Line 188: | ||
Comma list: 385/384, 1375/1372, 4375/4374 | Comma list: 385/384, 1375/1372, 4375/4374 | ||
Mapping: [{{val|9 1 1 12 51}}, {{val|0 2 3 2 -3}}] | Mapping: [{{val| 9 1 1 12 51 }}, {{val| 0 2 3 2 -3 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 883.8298 | ||
Vals: {{Val list| 27, 45, 72, 171e, 243e, 315e }} | Vals: {{Val list| 27, 45, 72, 171e, 243e, 315e }} | ||
Line 201: | Line 201: | ||
Comma list: 169/168, 325/324, 385/384, 1375/1372 | Comma list: 169/168, 325/324, 385/384, 1375/1372 | ||
Mapping: [{{val|9 1 1 12 51 20}}, {{val|0 2 3 2 -3 2}}] | Mapping: [{{val| 9 1 1 12 51 20 }}, {{val| 0 2 3 2 -3 2 }}] | ||
POTE generator: ~ | POTE generator: ~5/3 = 883.8476 | ||
Vals: {{Val list| 27, 45f, 72, 171ef, 243ef }} | Vals: {{Val list| 27, 45f, 72, 171ef, 243ef }} | ||
Line 220: | Line 220: | ||
Mapping generators: ~80/77, ~400/231 | Mapping generators: ~80/77, ~400/231 | ||
POTE generator: ~ | POTE generator: ~400/231 = 950.9553 | ||
Tuning ranges: | Tuning ranges: | ||
Line 238: | Line 238: | ||
Mapping: [{{val| 18 0 -1 22 48 -19 }}, {{val| 0 2 3 2 1 6 }}] | Mapping: [{{val| 18 0 -1 22 48 -19 }}, {{val| 0 2 3 2 1 6 }}] | ||
POTE generator ~ | POTE generator ~26/15 = 951.0837 | ||
Tuning ranges: | Tuning ranges: | ||
Line 261: | Line 261: | ||
Mapping generators: ~80/77, ~1053/800 | Mapping generators: ~80/77, ~1053/800 | ||
POTE generator: ~ | POTE generator: ~1053/800 = 475.4727 | ||
Vals: {{Val list| 126, 144, 270, 684, 954 }} | Vals: {{Val list| 126, 144, 270, 684, 954 }} | ||
Line 272: | Line 272: | ||
Comma list: 2401/2400, 4000/3993, 4375/4374 | Comma list: 2401/2400, 4000/3993, 4375/4374 | ||
Mapping: [{{val|9 3 4 14 18}}, {{val|0 6 9 6 7}}] | Mapping: [{{val| 9 3 4 14 18 }}, {{val| 0 6 9 6 7 }}] | ||
POTE generator: ~140/121 = 250.3367 | POTE generator: ~140/121 = 250.3367 | ||
Line 285: | Line 285: | ||
Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374 | Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374 | ||
Mapping: [{{val|9 3 4 14 18 -8}}, {{val|0 6 9 6 7 22}}] | Mapping: [{{val| 9 3 4 14 18 -8 }}, {{val| 0 6 9 6 7 22 }}] | ||
POTE generator: ~140/121 = 250.3375 | POTE generator: ~140/121 = 250.3375 | ||
Line 298: | Line 298: | ||
Comma list: 2401/2400, 4375/4374, 234375/234256 | Comma list: 2401/2400, 4375/4374, 234375/234256 | ||
Mapping: [{{val|9 1 1 12 -7}}, {{val|0 8 12 8 23}}] | Mapping: [{{val| 9 1 1 12 -7 }}, {{val| 0 8 12 8 23 }}] | ||
Mapping generators: ~27/25, ~25/22 | |||
POTE generator: ~ | POTE generator: ~25/22 = 221.0717 | ||
Vals: {{Val list| 342, 1053, 1395, 1737, 4869dd, 6606cdd }} | Vals: {{Val list| 342, 1053, 1395, 1737, 4869dd, 6606cdd }} | ||
Line 315: | Line 317: | ||
Mapping generators: ~2744/2673, ~2352/1375 | Mapping generators: ~2744/2673, ~2352/1375 | ||
POTE generator: ~ | POTE generator: ~2352/1375 = 928.8000 | ||
Vals: {{Val list| 27, 243, 270, 783, 1053, 1323 }} | Vals: {{Val list| 27, 243, 270, 783, 1053, 1323 }} |
Revision as of 16:47, 29 December 2021
The ragisma is 4375/4374 with a monzo of [-1 -7 4 1⟩, the smallest 7-limit superparticular ratio. Since (10/9)4 = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
Temperaments discussed elsewhere include:
- Hystrix, {36/35, 160/147} → Porcupine family
- Rhinoceros, {49/48, 4375/4374} → Unicorn family
- Crepuscular, {50/49, 4375/4374} → Jubilismic clan and Fifive family
- Modus, {64/63, 4375/4374} → Tetracot family
- Flattone, {81/80, 525/512} → Meantone family
- Sensi, {126/125, 245/243} → Sensipent family and Sensamagic clan
- Catakleismic, {225/224, 4375/4374} → Kleismic family
- Unidec, {1029/1024, 4375/4374} → Gamelismic clan
- Quartonic, {1728/1715, 4000/3969} → Orwellismic temperaments
- Maja, {2430/2401, 3125/3087} → Maja family
- Pontiac, {4375/4374, 32805/32768} → Schismatic family
- Zarvo, {4375/4374, 33075/32768} → Gravity family
- Whirrschmidt, {4375/4374, 393216/390625} → Würschmidt family
- Mitonic, {4375/4374, 2100875/2097152} → Minortonic family
- Vishnu, {4375/4374, 29360128/29296875} → Vishnuzmic family
- Vulture, {4375/4374, 33554432/33480783} → Vulture family
- Trillium, {4375/4374, [40 -22 -1 -1⟩} → Tricot family
- Unlit, {4375/4374, [41 -20 -4⟩} → Undim family
- Quindro, {4375/4374, [56 -28 -5⟩} → Quindromeda family
Considered below are ennealimmal, gamera, supermajor, enneadeca, decal, sfourth, abigail, semidimi, brahmagupta, quasithird, semidimfourth, acrokleismic, seniority, orga, quatracot, octoid, amity, parakleismic, counterkleismic, quincy, chlorine, palladium, and monzism.
Ennealimmal
Ennealimmal tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma, [1 -27 18⟩, which leads to the identification of (27/25)9 with the octave, and gives ennealimmal a period of 1/9 octave. Its pergen is (P8/9, P5/2). While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.
Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.
Ennealimmal extensions discussed elsewhere include omicronbeta, undecentic, schisennealimmal, and lunennealimmal.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 4375/4374
Mapping: [⟨9 1 1 12], ⟨0 2 3 2]]
Wedgie: ⟨⟨ 18 27 18 1 -22 -34 ]]
Mapping generators: ~27/25, ~5/3
POTE generators: ~5/3 = 884.3129
- 7-odd-limit diamond monotone: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
- 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
- 7- and 9-odd-limit diamond tradeoff: ~36/35 = [48.920, 49.179]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]
Badness: 0.003610
11-limit
The ennealimmal temperament can be described as 99e&270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 5632/5625
Mapping: [⟨9 1 1 12 -75], ⟨0 2 3 2 16]]
POTE generator: ~5/3 = 884.4679
Vals: Template:Val list
Badness: 0.027332
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 -75 93], ⟨0 2 3 2 16 -9]]
POTE generator: ~5/3 = 884.4304
Vals: Template:Val list
Badness: 0.029404
Ennealimmia
Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ennealimmia temperament (171&270).
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 131072/130977
Mapping: [⟨9 1 1 12 124], ⟨0 2 3 2 -14]]
POTE generator: ~5/3 = 884.4089
Vals: Template:Val list
Badness: 0.026463
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: [⟨9 1 1 12 124 93], ⟨0 2 3 2 -14 -9]]
POTE generator: ~5/3 = 884.3997
Vals: Template:Val list
Badness: 0.016607
Ennealimnic
Ennealimnic temperament (72&171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 4375/4356
Mapping: [⟨9 1 1 12 -2], ⟨0 2 3 2 5]]
POTE generator: ~5/3 = 883.9386
Tuning ranges:
- 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
- 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
- 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]
Vals: Template:Val list
Badness: 0.020347
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440, 625/624
Mapping: [⟨9 1 1 12 -2 -33], ⟨0 2 3 2 5 10]]
POTE generator: ~5/3 = 883.9920
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
- 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
- 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]
Vals: Template:Val list
Badness: 0.023250
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
Mapping: [⟨9 1 1 12 -2 -33 -3], ⟨0 2 3 2 5 10 6]]
POTE generator: ~5/3 = 883.9981
Tuning ranges:
- 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
- 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
- 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]
Vals: Template:Val list
Badness: 0.014602
Ennealim
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 243/242, 325/324, 441/440
Mapping: [⟨9 1 1 12 -2 20], ⟨0 2 3 2 5 2]]
POTE generator: ~5/3 = 883.6257
Vals: Template:Val list
Badness: 0.020697
Ennealiminal
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 4375/4374
Mapping: [⟨9 1 1 12 51], ⟨0 2 3 2 -3]]
POTE generator: ~5/3 = 883.8298
Vals: Template:Val list
Badness: 0.031123
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 385/384, 1375/1372
Mapping: [⟨9 1 1 12 51 20], ⟨0 2 3 2 -3 2]]
POTE generator: ~5/3 = 883.8476
Vals: Template:Val list
Badness: 0.030325
Hemiennealimmal
Hemiennealimmal (72&198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out 9801/9800 leads an octave split into two equal parts.
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 4375/4374
Mapping: [⟨18 0 -1 22 48], ⟨0 2 3 2 1]]
Mapping generators: ~80/77, ~400/231
POTE generator: ~400/231 = 950.9553
Tuning ranges:
- 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
- 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
- 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]
Vals: Template:Val list
Badness: 0.006283
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024
Mapping: [⟨18 0 -1 22 48 -19], ⟨0 2 3 2 1 6]]
POTE generator ~26/15 = 951.0837
Tuning ranges:
- 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
- 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
- 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
- 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
- 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
- 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]
Vals: Template:Val list
Badness: 0.012505
Semihemiennealimmal
Subgroup: 2.3.5.7.11.13
Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨18 0 -1 22 48 88], ⟨0 4 6 4 2 -3]]
Mapping generators: ~80/77, ~1053/800
POTE generator: ~1053/800 = 475.4727
Vals: Template:Val list
Badness: 0.013104
Semiennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4000/3993, 4375/4374
Mapping: [⟨9 3 4 14 18], ⟨0 6 9 6 7]]
POTE generator: ~140/121 = 250.3367
Vals: Template:Val list
Badness: 0.034196
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
Mapping: [⟨9 3 4 14 18 -8], ⟨0 6 9 6 7 22]]
POTE generator: ~140/121 = 250.3375
Vals: Template:Val list
Badness: 0.026122
Quadraennealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 234375/234256
Mapping: [⟨9 1 1 12 -7], ⟨0 8 12 8 23]]
Mapping generators: ~27/25, ~25/22
POTE generator: ~25/22 = 221.0717
Vals: Template:Val list
Badness: 0.021320
Trinealimmal
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 4375/4374, 2097152/2096325
Mapping: [⟨27 1 0 34 177], ⟨0 2 3 2 -4]]
Mapping generators: ~2744/2673, ~2352/1375
POTE generator: ~2352/1375 = 928.8000
Vals: Template:Val list
Badness: 0.029812
Gamera
Subgroup: 2.3.5.7
Comma list: 4375/4374, 589824/588245
Mapping: [⟨1 6 10 3], ⟨0 -23 -40 -1]]
Wedgie: ⟨⟨ 23 40 1 10 -63 -110 ]]
POTE generator ~8/7 = 230.336
Badness: 0.037648
Hemigamera
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 589824/588245
Mapping: [⟨2 12 20 6 5], ⟨0 -23 -40 -1 5]]
POTE generator: ~8/7 = 230.3370
Vals: Template:Val list
Badness: 0.040955
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024
Mapping: [⟨2 12 20 6 5 17], ⟨0 -23 -40 -1 5 -25]]
POTE generator: ~8/7 = 230.3373
Vals: Template:Val list
Badness: 0.020416
Supermajor
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of ⟨⟨ 37 46 75 -13 15 45 ]]. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 52734375/52706752
Mapping: [⟨1 15 19 30], ⟨0 -37 -46 -75]]
Wedgie: ⟨⟨ 37 46 75 -13 15 45 ]]
POTE generator: ~9/7 = 435.082
Badness: 0.010836
Semisupermajor
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 35156250/35153041
Mapping: [⟨2 30 38 60 41], ⟨0 -37 -46 -75 -47]]
POTE generator: ~9/7 = 435.082
EDOs: Template:Val list
Badness: 0.012773
Enneadecal
Enneadecal temperament tempers out the enneadeca, [-14 -19 19⟩, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of 19EDO up to just ones. 171EDO is a good tuning for either the 5 or 7 limits, and 494EDO shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665EDO for a tuning.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 703125/702464
Mapping: [⟨19 0 14 -37], ⟨0 1 1 3]]
Wedgie: ⟨⟨ 19 19 57 -14 37 79 ]]
Mapping generators: ~28/27, ~3
POTE generator: ~3/2 = 701.880
Badness: 0.010954
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 16384/16335
Mapping: [⟨19 0 14 -37 126], ⟨0 1 1 3 -2]]
POTE generator: ~3/2 = 702.360
Vals: Template:Val list
Badness: 0.043734
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624, 729/728, 2205/2197
Mapping: [⟨19 0 14 -37 126 -20], ⟨0 1 1 3 -2 3]]
POTE generator: ~3/2 = 702.212
Vals: Template:Val list
Badness: 0.033545
Hemienneadecal
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 234375/234256
Mapping: [⟨38 0 28 -74 11], ⟨0 1 1 3 2]]
POTE generator: ~3/2 = 701.881
Vals: Template:Val list
Badness: 0.009985
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213
Mapping: [⟨38 0 28 -74 11 502], ⟨0 1 1 3 2 -6]]
POTE generator: ~3/2 = 701.986
Vals: Template:Val list
Badness: 0.030391
Deca
Deca temperament has a period of 1/10 octave and tempers out the linus comma, [11 -10 -10 10⟩ and [12 -3 -14 9⟩ = 165288374272/164794921875 (satritrizo-asepbigu).
Subgroup: 2.3.5.7
Comma list: 4375/4374, 165288374272/164794921875
Mapping: [⟨10 4 9 2], ⟨0 5 6 11]]
Wedgie: ⟨⟨ 50 60 110 -21 34 87 ]]
POTE generator: ~6/5 = 315.577
Badness: 0.080637
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 422576/421875
Mapping: [⟨10 4 9 2 18], ⟨0 5 6 11 7]]
POTE generator: ~6/5 = 315.582
Vals: Template:Val list
Badness: 0.024329
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374
Mapping: [⟨10 4 9 2 18 37], ⟨0 5 6 11 7 0]]
POTE generator: ~6/5 = 315.602
Vals: Template:Val list
Badness: 0.016810
Sfourth
Subgroup: 2.3.5.7
Comma list: 4375/4374, 64827/64000
Mapping: [⟨1 2 3 3], ⟨0 -19 -31 -9]]
Wedgie: ⟨⟨ 19 31 9 5 -39 -66 ]]
POTE generator: ~49/48 = 26.287
Badness: 0.123291
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 441/440, 4375/4374
Mapping: [⟨1 2 3 3 4], ⟨0 -19 -31 -9 -25]]
POTE generator: ~49/48 = 26.286
Vals: Template:Val list
Badness: 0.054098
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 325/324, 441/440
Mapping: [⟨1 2 3 3 4 4], ⟨0 -19 -31 -9 -25 -14]]
POTE generator: ~49/48 = 26.310
Vals: Template:Val list
Badness: 0.033067
Sfour
Subgroup: 2.3.5.7.11
Comma list: 385/384, 2401/2376, 4375/4374
Mapping: [⟨1 2 3 3 3], ⟨0 -19 -31 -9 21]]
POTE generator: ~49/48 = 26.246
Vals: Template:Val list
Badness: 0.076567
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 364/363, 385/384, 4375/4374
Mapping: [⟨1 2 3 3 3 3], ⟨0 -19 -31 -9 21 32]]
POTE generator: ~49/48 = 26.239
Vals: Template:Val list
Badness: 0.051893
Abigail
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2147483648/2144153025
Mapping: [⟨2 7 13 -1], ⟨0 -11 -24 19]]
Wedgie: ⟨⟨ 22 48 -38 25 -122 -223 ]]
POTE generator: ~6912/6125 = 208.899
Badness: 0.037000
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 131072/130977
Mapping: [⟨2 7 13 -1 1], ⟨0 -11 -24 19 17]]
POTE generator: ~1155/1024 = 208.901
Vals: Template:Val list
Badness: 0.012860
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095
Mapping: [⟨2 7 13 -1 1 -2], ⟨0 -11 -24 19 17 27]]
POTE generator: ~44/39 = 208.903
Vals: Template:Val list
Badness: 0.008856
Semidimi
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit [-12 -73 55⟩ and 7-limit 3955078125/3954653486, as well as 4375/4374.
Subgroup: 2.3.5
Comma: [-12 -73 55⟩
Mapping: [⟨1 36 48], ⟨0 -55 -73]]
POTE generator: ~162/125 = 449.1269
Badness: 0.754866
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 3955078125/3954653486
Mapping: [⟨1 36 48 61], ⟨0 -55 -73 -93]]
Wedgie: ⟨⟨ 55 73 93 -12 -7 11 ]]
POTE generator: ~35/27 = 449.1270
Badness: 0.015075
Brahmagupta
The brahmagupta temperament has a period of 1/7 octave, tempering out the akjaysma, [47 -7 -7 -7⟩ = 140737488355328 / 140710042265625.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 70368744177664/70338939985125
Mapping: [⟨7 2 -8 53], ⟨0 3 8 -11]]
Wedgie: ⟨⟨ 21 56 -77 40 -181 -336 ]]
POTE generator: ~27/20 = 519.716
Badness: 0.029122
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4000/3993, 4375/4374, 131072/130977
Mapping: [⟨7 2 -8 53 3], ⟨0 3 8 -11 7]]
POTE generator: ~27/20 = 519.704
Vals: Template:Val list
Badness: 0.052190
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374
Mapping: [⟨7 2 -8 53 3 35], ⟨0 3 8 -11 7 -3]]
POTE generator: ~27/20 = 519.706
Vals: Template:Val list
Badness: 0.023132
Quasithird
The quasithird temperament is featured by a major third interval which is 1600000/1594323 (amity comma) or 5120/5103 (hemifamity comma) below the just major third 5/4 as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the ragisma and [-60 29 0 5⟩.
Subgroup: 2.3.5
Comma: [55 -64 20⟩
Mapping: [⟨4 0 -11], ⟨0 5 16]]
POTE generator: ~1594323/1280000 = 380.395
Badness: 0.099519
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 1153470752371588581/1152921504606846976
Mapping: [⟨4 0 -11 48], ⟨0 5 16 -29]]
Wedgie: ⟨⟨ 20 64 -116 55 -240 -449 ]]
POTE generator: ~5103/4096 = 380.388
Badness: 0.061813
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296
Mapping: [⟨4 0 -11 48 43], ⟨0 5 16 -29 -23]]
POTE generator: ~22/21 = 80.387 (or ~5103/4096 = 380.387)
Vals: Template:Val list
Badness: 0.021125
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2200/2197, 3025/3024, 4375/4374, 468512/468195
Mapping: [⟨4 0 -11 48 43 11], ⟨0 5 16 -29 -23 3]]
POTE generator: ~22/21 = 80.385 (or ~5103/4096 = 380.385)
Vals: Template:Val list
Badness: 0.029501
Semidimfourth
The semidimifourth temperament is featured by a semi-diminished fourth inverval which is 128/125 above the pythagorean major third 81/64. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.
Subgroup: 2.3.5
Comma: [7 41 -31⟩
Mapping: [⟨1 21 28], ⟨0 -31 -41]]
POTE generator: ~162/125 = 448.449
Badness: 0.233376
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 235298/234375
Mapping: [⟨1 21 28 36], ⟨0 -31 -41 -53]]
Wedgie: ⟨⟨ 31 41 53 -7 -3 8 ]]
POTE generator: ~35/27 = 448.456
Badness: 0.055249
Neusec
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 235298/234375
Mapping: [⟨2 11 15 19 15], ⟨0 -31 -41 -53 -32]]
POTE generator: ~12/11 = 151.547
Vals: Template:Val list
Badness: 0.059127
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374
Mapping: [⟨2 11 15 19 15 17], ⟨0 -31 -41 -53 -32 -38]]
POTE generator: ~12/11 = 151.545
Vals: Template:Val list
Badness: 0.030941
Acrokleismic
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2202927104/2197265625
Mapping: [⟨1 10 11 27], ⟨0 -32 -33 -92]]
Wedgie: ⟨⟨ 32 33 92 -22 56 121 ]]
POTE generator: ~6/5 = 315.557
Badness: 0.056184
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 41503/41472, 172032/171875
Mapping: [⟨1 10 11 27 -16], ⟨0 -32 -33 -92 74]]
POTE generator: ~6/5 = 315.558
Vals: Template:Val list
Badness: 0.036878
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976
Mapping: [⟨1 10 11 27 -16 25], ⟨0 -32 -33 -92 74 -81]]
POTE generator: ~6/5 = 315.557
Vals: Template:Val list
Badness: 0.026818
Counteracro
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 5632/5625, 117649/117612
Mapping: [⟨1 10 11 27 55], ⟨0 -32 -33 -92 -196]]
POTE generator: ~6/5 = 315.553
Vals: Template:Val list
Badness: 0.042572
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374
Mapping: [⟨1 10 11 27 55 25], ⟨0 -32 -33 -92 -196 -81]]
POTE generator: ~6/5 = 315.554
Vals: Template:Val list
Badness: 0.026028
Seniority
Aside from the ragisma, the seniority temperament (26&145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ([-17 62 -35⟩, quadla-sepquingu) is tempered out.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 201768035/201326592
Mapping: [⟨1 11 19 2], ⟨0 -35 -62 3]]
Wedgie: ⟨⟨ 35 62 -3 17 -103 -181 ]]
POTE generator: ~3087/2560 = 322.804
Badness: 0.044877
Senator
The senator temperament (26&145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4375/4374, 65536/65219
Mapping: [⟨1 11 19 2 4], ⟨0 -35 -62 3 -2]]
POTE generator: ~77/64 = 322.793
Vals: Template:Val list
Badness: 0.092238
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 2200/2197, 4375/4374
Mapping: [⟨1 11 19 2 4 15], ⟨0 -35 -62 3 -2 -42]]
POTE generator: ~77/64 = 322.793
Vals: Template:Val list
Badness: 0.044662
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197
Mapping: [⟨1 11 19 2 4 15 17], ⟨0 -35 -62 3 -2 -42 -48]]
POTE generator: ~77/64 = 322.793
Vals: Template:Val list
Badness: 0.026562
Orga
Subgroup: 2.3.5.7
Comma list: 4375/4374, 54975581388800/54936068900769
Mapping: [⟨2 21 36 5], ⟨0 -29 -51 1]]
Wedgie: ⟨⟨ 58 102 -2 27 -166 -291 ]]
POTE generator: ~8/7 = 231.104
Badness: 0.040236
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5767168/5764801
Mapping: [⟨2 21 36 5 2], ⟨0 -29 -51 1 8]]
POTE generator: ~8/7 = 231.103
Vals: Template:Val list
Badness: 0.016188
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360
Mapping: [⟨2 21 36 5 2 24], ⟨0 -29 -51 1 8 -27]]
POTE generator: ~8/7 = 231.103
Vals: Template:Val list
Badness: 0.021762
Quatracot
Subgroup: 2.3.5.7
Comma list: 4375/4374, 1483154296875/1473173782528
Mapping: [⟨2 7 7 23], ⟨0 -13 -8 -59]]
Wedgie: ⟨⟨ 26 16 118 -35 114 229 ]]
POTE generator: ~448/405 = 176.805
Badness: 0.175982
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 1265625/1261568
Mapping: [⟨2 7 7 23 19], ⟨0 -13 -8 -59 -41]]
POTE generator: ~448/405 = 176.806
Vals: Template:Val list
Badness: 0.041043
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 729/728, 1575/1573, 2200/2197
Mapping: [⟨2 7 7 23 19 13], ⟨0 -13 -8 -59 -41 -19]]
POTE generator: ~195/176 = 176.804
Vals: Template:Val list
Badness: 0.022643
Octoid
The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 (ragisma) and 16875/16807 (mirkwai). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 16875/16807
Mapping: [⟨8 1 3 3], ⟨0 3 4 5]]
Wedgie: ⟨⟨ 24 32 40 -5 -4 3 ]]
Mapping generators: ~49/45, ~7/5
POTE generator: ~7/5 = 583.940
- 7-odd-limit diamond monotone: ~7/5 = [578.571, 600.000] (27\56 to 4\8)
- 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88)
- 7-odd-limit diamond tradeoff: ~7/5 = [582.512, 584.359]
- 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
- 7-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 584.359]
- 9-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]
Badness: 0.042670
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 4000/3993
Mapping: [⟨8 1 3 3 16], ⟨0 3 4 5 3]]
POTE generator: ~7/5 = 583.962
Tuning ranges:
- 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
- 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
- 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]
Vals: Template:Val list
Badness: 0.014097
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624, 729/728, 1375/1372
Mapping: [⟨8 1 3 3 16 -21], ⟨0 3 4 5 3 13]]
POTE generator: ~7/5 = 583.905
Vals: Template:Val list
Badness: 0.015274
- Music
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 375/374, 540/539, 625/624, 715/714, 729/728
Mapping: [⟨8 1 3 3 16 -21 -14], ⟨0 3 4 5 3 13 12]]
POTE generator: ~7/5 = 583.842
Vals: Template:Val list
Badness: 0.014304
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714
Mapping: [⟨8 1 3 3 16 -21 -14 34], ⟨0 3 4 5 3 13 12 0]]
POTE generator: ~7/5 = 583.932
Vals: Template:Val list
Badness: 0.016036
Octopus
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 364/363, 540/539
Mapping: [⟨8 1 3 3 16 14], ⟨0 3 4 5 3 4]]
POTE generator: ~7/5 = 583.892
Vals: Template:Val list
Badness: 0.021679
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 221/220, 289/288, 325/324, 540/539
Mapping: [⟨8 1 3 3 16 14 21], ⟨0 3 4 5 3 4 3]]
POTE generator: ~7/5 = 583.811
Vals: Template:Val list
Badness: 0.015614
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399
Mapping: [⟨8 1 3 3 16 14 21 34], ⟨0 3 4 5 3 4 3 0]]
POTE generator: ~7/5 = 584.064
Vals: Template:Val list
Badness: 0.016321
Hexadecoid
Hexadecoid (80&144) has a period of 1/16 octave and tempers out 4225/4224.
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224
Mapping: [⟨16 26 38 46 56 59], ⟨0 -3 -4 -5 -3 1]]
POTE generator: ~13/8 = 841.015
Vals: Template:Val list
Badness: 0.030818
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224
Mapping: [⟨16 26 38 46 56 59 65], ⟨0 -3 -4 -5 -3 1 2]]
POTE generator: ~13/8 = 840.932
Vals: Template:Val list
Badness: 0.028611
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444
Mapping: [⟨16 26 38 46 56 59 65 68], ⟨0 -3 -4 -5 -3 1 2 0]]
POTE generator: ~13/8 = 840.896
Vals: Template:Val list
Badness: 0.023731
Amity
The generator for amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament. 99EDO is a good tuning for amity, with generator 28\99, and MOS of 11, 18, 25, 32, 39, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.
In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives pure major thirds.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2], ⟨0 -5 -13 17]]
Wedgie: ⟨⟨ 5 13 -17 9 -41 -76 ]]
POTE generator: ~128/105 = 339.432
Badness: 0.023649
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2 21], ⟨0 -5 -13 17 -62]]
POTE generator: ~128/105 = 339.464
Vals: Template:Val list
Badness: 0.031506
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 847/845
Mapping: [⟨1 3 6 -2 21 17], ⟨0 -5 -13 17 -62 -47]]
POTE generator: ~128/105 = 339.481
Vals: Template:Val list *
* optimal patent val: 205
Badness: 0.028008
Hitchcock
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 2200/2187
Mapping: [⟨1 3 6 -2 6], ⟨0 -5 -13 17 -9]]
POTE generator: ~11/9 = 339.390
Vals: Template:Val list
Badness: 0.035187
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 325/324
Mapping: [⟨1 3 6 -2 6 2], ⟨0 -5 -13 17 -9 6]]
POTE generator: ~11/9 = 339.419
Vals: Template:Val list
Badness: 0.022448
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272
Mapping: [⟨1 3 6 -2 6 2 -1], ⟨0 -5 -13 17 -9 6 18]]
POTE generator: ~11/9 = 339.366
Vals: Template:Val list
Badness: 0.019395
Hemiamity
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5120/5103
Mapping: [⟨2 1 -1 13 13], ⟨0 5 13 -17 -14]]
POTE generator: ~64/55 = 339.439
Vals: Template:Val list
Badness: 0.031307
Parakleismic
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, [8 14 -13⟩, with the 118EDO tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being ⟨⟨ 13 14 35 -8 19 42 ]] and adding 3136/3125 and 4375/4374, and the 11-limit wedgie ⟨⟨ 13 14 35 -36 -8 19 -102 42 -132 -222 ]] adding 385/384. For the 7-limit 99EDO may be preferred, but in the 11-limit it is best to stick with 118.
Subgroup: 2.3.5
Comma list: 1224440064/1220703125
Mapping: [⟨1 5 6], ⟨0 -13 -14]]
POTE generator: ~6/5 = 315.240
Badness: 0.043279
7-limit
Subgroup: 2.3.5.7
Comma list: 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12], ⟨0 -13 -14 -35]]
Wedgie: ⟨⟨ 13 14 35 -8 19 42 ]]
POTE generator: ~6/5 = 315.181
Badness: 0.027431
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12 -6], ⟨0 -13 -14 -35 36]]
POTE generator: ~6/5 = 315.251
Vals: Template:Val list
Badness: 0.049711
Paralytic
The paralytic temperament (118&217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&217 tempers out 1001/1000, 1575/1573, and 3584/3575.
Subgroup: 2.3.5.7.11
Comma list: 441/440, 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12 25], ⟨0 -13 -14 -35 -82]]
POTE generator: ~6/5 = 315.220
Vals: Template:Val list
Badness: 0.036027
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374
Mapping: [⟨1 5 6 12 25 -16], ⟨0 -13 -14 -35 -82 75]]
POTE generator: ~6/5 = 315.214
Vals: Template:Val list
Badness: 0.044710
Paraklein
The paraklein temperament (19e&118) is another 13-limit extension of paralytic, which equates 13/11 with 32/27, 14/13 with 15/14, 25/24 with 26/25, and 27/26 with 28/27.
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 625/624, 729/728
Mapping: [⟨1 5 6 12 25 15], ⟨0 -13 -14 -35 -82 -43]]
POTE generator: ~6/5 = 315.225
Vals: Template:Val list
Badness: 0.037618
Parkleismic
Subgroup: 2.3.5.7.11
Comma list: 176/175, 1375/1372, 2200/2187
Mapping: [⟨1 5 6 12 20], ⟨0 -13 -14 -35 -63]]
POTE generator: ~6/5 = 315.060
Vals: Template:Val list
Badness: 0.055884
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 176/175, 325/324, 1375/1372
Mapping: [⟨1 5 6 12 20 10], ⟨0 -13 -14 -35 -63 -24]]
POTE generator: ~6/5 = 315.075
Vals: Template:Val list
Badness: 0.036559
Paradigmic
Subgroup: 2.3.5.7.11
Comma list: 540/539, 896/891, 3136/3125
Mapping: [⟨1 5 6 12 -1], ⟨0 -13 -14 -35 17]]
POTE generator: ~6/5 = 315.096
Vals: Template:Val list
Badness: 0.041720
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 540/539, 832/825
Mapping: [⟨1 5 6 12 -1 10], ⟨0 -13 -14 -35 17 -24]]
POTE generator: ~6/5 = 315.080
Vals: Template:Val list
Badness: 0.035781
Semiparakleismic
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 3136/3125, 4375/4374
Mapping: [⟨2 10 12 24 19], ⟨0 -13 -14 -35 -23]]
POTE generator: ~6/5 = 315.181
Vals: Template:Val list
Badness: 0.034208
Semiparamint
This extension was named semiparakleismic in the earlier materials.
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374
Mapping: [⟨2 10 12 24 19 -1], ⟨0 -13 -14 -35 -23 16]]
POTE generator: ~6/5 = 315.156
Vals: Template:Val list
Badness: 0.033775
Semiparawolf
This extension was named gentsemiparakleismic in the earlier materials.
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 364/363, 3136/3125
Mapping: [⟨2 10 12 24 19 20], ⟨0 -13 -14 -35 -23 -24]]
POTE generator: ~6/5 = 315.184
Vals: Template:Val list
Badness: 0.040467
Counterkleismic
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, [-20 -24 25⟩, the amount by which six major dieses (648/625) fall short of the classic major third (5/4). It can be described as 19&224 temperament (counterkleismic, named by analogy to catakleismic and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).
Subgroup: 2.3.5.7
Comma list: 4375/4374, 158203125/157351936
Mapping: [⟨1 -5 -4 -18], ⟨0 25 24 79]]
Wedgie: ⟨⟨ 25 24 79 -20 55 116 ]]
POTE generator: ~6/5 = 316.060
Badness: 0.090553
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 2097152/2096325
Mapping: [⟨1 -5 -4 -18 19], ⟨0 25 24 79 -59]]
POTE generator: ~6/5 = 316.071
Vals: Template:Val list
Badness: 0.070952
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 625/624, 729/728, 10985/10976
Mapping: [⟨1 -5 -4 -18 19 -15], ⟨0 25 24 79 -59 71]]
POTE generator: ~6/5 = 316.070
Vals: Template:Val list
Badness: 0.033874
Counterlytic
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 4375/4374, 496125/495616
Mapping: [⟨1 -5 -4 -18 -40], ⟨0 25 24 79 165]]
POTE generator: ~6/5 = 316.065
Vals: Template:Val list
Badness: 0.065400
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 729/728, 1375/1372, 10985/10976
Mapping: [⟨1 -5 -4 -18 -40 -15], ⟨0 25 24 79 165 71]]
POTE generator: ~6/5 = 316.065
Vals: Template:Val list
Badness: 0.029782
Quincy
Subgroup: 2.3.5.7
Comma list: 4375/4374, 823543/819200
Mapping: [⟨1 2 3 3], ⟨0 -30 -49 -14]]
Wedgie: ⟨⟨ 30 49 14 8 -62 -105 ]]
POTE generator: ~1728/1715 = 16.613
Badness: 0.079657
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4000/3993, 4375/4374
Mapping: [⟨1 2 3 3 4], ⟨0 -30 -49 -14 -39]]
POTE generator: ~100/99 = 16.613
Vals: Template:Val list
Badness: 0.030875
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 676/675, 4375/4374
Mapping: [⟨1 2 3 3 4 5], ⟨0 -30 -49 -14 -39 -94]]
POTE generator: ~100/99 = 16.602
Vals: Template:Val list
Badness: 0.023862
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155
Mapping: [⟨1 2 3 3 4 5 5], ⟨0 -30 -49 -14 -39 -94 -66]]
POTE generator: ~100/99 = 16.602
Vals: Template:Val list
Badness: 0.014741
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675
Mapping: [⟨1 2 3 3 4 5 5 4], ⟨0 -30 -49 -14 -39 -94 -66 18]]
POTE generator: ~100/99 = 16.594
Vals: Template:Val list
Badness: 0.015197
Trideci
The trideci temperament (26&65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the tridecatonic temperament, but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name trideci comes from "tridecim" (Latin for "thirteen").
Subgroup: 2.3.5.7
Comma list: 4375/4374, 83349/81920
Mapping: [⟨13 21 31 36], ⟨0 -1 -2 1]]
POTE generator: ~3/2 = 699.1410
Badness: 0.184585
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/242, 385/384, 4375/4374
Mapping: [⟨13 21 31 36 45], ⟨0 -1 -2 1 0]]
POTE generator: ~3/2 = 699.6179
Vals: Template:Val list
Badness: 0.084590
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 245/242, 325/324, 385/384
Mapping: [⟨13 21 31 36 45 48], ⟨0 -1 -2 1 0 0]]
POTE generator: ~3/2 = 699.2969
Vals: Template:Val list
Badness: 0.052366
Chlorine
The name of chlorine temperament comes from Chlorine, the 17th element.
Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, [-52 -17 34⟩, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&323 temperament, which tempers out [-49 4 22 -3⟩ as well as the ragisma.
Subgroup: 2.3.5
Comma: [-52 -17 34⟩
Mapping: [⟨17 26 39], ⟨0 2 1]]
POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2687
Badness: 0.077072
7-limit
Subgroup: 2.3.5.7
Comma list: 4375/4374, 193119049072265625/193091834023510016
Mapping: [⟨17 26 39 43], ⟨0 2 1 10]]
Wedgie: ⟨⟨ 34 17 170 -52 174 347 ]]
POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2936
Badness: 0.041658
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 41503/41472, 1879453125/1879048192
Mapping: [⟨17 26 39 43 64], ⟨0 2 1 10 -11]]
POTE generators: ~25/24 = 70.5882, ~5/4 = 386.2690
Vals: Template:Val list
Badness: 0.063706
Palladium
The name of palladium temperament comes from Palladium, the 46th element.
Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, [-39 92 -46⟩, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&414 temperament, which tempers out [-51 8 2 12⟩ as well as the ragisma.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2270317133144025/2251799813685248
Mapping: [⟨46 73 107 129], ⟨0 -1 -2 1]]
Wedgie: ⟨⟨ 46 92 -46 39 -202 -365 ]]
POTE generator: ~3/2 = 701.6074
Badness: 0.308505
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 9801/9800, 134775333/134217728
Mapping: [⟨46 73 107 129 159], ⟨0 -1 -2 1 1]]
POTE generator: ~3/2 = 701.5951
Vals: Template:Val list
Badness: 0.073783
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364
Mapping: [⟨46 73 107 129 159 170], ⟨0 -1 -2 1 1 2]]
POTE generator: ~3/2 = 701.6419
Vals: Template:Val list
Badness: 0.040751
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224
Mapping: [⟨46 73 107 129 159 170 188], ⟨0 -1 -2 1 1 2 0]]
POTE generator: ~3/2 = 701.6425
Vals: Template:Val list
Badness: 0.022441
Monzism
The monzism temperament (53&612) is a rank-two temperament which tempers out the monzisma, [54 -37 2⟩ and the nanisma, [109 -67 0 -1⟩, as well as the ragisma, 4375/4374.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 36030948116563575/36028797018963968
Mapping: [⟨1 2 10 -25], ⟨0 -2 -37 134]]
Wedgie: ⟨⟨ 2 37 -134 54 -218 -415 ]]
POTE generator: ~310078125/268435456 = 249.0207
Badness: 0.046569
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 41503/41472, 184549376/184528125
Mapping: [⟨1 2 10 -25 46], ⟨0 -2 -37 134 -205]]
POTE generator: ~231/200 = 249.0193
Vals: Template:Val list
Badness: 0.057083
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625
Mapping: [⟨1 2 10 -25 46 23], ⟨0 -2 -37 134 -205 -93]]
POTE generator: ~231/200 = 249.0199
Vals: Template:Val list
Badness: 0.053780