List of octave-reduced harmonics: Difference between revisions
Jump to navigation
Jump to search
m See also |
Added 83 and 107 harmonics; fixed typo (because 161 and 247 are composite) |
||
Line 9: | Line 9: | ||
! class="unsortable" | Remarks | ! class="unsortable" | Remarks | ||
|- | |- | ||
| 1 | | [[1/1|1]] | ||
| 0 | | 0 | ||
| 1 | | 1 | ||
Line 15: | Line 15: | ||
| present in all tunings and tonal systems | | present in all tunings and tonal systems | ||
|- | |- | ||
| 129 | | [[129/128|129]] | ||
| 13.473 | | 13.473 | ||
| 3 | | 3 × 43 | ||
| | | | ||
| | | | ||
|- | |- | ||
| 65 | | [[65/64|65]] | ||
| 26.841 | | 26.841 | ||
| 5 | | 5 × 13 | ||
| | | | ||
| [[13-limit]] | | [[13-limit]] | ||
|- | |- | ||
| '''131''' | | '''[[131/128|131]]''' | ||
| '''40.108''' | | '''40.108''' | ||
| '''prime''' | | '''prime''' | ||
Line 33: | Line 33: | ||
| '''close to square root of 67''' | | '''close to square root of 67''' | ||
|- | |- | ||
| 33 | | [[33/32|33]] | ||
| 53.273 | | 53.273 | ||
| 3 | | 3 × 11 | ||
| undecimal comma | | undecimal comma | ||
| [[11-limit]] / close to quarter-tone (1 [[degree]] of [[24edo]]), square root of 17 | | [[11-limit]] / close to quarter-tone (1 [[degree]] of [[24edo]]), square root of 17 | ||
|- | |- | ||
| 133 | | [[133/128|133]] | ||
| 66.339 | | 66.339 | ||
| 7 | | 7 × 19 | ||
| | | | ||
| close to 1 degree of [[18edo]] / [[19edo]], square root of 69 | | close to 1 degree of [[18edo]] / [[19edo]], square root of 69 | ||
|- | |- | ||
| '''67''' | | '''[[67/64|67]]''' | ||
| '''79.307''' | | '''79.307''' | ||
| '''prime''' | | '''prime''' | ||
Line 51: | Line 51: | ||
| '''close to 1 degree of [[15edo]]''' | | '''close to 1 degree of [[15edo]]''' | ||
|- | |- | ||
| 135 | | [[135/128|135]] | ||
| 92.179 | | 92.179 | ||
| 3 | | 3 × 3 × 3 × 5 | ||
| | | | ||
| [[5-limit]], close to 1 degree of [[13edo]] / square root of 71 | | [[5-limit]], close to 1 degree of [[13edo]] / square root of 71 | ||
|- | |- | ||
| '''17''' | | '''[[17/16|17]]''' | ||
| '''104.955''' | | '''104.955''' | ||
| '''prime''' | | '''prime''' | ||
Line 63: | Line 63: | ||
| '''close to 1 degree of [[11edo]] / 2 degrees of [[23edo]]''' | | '''close to 1 degree of [[11edo]] / 2 degrees of [[23edo]]''' | ||
|- | |- | ||
| '''137''' | | '''[[137/128|137]]''' | ||
| '''117.6385''' | | '''117.6385''' | ||
| '''prime''' | | '''prime''' | ||
Line 69: | Line 69: | ||
| '''close to 3 degrees of [[31edo]],''' '''square root of 73''' | | '''close to 3 degrees of [[31edo]],''' '''square root of 73''' | ||
|- | |- | ||
| 69 | | [[69/64|69]] | ||
| 130.229 | | 130.229 | ||
| 3 | | 3 × 23 | ||
| | | | ||
| close to 1 degree of [[9edo]] | | close to 1 degree of [[9edo]] | ||
|- | |- | ||
| '''139''' | | '''[[139/128|139]]''' | ||
| '''142.729''' | | '''142.729''' | ||
| '''prime''' | | '''prime''' | ||
Line 81: | Line 81: | ||
| '''close to 2 degrees of [[17edo]]''' | | '''close to 2 degrees of [[17edo]]''' | ||
|- | |- | ||
| 35 | | [[35/32|35]] | ||
| 155.140 | | 155.140 | ||
| 5 | | 5 × 7 | ||
| | | | ||
| [[7-limit]] / close to 3 degrees of [[24edo]] | | [[7-limit]] / close to 3 degrees of [[24edo]] | ||
|- | |- | ||
| 141 | | [[141/128|141]] | ||
| 167.462 | | 167.462 | ||
| 3 | | 3 × 47 | ||
| | | | ||
| | | | ||
|- | |- | ||
| '''71''' | | '''[[71/64|71]]''' | ||
| '''179.697''' | | '''179.697''' | ||
| '''prime''' | | '''prime''' | ||
Line 99: | Line 99: | ||
| '''close to 3 degrees of [[20edo]], square root of 79''' | | '''close to 3 degrees of [[20edo]], square root of 79''' | ||
|- | |- | ||
| 143 | | [[143/128|143]] | ||
| 191.846 | | 191.846 | ||
| 11 | | 11 × 13 | ||
| 11-13 meantone | | 11-13 meantone | ||
| [[13-limit]] / close to square root of 5 (a.k.a. 5 degrees of [[31edo]]) | | [[13-limit]] / close to square root of 5 (a.k.a. 5 degrees of [[31edo]]) | ||
|- | |- | ||
| 9 | | [[9/8|9]] | ||
| 203.910 | | 203.910 | ||
| 3 | | 3 × 3 | ||
| major whole-tone / Pythagorean whole tone | | major whole-tone / Pythagorean whole tone | ||
| [[3-limit]] | | [[3-limit]] | ||
|- | |- | ||
| 145 | | [[145/128|145]] | ||
| 215.891 | | 215.891 | ||
| 5 | | 5 × 29 | ||
| 5-29 eventone | | 5-29 eventone | ||
| close to 2 degrees of [[11edo]] | | close to 2 degrees of [[11edo]] | ||
|- | |- | ||
| '''73''' | | '''[[73/64|73]]''' | ||
| '''227.789''' | | '''227.789''' | ||
| '''prime''' | | '''prime''' | ||
Line 123: | Line 123: | ||
| '''close to 3 degrees of [[16edo]] / 4 degrees of [[21edo]]''' | | '''close to 3 degrees of [[16edo]] / 4 degrees of [[21edo]]''' | ||
|- | |- | ||
| 147 | | [[147/128|147]] | ||
| 239.607 | | 239.607 | ||
| 3 | | 3 × 7 × 7 | ||
| | | | ||
| [[7-limit]] / close to 1 degree of [[5edo]], square root of 21 | | [[7-limit]] / close to 1 degree of [[5edo]], square root of 21 | ||
|- | |- | ||
| '''37''' | | '''[[37/32|37]]''' | ||
| '''251.344''' | | '''251.344''' | ||
| '''prime''' | | '''prime''' | ||
Line 135: | Line 135: | ||
| '''close to 5 degrees of [[24edo]]''' | | '''close to 5 degrees of [[24edo]]''' | ||
|- | |- | ||
| '''149''' | | '''[[149/128|149]]''' | ||
| '''263.002''' | | '''263.002''' | ||
| '''prime''' | | '''prime''' | ||
Line 141: | Line 141: | ||
| | | | ||
|- | |- | ||
| 75 | | [[75/64|75]] | ||
| 274.582 | | 274.582 | ||
| 3 | | 3 × 5 × 5 | ||
| augmented second | | augmented second | ||
| [[5-limit]] / close to 5 degrees of [[22edo]], 3 degrees of [[13edo]], square root of 11 | | [[5-limit]] / close to 5 degrees of [[22edo]], 3 degrees of [[13edo]], square root of 11 | ||
|- | |- | ||
| '''151''' | | '''[[151/128|151]]''' | ||
| '''286.086''' | | '''286.086''' | ||
| '''prime''' | | '''prime''' | ||
Line 153: | Line 153: | ||
| '''close to 4 degrees of [[17edo]]''' | | '''close to 4 degrees of [[17edo]]''' | ||
|- | |- | ||
| '''19''' | | '''[[19/16|19]]''' | ||
| '''297.513''' | | '''297.513''' | ||
| '''prime''' | | '''prime''' | ||
Line 159: | Line 159: | ||
| '''close to 3 degrees of [[12edo]] (a.k.a. 1 degree of [[4edo]])''' | | '''close to 3 degrees of [[12edo]] (a.k.a. 1 degree of [[4edo]])''' | ||
|- | |- | ||
| 153 | | [[153/128|153]] | ||
| 308.865 | | 308.865 | ||
| 3 | | 3 × 3 × 17 | ||
| | | | ||
| close to 8 degrees of [[31edo]] | | close to 8 degrees of [[31edo]] | ||
|- | |- | ||
| 77 | | [[77/64|77]] | ||
| 320.144 | | 320.144 | ||
| 7 | | 7 × 11 | ||
| | | | ||
| close to 4 degrees of [[15edo]] | |||
|- | |- | ||
| 155 | | [[155/128|155]] | ||
| 331.349 | | 331.349 | ||
| 5 | | 5 × 31 | ||
| | | | ||
| | | | ||
|- | |- | ||
| 39 | | [[39/32|39]] | ||
| 342.483 | | 342.483 | ||
| 3 | | 3 × 13 | ||
| | | | ||
| [[13-limit]] / close to 2 degrees of [[7edo]] | | [[13-limit]] / close to 2 degrees of [[7edo]] | ||
|- | |- | ||
| '''157''' | | '''[[157/128|157]]''' | ||
| '''353.545''' | | '''353.545''' | ||
| '''prime''' | | '''prime''' | ||
Line 189: | Line 189: | ||
| '''close to 5 degrees of [[17edo]]''' | | '''close to 5 degrees of [[17edo]]''' | ||
|- | |- | ||
| '''79''' | | '''[[79/64|79]]''' | ||
| '''364.537''' | | '''364.537''' | ||
| '''prime''' | | '''prime''' | ||
Line 195: | Line 195: | ||
| '''close to 7 degrees of [[23edo]]''' | | '''close to 7 degrees of [[23edo]]''' | ||
|- | |- | ||
| 159 | | [[159/128|159]] | ||
| 375.4595 | | 375.4595 | ||
| 3 | | 3 × 53 | ||
| | | | ||
| close to 5 degrees of [[16edo]] | | close to 5 degrees of [[16edo]] | ||
|- | |- | ||
| '''5''' | | '''[[5/4|5]]''' | ||
| '''386.314''' | | '''386.314''' | ||
| '''prime''' | | '''prime''' | ||
Line 207: | Line 207: | ||
| '''[[5-limit]] / close to 10 degrees of [[31edo]]''' | | '''[[5-limit]] / close to 10 degrees of [[31edo]]''' | ||
|- | |- | ||
| | | [[161/128|161]] | ||
| | | 397.100 | ||
| | | 7 × 23 | ||
| | | | ||
| | | close to 4 degrees of [[12edo]] (a.k.a. 1 degree of [[3edo]]) | ||
|- | |- | ||
| 81 | | [[81/64|81]] | ||
| 407.820 | | 407.820 | ||
| 3 | | 3 × 3 × 3 × 3 | ||
| Pythagorean major third | | Pythagorean major third | ||
| [[3-limit]] | | [[3-limit]] | ||
|- | |- | ||
| '''163''' | | '''[[163/128|163]]''' | ||
| '''418.474''' | | '''418.474''' | ||
| '''prime''' | | '''prime''' | ||
Line 225: | Line 225: | ||
| '''close to 8 degrees of [[23edo]] / square root of phi''' | | '''close to 8 degrees of [[23edo]] / square root of phi''' | ||
|- | |- | ||
| '''41''' | | '''[[41/32|41]]''' | ||
| '''429.062''' | | '''429.062''' | ||
| '''prime''' | | '''prime''' | ||
Line 231: | Line 231: | ||
| '''close to 5 degrees of [[14edo]]''' | | '''close to 5 degrees of [[14edo]]''' | ||
|- | |- | ||
| 165 | | [[165/128|165]] | ||
| 439.587 | | 439.587 | ||
| 3 | | 3 × 5 × 11 | ||
| | | | ||
| | | | ||
|- | |- | ||
| '''167''' | | '''[[83/64|83]]''' | ||
| '''450.047''' | |||
| '''prime''' | |||
| | |||
| '''close to 3 degrees of [[8edo]]''' | |||
|- | |||
| '''[[167/128|167]]''' | |||
| '''460.445''' | | '''460.445''' | ||
| '''prime''' | | '''prime''' | ||
Line 243: | Line 249: | ||
| | | | ||
|- | |- | ||
| 21 | | [[21/16|21]] | ||
| 470.781 | | 470.781 | ||
| 3 | | 3 × 7 | ||
| narrow fourth / septimal fourth | | narrow fourth / septimal fourth | ||
| [[7-limit]] / close to 9 degrees of [[23edo]] | | [[7-limit]] / close to 9 degrees of [[23edo]] | ||
|- | |- | ||
| 169 | | [[169/128|169]] | ||
| 481.055 | | 481.055 | ||
| 13 | | 13 × 13 | ||
| | | | ||
| [[13-limit]] / close to 2 degrees of [[5edo]], square root of 7 | | [[13-limit]] / close to 2 degrees of [[5edo]], square root of 7 | ||
|- | |- | ||
| 85 | | [[85/64|85]] | ||
| 491.269 | | 491.269 | ||
| 5 | | 5 × 17 | ||
| near fourth | | near fourth | ||
| close to 9 degrees of [[22edo]] | | close to 9 degrees of [[22edo]] | ||
|- | |- | ||
| 171 | | [[171/128|171]] | ||
| 501.423 | | 501.423 | ||
| 3 | | 3 × 3 × 19 | ||
| | | | ||
| close to 5 degrees of [[12edo]] | | close to 5 degrees of [[12edo]] | ||
|- | |- | ||
| '''43''' | | '''[[43/32|43]]''' | ||
| '''511.518''' | | '''511.518''' | ||
| '''prime''' | | '''prime''' | ||
Line 273: | Line 279: | ||
| '''close to 3 degrees of [[7edo]] / square root of 29''' | | '''close to 3 degrees of [[7edo]] / square root of 29''' | ||
|- | |- | ||
| '''173''' | | '''[[173/128|173]]''' | ||
| '''521.554''' | | '''521.554''' | ||
| '''prime''' | | '''prime''' | ||
Line 279: | Line 285: | ||
| '''close to 10 degrees of [[23edo]]''' | | '''close to 10 degrees of [[23edo]]''' | ||
|- | |- | ||
| 87 | | [[87/64|87]] | ||
| 531.532 | | 531.532 | ||
| 3 | | 3 × 29 | ||
| | | | ||
| close to 4 degrees of [[9edo]] | | close to 4 degrees of [[9edo]] | ||
|- | |- | ||
| 175 | | [[175/128|175]] | ||
| 541.453 | | 541.453 | ||
| 5 | | 5 × 5 × 7 | ||
| | | | ||
| close to 9 degrees of [[20edo]] | | close to 9 degrees of [[20edo]] | ||
|- | |- | ||
| '''11''' | | '''[[11/8|11]]''' | ||
| '''551.318''' | | '''551.318''' | ||
| '''prime''' | | '''prime''' | ||
Line 297: | Line 303: | ||
| '''[[11-limit]] / close to 11 degrees of [[24edo]]''' | | '''[[11-limit]] / close to 11 degrees of [[24edo]]''' | ||
|- | |- | ||
| 177 | | [[177/128|177]] | ||
| 561.127 | | 561.127 | ||
| 3 | | 3 × 59 | ||
| | | | ||
| close to 7 degrees of [[15edo]] | | close to 7 degrees of [[15edo]] | ||
|- | |- | ||
| '''89''' | | '''[[89/64|89]]''' | ||
| '''570.880''' | | '''570.880''' | ||
| '''prime''' | | '''prime''' | ||
Line 309: | Line 315: | ||
| '''close to 10 degrees of [[21edo]] / 9 degrees of [[19edo]] / square root of 31''' | | '''close to 10 degrees of [[21edo]] / 9 degrees of [[19edo]] / square root of 31''' | ||
|- | |- | ||
| '''179''' | | '''[[179/128|179]]''' | ||
| '''580.579''' | | '''580.579''' | ||
| '''prime''' | | '''prime''' | ||
Line 315: | Line 321: | ||
| '''close to 15 degrees of [[31edo]]''' | | '''close to 15 degrees of [[31edo]]''' | ||
|- | |- | ||
| 45 | | [[45/32|45]] | ||
| 590.224 | | 590.224 | ||
| 3 | | 3 × 3 × 5 | ||
| high 5-limit tritone | | high 5-limit tritone | ||
| [[5-limit]] / close to square root of 15 | | [[5-limit]] / close to square root of 15 | ||
|- | |- | ||
| '''181''' | | '''[[181/128|181]]''' | ||
| '''599.815''' | | '''599.815''' | ||
| '''prime''' | | '''prime''' | ||
Line 327: | Line 333: | ||
| '''close to square root of 2''' | | '''close to square root of 2''' | ||
|- | |- | ||
| 91 | | [[91/64|91]] | ||
| 609.354 | | 609.354 | ||
| 7 | | 7 × 13 | ||
| | | | ||
| [[13-limit]] | | [[13-limit]] | ||
|- | |- | ||
| 183 | | [[183/61|183]] | ||
| 618.840 | | 618.840 | ||
| 3 | | 3 × 61 | ||
| | | | ||
| | | | ||
|- | |- | ||
| '''23''' | | '''[[23/16|23]]''' | ||
| '''628.274''' | | '''628.274''' | ||
| '''prime''' | | '''prime''' | ||
Line 345: | Line 351: | ||
| '''close to 11 degrees of [[21edo]] / 10 degrees of [[19edo]] / square root of 33''' | | '''close to 11 degrees of [[21edo]] / 10 degrees of [[19edo]] / square root of 33''' | ||
|- | |- | ||
| 185 | | [[185/128|185]] | ||
| 637.658 | | 637.658 | ||
| 5 | | 5 × 37 | ||
| | | | ||
| | | | ||
|- | |- | ||
| 93 | | [[93/64|93]] | ||
| 646.991 | | 646.991 | ||
| 3 | | 3 × 31 | ||
| | | | ||
| close to 7 degrees of [[13edo]] / 13 degrees of [[24edo]] | | close to 7 degrees of [[13edo]] / 13 degrees of [[24edo]] | ||
|- | |- | ||
| 187 | | [[187/128|187]] | ||
| 656.273 | | 656.273 | ||
| 11 | | 11 × 17 | ||
| | | | ||
| close to 11 degrees of [[20edo]] | | close to 11 degrees of [[20edo]] | ||
|- | |- | ||
| '''47''' | | '''[[47/32|47]]''' | ||
| '''665.507''' | | '''665.507''' | ||
| '''prime''' | | '''prime''' | ||
Line 369: | Line 375: | ||
| '''close to 5 degrees of [[9edo]]''' | | '''close to 5 degrees of [[9edo]]''' | ||
|- | |- | ||
| 189 | | [[189/128|189]] | ||
| 674.691 | | 674.691 | ||
| 3 | | 3 × 3 × 3 × 7 | ||
| | | | ||
| [[7-limit]] / close to 9 degrees of [[16edo]], square root of 35 | | [[7-limit]] / close to 9 degrees of [[16edo]], square root of 35 | ||
|- | |- | ||
| 95 | | [[95/64|95]] | ||
| 683.827 | | 683.827 | ||
| 5 | | 5 × 19 | ||
| | | | ||
| close to 4 degrees of [[7edo]] | | close to 4 degrees of [[7edo]] | ||
|- | |- | ||
| '''191''' | | '''[[191/128|191]]''' | ||
| '''692.9155''' | | '''692.9155''' | ||
| '''prime''' | | '''prime''' | ||
Line 387: | Line 393: | ||
| '''close to 11 degrees of [[19edo]]''' | | '''close to 11 degrees of [[19edo]]''' | ||
|- | |- | ||
| '''3''' | | '''[[3/2|3]]''' | ||
| '''701.955''' | | '''701.955''' | ||
| '''prime''' | | '''prime''' | ||
Line 393: | Line 399: | ||
| '''[[3-limit]] / close to 7 degrees of [[12edo]]''' | | '''[[3-limit]] / close to 7 degrees of [[12edo]]''' | ||
|- | |- | ||
| '''193''' | | '''[[193/128|193]]''' | ||
| '''710.948''' | | '''710.948''' | ||
| '''prime''' | | '''prime''' | ||
Line 399: | Line 405: | ||
| '''close to 13 degrees of [[22edo]]''' | | '''close to 13 degrees of [[22edo]]''' | ||
|- | |- | ||
| '''97''' | | '''[[97/64|97]]''' | ||
| '''719.895''' | | '''719.895''' | ||
| '''prime''' | | '''prime''' | ||
Line 405: | Line 411: | ||
| '''close to 3 degrees of [[5edo]]''' | | '''close to 3 degrees of [[5edo]]''' | ||
|- | |- | ||
| 195 | | [[195/128|195]] | ||
| 728.796 | | 728.796 | ||
| 3 | | 3 × 5 × 13 | ||
| | | | ||
| [[13-limit]] / close to 19 degrees of [[31edo]], square root of 37 | | [[13-limit]] / close to 19 degrees of [[31edo]], square root of 37 | ||
|- | |- | ||
| 49 | | [[49/32|49]] | ||
| 737.652 | | 737.652 | ||
| 7 | | 7 × 7 | ||
| | | | ||
| [[7-limit]] / close to 8 degrees of [[13edo]] | | [[7-limit]] / close to 8 degrees of [[13edo]] | ||
|- | |- | ||
| '''197''' | | '''[[197/128|197]]''' | ||
| '''746.462''' | | '''746.462''' | ||
| '''prime''' | | '''prime''' | ||
Line 423: | Line 429: | ||
| | | | ||
|- | |- | ||
| 99 | | [[99/64|99]] | ||
| 755.228 | | 755.228 | ||
| 3 | | 3 × 3 × 11 | ||
| | | | ||
| [[11-limit]] / close to 5 degrees of [[8edo]] / 12 degrees of [[19edo]] | | [[11-limit]] / close to 5 degrees of [[8edo]] / 12 degrees of [[19edo]] | ||
|- | |- | ||
| '''199''' | | '''[[199/128|199]]''' | ||
| '''763.9495''' | | '''763.9495''' | ||
| '''prime''' | | '''prime''' | ||
Line 435: | Line 441: | ||
| '''close to 7 degrees of [[11edo]]''' | | '''close to 7 degrees of [[11edo]]''' | ||
|- | |- | ||
| 25 | | [[25/16|25]] | ||
| 772.627 | | 772.627 | ||
| 5 | | 5 × 5 | ||
| augmented fifth | | augmented fifth | ||
| [[5-limit]] / close to 9 degrees of [[14edo]] / 11 degrees of [[17edo]], square root of 39 | | [[5-limit]] / close to 9 degrees of [[14edo]] / 11 degrees of [[17edo]], square root of 39 | ||
|- | |- | ||
| 201 | | [[201/128|201]] | ||
| 781.262 | | 781.262 | ||
| 3 | | 3 × 67 | ||
| harmonic gentle minor sixth, circular sixth | | harmonic gentle minor sixth, circular sixth | ||
| close to 19 degrees of [[23edo]] / pi | | close to 19 degrees of [[23edo]] / pi | ||
|- | |- | ||
| '''101''' | | '''[[101/64|101]]''' | ||
| '''789.854''' | | '''789.854''' | ||
| '''prime''' | | '''prime''' | ||
Line 453: | Line 459: | ||
| | | | ||
|- | |- | ||
| 203 | | [[203/128|203]] | ||
| 798.403 | | 798.403 | ||
| 7 | | 7 × 29 | ||
| | | | ||
| close to 8 degrees of [[12edo]] (a.k.a. 2 degrees of [[3edo]]) | | close to 8 degrees of [[12edo]] (a.k.a. 2 degrees of [[3edo]]) | ||
|- | |- | ||
| 51 | | [[51/32|51]] | ||
| 806.910 | | 806.910 | ||
| 3 | | 3 × 17 | ||
| | | | ||
| | | | ||
|- | |- | ||
| 205 | | [[205/128|205]] | ||
| 815.376 | | 815.376 | ||
| 5 | | 5 × 41 | ||
| | | | ||
| close to 21 degrees of [[31edo]], square root of 41 , | | close to 21 degrees of [[31edo]], square root of 41 , | ||
|- | |- | ||
| '''103''' | | '''[[103/64|103]]''' | ||
| '''823.801''' | | '''823.801''' | ||
| '''prime''' | | '''prime''' | ||
Line 477: | Line 483: | ||
| '''close to 11 degrees of [[16edo]] / 13 degrees of [[19edo]]''' | | '''close to 11 degrees of [[16edo]] / 13 degrees of [[19edo]]''' | ||
|- | |- | ||
| 207 | | [[207/128|207]] | ||
| 832.143 | | 832.143 | ||
| 3 | | 3 × 3 × 23 | ||
| | | | ||
| close to 17 degrees of [[22edo]], 10 degrees of [[13edo]] | | close to 17 degrees of [[22edo]], 10 degrees of [[13edo]] | ||
|- | |- | ||
| '''13''' | | '''[[13/8|13]]''' | ||
| '''840.528''' | | '''840.528''' | ||
| '''prime''' | | '''prime''' | ||
Line 489: | Line 495: | ||
| '''[[13-limit]] / close to 7 degrees of [[10edo]], golden ratio''' | | '''[[13-limit]] / close to 7 degrees of [[10edo]], golden ratio''' | ||
|- | |- | ||
| 209 | | [[209/128|209]] | ||
| 848.831 | | 848.831 | ||
| 11 | | 11 × 19 | ||
| 11-19 hemieleventh | | 11-19 hemieleventh | ||
| close to 12 degrees of [[17edo]] | | close to 12 degrees of [[17edo]] | ||
|- | |- | ||
| 105 | | [[105/64|105]] | ||
| 857.095 | | 857.095 | ||
| 3 | | 3 × 5 × 7 | ||
| | | | ||
| [[7-limit]] / close to 5 degrees of [[7edo]], square root of 43 | | [[7-limit]] / close to 5 degrees of [[7edo]], square root of 43 | ||
|- | |- | ||
| '''211''' | | '''[[211/128|211]]''' | ||
| '''865.319''' | | '''865.319''' | ||
| '''prime''' | | '''prime''' | ||
Line 507: | Line 513: | ||
| '''close to 13 degrees of [[18edo]]''' | | '''close to 13 degrees of [[18edo]]''' | ||
|- | |- | ||
| '''53''' | | '''[[53/32|53]]''' | ||
| '''873.505''' | | '''873.505''' | ||
| '''prime''' | | '''prime''' | ||
Line 513: | Line 519: | ||
| '''close to 8 degrees of [[11edo]]''' | | '''close to 8 degrees of [[11edo]]''' | ||
|- | |- | ||
| 213 | | [[213/128|213]] | ||
| 881. | | 881.652 | ||
| 3 | | 3 × 71 | ||
| | | | ||
| close to 11 degrees of [[15edo]] / close to 14 degrees of [[19edo]] | | close to 11 degrees of [[15edo]] / close to 14 degrees of [[19edo]] | ||
|- | |- | ||
| 215 | | '''[[107/64|107]]''' | ||
| ''' 889.760''' | |||
| '''prime''' | |||
| | |||
| | |||
|- | |||
| [[215/128|215]] | |||
| 897.831 | | 897.831 | ||
| 5 | | 5 × 43 | ||
| | | | ||
| close to 9 degrees of [[12edo]] (a.k.a. 3 degrees of [[4edo]]), square root of 45 | | close to 9 degrees of [[12edo]] (a.k.a. 3 degrees of [[4edo]]), square root of 45 | ||
|- | |- | ||
| 27 | | [[27/16|27]] | ||
| 905.865 | | 905.865 | ||
| 3 | | 3 × 3 × 3 | ||
| Pythagorean major sixth | | Pythagorean major sixth | ||
| [[3-limit]] | | [[3-limit]] | ||
|- | |- | ||
| 217 | | [[217/128|217]] | ||
| 913.8615 | | 913.8615 | ||
| 7 | | 7 × 31 | ||
| harmonic gentle major third | | harmonic gentle major third | ||
| close to 13 degrees of [[17edo]] | | close to 13 degrees of [[17edo]] | ||
|- | |- | ||
| '''109''' | | '''[[109/64|109]]''' | ||
| '''921.821''' | | '''921.821''' | ||
| '''prime''' | | '''prime''' | ||
Line 543: | Line 555: | ||
| '''close to 10 degrees of [[13edo]]''' | | '''close to 10 degrees of [[13edo]]''' | ||
|- | |- | ||
| 219 | | [[219/128|219]] | ||
| 929.7445 | | 929.7445 | ||
| 3 | | 3 × 73 | ||
| | | | ||
| close to 24 degrees of [[31edo]], square root of 47 | | close to 24 degrees of [[31edo]], square root of 47 | ||
|- | |- | ||
| 55 | | [[55/32|55]] | ||
| 937.632 | | 937.632 | ||
| 5 | | 5 × 11 | ||
| | | | ||
| [[11-limit]] / close to 18 degrees of [[23edo]] | | [[11-limit]] / close to 18 degrees of [[23edo]] | ||
|- | |- | ||
| 221 | | [[221/128|221]] | ||
| 945.483 | | 945.483 | ||
| 13 | | 13 × 17 | ||
| | | | ||
| close to 15 degrees of [[19edo]] | | close to 15 degrees of [[19edo]] | ||
|- | |- | ||
| 111 | | [[111/64|111]] | ||
| 953.299 | | 953.299 | ||
| 3 | | 3 × 37 | ||
| harmonic hemitwelfth | | harmonic hemitwelfth | ||
| close to 19 degrees of [[24edo]] / square root of 3 | | close to 19 degrees of [[24edo]] / square root of 3 | ||
|- | |- | ||
| '''223''' | | '''[[223/128|223]]''' | ||
| '''961.080''' | | '''961.080''' | ||
| '''prime''' | | '''prime''' | ||
Line 573: | Line 585: | ||
| '''close to 4 degrees of [[5edo]]''' | | '''close to 4 degrees of [[5edo]]''' | ||
|- | |- | ||
| '''7''' | | '''[[7/4|7]]''' | ||
| '''968.826''' | | '''968.826''' | ||
| '''prime''' | | '''prime''' | ||
Line 579: | Line 591: | ||
| '''[[7-limit]] / close to 17 degrees of [[21edo]] / 25 degrees of [[31edo]]''' | | '''[[7-limit]] / close to 17 degrees of [[21edo]] / 25 degrees of [[31edo]]''' | ||
|- | |- | ||
| 225 | | [[225/128|225]] | ||
| 976.537 | | 976.537 | ||
| 3 | | 3 × 3 × 5 × 5 | ||
| 5-limit subminor seventh | | 5-limit subminor seventh | ||
| [[5-limit]] / close to 11 degrees of [[16edo]] | | [[5-limit]] / close to 11 degrees of [[16edo]] | ||
|- | |- | ||
| '''113''' | | '''[[113/64|113]]''' | ||
| '''984.215''' | | '''984.215''' | ||
| '''prime''' | | '''prime''' | ||
Line 591: | Line 603: | ||
| '''close to 9 degrees of [[11edo]]''' | | '''close to 9 degrees of [[11edo]]''' | ||
|- | |- | ||
| '''227''' | | '''[[227/128|227]]''' | ||
| '''991.858''' | | '''991.858''' | ||
| '''prime''' | | '''prime''' | ||
Line 597: | Line 609: | ||
| | | | ||
|- | |- | ||
| 57 | | [[57/32|57]] | ||
| 999.468 | | 999.468 | ||
| 3 | | 3 × 19 | ||
| | | | ||
| close to 10 degrees of [[12edo]] (a.k.a. 5 degrees of [[6edo]]), square root of 51 | | close to 10 degrees of [[12edo]] (a.k.a. 5 degrees of [[6edo]]), square root of 51 | ||
|- | |- | ||
| '''229''' | | '''[[229/128|229]]''' | ||
| '''1007.0445''' | | '''1007.0445''' | ||
| '''prime''' | | '''prime''' | ||
Line 609: | Line 621: | ||
| | | | ||
|- | |- | ||
| 115 | | [[115/64|115]] | ||
| 1014.588 | | 1014.588 | ||
| 5 | | 5 × 23 | ||
| | | | ||
| close to 11 degrees of [[13edo]] | | close to 11 degrees of [[13edo]] | ||
|- | |- | ||
| 231 | | [[231/128|231]] | ||
| 1022.099 | | 1022.099 | ||
| 3 | | 3 × 7 × 11 | ||
| | | | ||
| close to square root of 13 | | close to square root of 13 | ||
|- | |- | ||
| '''29''' | | '''[[29/16|29]]''' | ||
| '''1029.577''' | | '''1029.577''' | ||
| '''prime''' | | '''prime''' | ||
Line 627: | Line 639: | ||
| '''close to 6 degrees of [[7edo]]''' | | '''close to 6 degrees of [[7edo]]''' | ||
|- | |- | ||
| '''233''' | | '''[[233/128|233]]''' | ||
| '''1037.023''' | | '''1037.023''' | ||
| '''prime''' | | '''prime''' | ||
Line 633: | Line 645: | ||
| '''close to square root of 53''' | | '''close to square root of 53''' | ||
|- | |- | ||
| 117 | | [[117/64|117]] | ||
| 1044.438 | | 1044.438 | ||
| 3 | | 3 × 3 × 13 | ||
| | | | ||
| [[13-limit]] / close to 13 degrees of [[15edo]] / 20 degrees of [[23edo]] | | [[13-limit]] / close to 13 degrees of [[15edo]] / 20 degrees of [[23edo]] | ||
|- | |- | ||
| 235 | | [[235/128|235]] | ||
| 1051.820 | | 1051.820 | ||
| 5 | | 5 × 47 | ||
| | | | ||
| close to 21 degrees of [[24edo]] | | close to 21 degrees of [[24edo]] | ||
|- | |- | ||
| '''59''' | | '''[[59/32|59]]''' | ||
| '''1059.172''' | | '''1059.172''' | ||
| '''prime''' | | '''prime''' | ||
Line 651: | Line 663: | ||
| '''close to 15 degrees of [[17edo]]''' | | '''close to 15 degrees of [[17edo]]''' | ||
|- | |- | ||
| 237 | | [[237/128|237]] | ||
| 1066.492 | | 1066.492 | ||
| 3 | | 3 × 79 | ||
| | | | ||
| close to 8 degrees of [[9edo]], square root of 55 | | close to 8 degrees of [[9edo]], square root of 55 | ||
|- | |- | ||
| 119 | | [[119/64|119]] | ||
| 1073.781 | | 1073.781 | ||
| 7 | | 7 × 17 | ||
| | | | ||
| close to 17 degrees of [[19edo]] | | close to 17 degrees of [[19edo]] | ||
|- | |- | ||
| '''239''' | | '''[[239/128|239]]''' | ||
| '''1081.040''' | | '''1081.040''' | ||
| '''prime''' | | '''prime''' | ||
Line 669: | Line 681: | ||
| '''close to 3 degrees of [[31edo]]''' | | '''close to 3 degrees of [[31edo]]''' | ||
|- | |- | ||
| 15 | | [[15/8|15]] | ||
| 1088.269 | | 1088.269 | ||
| 3 | | 3 × 5 | ||
| 5-limit major seventh | | 5-limit major seventh | ||
| [[5-limit]] / close to 19 degrees of [[21edo]] / 10 degrees of [[11edo]] | | [[5-limit]] / close to 19 degrees of [[21edo]] / 10 degrees of [[11edo]] | ||
|- | |- | ||
| '''241''' | | '''[[241/128|241]]''' | ||
| '''1095.467''' | | '''1095.467''' | ||
| '''prime''' | | '''prime''' | ||
Line 681: | Line 693: | ||
| | | | ||
|- | |- | ||
| 121 | | [[121/64|121]] | ||
| 1102.636 | | 1102.636 | ||
| 11 | | 11 × 11 | ||
| | | | ||
| [[11-limit]] / close to 11 degrees of [[12edo]], square root of 57 | | [[11-limit]] / close to 11 degrees of [[12edo]], square root of 57 | ||
|- | |- | ||
| 243 | | [[243/128|243]] | ||
| 1109.775 | | 1109.775 | ||
| 3 | | 3 × 3 × 3 × 3 × 3 | ||
| Pythagorean major seventh | | Pythagorean major seventh | ||
| close to 12 degrees of [[13edo]] | | close to 12 degrees of [[13edo]] | ||
|- | |- | ||
| '''61''' | | '''[[61/32|61]]''' | ||
| '''1116.885''' | | '''1116.885''' | ||
| '''prime''' | | '''prime''' | ||
Line 699: | Line 711: | ||
| '''close to 13 degrees of [[14edo]]''' | | '''close to 13 degrees of [[14edo]]''' | ||
|- | |- | ||
| 245 | | [[245/128|245]] | ||
| 1123.9655 | | 1123.9655 | ||
| 5 | | 5 × 7 × 7 | ||
| | | | ||
| close to 16 degrees of [[17edo]] | | close to 16 degrees of [[17edo]] | ||
|- | |- | ||
| 123 | | [[123/64|123]] | ||
| 1131.017 | | 1131.017 | ||
| 3 | | 3 × 41 | ||
| | | | ||
| close to 17 degrees of [[18edo]], 18 degrees of [[19edo]], square root of 59 | | close to 17 degrees of [[18edo]], 18 degrees of [[19edo]], square root of 59 | ||
|- | |- | ||
| | | [[247/128|247]] | ||
| | | 1138.041 | ||
| | | 13 × 19 | ||
| | | | ||
| | | close to 19 degrees of [[20edo]] | ||
|- | |- | ||
| '''31''' | | '''[[31/16|31]]''' | ||
| '''1145.036''' | | '''1145.036''' | ||
| '''prime''' | | '''prime''' | ||
Line 723: | Line 735: | ||
| '''close to 21 degrees of [[22edo]]''' | | '''close to 21 degrees of [[22edo]]''' | ||
|- | |- | ||
| 249 | | [[249/128|249]] | ||
| 1152.002 | | 1152.002 | ||
| 3 | | 3 × 83 | ||
| | | | ||
| close to 24 degrees of [[25edo]] | | close to 24 degrees of [[25edo]] | ||
|- | |- | ||
| 125 | | [[125/64|125]] | ||
| 1158.941 | | 1158.941 | ||
| 5 | | 5 × 5 × 5 | ||
| | | | ||
| [[5-limit]], close to square root of 61 | | [[5-limit]], close to square root of 61 | ||
|- | |- | ||
| '''251''' | | '''[[251/128|251]]''' | ||
| '''1165.852''' | | '''1165.852''' | ||
| '''prime''' | | '''prime''' | ||
Line 741: | Line 753: | ||
| | | | ||
|- | |- | ||
| 63 | | [[63/32|63]] | ||
| 1172.736 | | 1172.736 | ||
| 3 | | 3 × 3 × 7 | ||
| | | | ||
| [[7-limit]] | | [[7-limit]] | ||
|- | |- | ||
| 253 | | [[253/128|253]] | ||
| 1179.592 | | 1179.592 | ||
| 11 | | 11 × 23 | ||
| | | | ||
| | | | ||
|- | |- | ||
| '''127''' | | '''[[127/64|127]]''' | ||
| '''1186.422''' | | '''1186.422''' | ||
| '''prime''' | | '''prime''' | ||
Line 759: | Line 771: | ||
| '''close to square root of 63''' | | '''close to square root of 63''' | ||
|- | |- | ||
| 255 | | [[255/128|255]] | ||
| 1193.224 | | 1193.224 | ||
| 3 | | 3 × 5 × 17 | ||
| | | | ||
| | | | ||
|- | |- | ||
| '''2''' | | '''[[2/1|2]]''' | ||
| '''1200''' | | '''1200''' | ||
| '''prime''' | | '''prime''' |
Latest revision as of 14:19, 31 May 2025
This is a list of harmonics up to 255, sorted by ascending pitch of their octave-reduced equivalent (except the octave, which is not reduced). Prime harmonics are in bold.
Harmonic | Size (¢)[1] | Factorization | Name | Remarks |
---|---|---|---|---|
1 | 0 | 1 | unison | present in all tunings and tonal systems |
129 | 13.473 | 3 × 43 | ||
65 | 26.841 | 5 × 13 | 13-limit | |
131 | 40.108 | prime | close to square root of 67 | |
33 | 53.273 | 3 × 11 | undecimal comma | 11-limit / close to quarter-tone (1 degree of 24edo), square root of 17 |
133 | 66.339 | 7 × 19 | close to 1 degree of 18edo / 19edo, square root of 69 | |
67 | 79.307 | prime | close to 1 degree of 15edo | |
135 | 92.179 | 3 × 3 × 3 × 5 | 5-limit, close to 1 degree of 13edo / square root of 71 | |
17 | 104.955 | prime | harmonic half-step | close to 1 degree of 11edo / 2 degrees of 23edo |
137 | 117.6385 | prime | harmonic secor | close to 3 degrees of 31edo, square root of 73 |
69 | 130.229 | 3 × 23 | close to 1 degree of 9edo | |
139 | 142.729 | prime | close to 2 degrees of 17edo | |
35 | 155.140 | 5 × 7 | 7-limit / close to 3 degrees of 24edo | |
141 | 167.462 | 3 × 47 | ||
71 | 179.697 | prime | close to 3 degrees of 20edo, square root of 79 | |
143 | 191.846 | 11 × 13 | 11-13 meantone | 13-limit / close to square root of 5 (a.k.a. 5 degrees of 31edo) |
9 | 203.910 | 3 × 3 | major whole-tone / Pythagorean whole tone | 3-limit |
145 | 215.891 | 5 × 29 | 5-29 eventone | close to 2 degrees of 11edo |
73 | 227.789 | prime | close to 3 degrees of 16edo / 4 degrees of 21edo | |
147 | 239.607 | 3 × 7 × 7 | 7-limit / close to 1 degree of 5edo, square root of 21 | |
37 | 251.344 | prime | harmonic hemifourth | close to 5 degrees of 24edo |
149 | 263.002 | prime | harmonic subminor third | |
75 | 274.582 | 3 × 5 × 5 | augmented second | 5-limit / close to 5 degrees of 22edo, 3 degrees of 13edo, square root of 11 |
151 | 286.086 | prime | harmonic gentle minor third | close to 4 degrees of 17edo |
19 | 297.513 | prime | harmonic minor third | close to 3 degrees of 12edo (a.k.a. 1 degree of 4edo) |
153 | 308.865 | 3 × 3 × 17 | close to 8 degrees of 31edo | |
77 | 320.144 | 7 × 11 | close to 4 degrees of 15edo | |
155 | 331.349 | 5 × 31 | ||
39 | 342.483 | 3 × 13 | 13-limit / close to 2 degrees of 7edo | |
157 | 353.545 | prime | harmonic hemififth | close to 5 degrees of 17edo |
79 | 364.537 | prime | close to 7 degrees of 23edo | |
159 | 375.4595 | 3 × 53 | close to 5 degrees of 16edo | |
5 | 386.314 | prime | 5-limit major third | 5-limit / close to 10 degrees of 31edo |
161 | 397.100 | 7 × 23 | close to 4 degrees of 12edo (a.k.a. 1 degree of 3edo) | |
81 | 407.820 | 3 × 3 × 3 × 3 | Pythagorean major third | 3-limit |
163 | 418.474 | prime | overtone gentle major third | close to 8 degrees of 23edo / square root of phi |
41 | 429.062 | prime | close to 5 degrees of 14edo | |
165 | 439.587 | 3 × 5 × 11 | ||
83 | 450.047 | prime | close to 3 degrees of 8edo | |
167 | 460.445 | prime | ||
21 | 470.781 | 3 × 7 | narrow fourth / septimal fourth | 7-limit / close to 9 degrees of 23edo |
169 | 481.055 | 13 × 13 | 13-limit / close to 2 degrees of 5edo, square root of 7 | |
85 | 491.269 | 5 × 17 | near fourth | close to 9 degrees of 22edo |
171 | 501.423 | 3 × 3 × 19 | close to 5 degrees of 12edo | |
43 | 511.518 | prime | close to 3 degrees of 7edo / square root of 29 | |
173 | 521.554 | prime | close to 10 degrees of 23edo | |
87 | 531.532 | 3 × 29 | close to 4 degrees of 9edo | |
175 | 541.453 | 5 × 5 × 7 | close to 9 degrees of 20edo | |
11 | 551.318 | prime | undecimal semi-augmented fourth / undecimal tritone | 11-limit / close to 11 degrees of 24edo |
177 | 561.127 | 3 × 59 | close to 7 degrees of 15edo | |
89 | 570.880 | prime | close to 10 degrees of 21edo / 9 degrees of 19edo / square root of 31 | |
179 | 580.579 | prime | close to 15 degrees of 31edo | |
45 | 590.224 | 3 × 3 × 5 | high 5-limit tritone | 5-limit / close to square root of 15 |
181 | 599.815 | prime | close to square root of 2 | |
91 | 609.354 | 7 × 13 | 13-limit | |
183 | 618.840 | 3 × 61 | ||
23 | 628.274 | prime | close to 11 degrees of 21edo / 10 degrees of 19edo / square root of 33 | |
185 | 637.658 | 5 × 37 | ||
93 | 646.991 | 3 × 31 | close to 7 degrees of 13edo / 13 degrees of 24edo | |
187 | 656.273 | 11 × 17 | close to 11 degrees of 20edo | |
47 | 665.507 | prime | close to 5 degrees of 9edo | |
189 | 674.691 | 3 × 3 × 3 × 7 | 7-limit / close to 9 degrees of 16edo, square root of 35 | |
95 | 683.827 | 5 × 19 | close to 4 degrees of 7edo | |
191 | 692.9155 | prime | close to 11 degrees of 19edo | |
3 | 701.955 | prime | just perfect fifth | 3-limit / close to 7 degrees of 12edo |
193 | 710.948 | prime | close to 13 degrees of 22edo | |
97 | 719.895 | prime | close to 3 degrees of 5edo | |
195 | 728.796 | 3 × 5 × 13 | 13-limit / close to 19 degrees of 31edo, square root of 37 | |
49 | 737.652 | 7 × 7 | 7-limit / close to 8 degrees of 13edo | |
197 | 746.462 | prime | ||
99 | 755.228 | 3 × 3 × 11 | 11-limit / close to 5 degrees of 8edo / 12 degrees of 19edo | |
199 | 763.9495 | prime | close to 7 degrees of 11edo | |
25 | 772.627 | 5 × 5 | augmented fifth | 5-limit / close to 9 degrees of 14edo / 11 degrees of 17edo, square root of 39 |
201 | 781.262 | 3 × 67 | harmonic gentle minor sixth, circular sixth | close to 19 degrees of 23edo / pi |
101 | 789.854 | prime | ||
203 | 798.403 | 7 × 29 | close to 8 degrees of 12edo (a.k.a. 2 degrees of 3edo) | |
51 | 806.910 | 3 × 17 | ||
205 | 815.376 | 5 × 41 | close to 21 degrees of 31edo, square root of 41 , | |
103 | 823.801 | prime | close to 11 degrees of 16edo / 13 degrees of 19edo | |
207 | 832.143 | 3 × 3 × 23 | close to 17 degrees of 22edo, 10 degrees of 13edo | |
13 | 840.528 | prime | harmonic sixth, golden overtone | 13-limit / close to 7 degrees of 10edo, golden ratio |
209 | 848.831 | 11 × 19 | 11-19 hemieleventh | close to 12 degrees of 17edo |
105 | 857.095 | 3 × 5 × 7 | 7-limit / close to 5 degrees of 7edo, square root of 43 | |
211 | 865.319 | prime | close to 13 degrees of 18edo | |
53 | 873.505 | prime | close to 8 degrees of 11edo | |
213 | 881.652 | 3 × 71 | close to 11 degrees of 15edo / close to 14 degrees of 19edo | |
107 | 889.760 | prime | ||
215 | 897.831 | 5 × 43 | close to 9 degrees of 12edo (a.k.a. 3 degrees of 4edo), square root of 45 | |
27 | 905.865 | 3 × 3 × 3 | Pythagorean major sixth | 3-limit |
217 | 913.8615 | 7 × 31 | harmonic gentle major third | close to 13 degrees of 17edo |
109 | 921.821 | prime | close to 10 degrees of 13edo | |
219 | 929.7445 | 3 × 73 | close to 24 degrees of 31edo, square root of 47 | |
55 | 937.632 | 5 × 11 | 11-limit / close to 18 degrees of 23edo | |
221 | 945.483 | 13 × 17 | close to 15 degrees of 19edo | |
111 | 953.299 | 3 × 37 | harmonic hemitwelfth | close to 19 degrees of 24edo / square root of 3 |
223 | 961.080 | prime | close to 4 degrees of 5edo | |
7 | 968.826 | prime | harmonic seventh / septimal minor seventh | 7-limit / close to 17 degrees of 21edo / 25 degrees of 31edo |
225 | 976.537 | 3 × 3 × 5 × 5 | 5-limit subminor seventh | 5-limit / close to 11 degrees of 16edo |
113 | 984.215 | prime | close to 9 degrees of 11edo | |
227 | 991.858 | prime | ||
57 | 999.468 | 3 × 19 | close to 10 degrees of 12edo (a.k.a. 5 degrees of 6edo), square root of 51 | |
229 | 1007.0445 | prime | ||
115 | 1014.588 | 5 × 23 | close to 11 degrees of 13edo | |
231 | 1022.099 | 3 × 7 × 11 | close to square root of 13 | |
29 | 1029.577 | prime | close to 6 degrees of 7edo | |
233 | 1037.023 | prime | close to square root of 53 | |
117 | 1044.438 | 3 × 3 × 13 | 13-limit / close to 13 degrees of 15edo / 20 degrees of 23edo | |
235 | 1051.820 | 5 × 47 | close to 21 degrees of 24edo | |
59 | 1059.172 | prime | close to 15 degrees of 17edo | |
237 | 1066.492 | 3 × 79 | close to 8 degrees of 9edo, square root of 55 | |
119 | 1073.781 | 7 × 17 | close to 17 degrees of 19edo | |
239 | 1081.040 | prime | close to 3 degrees of 31edo | |
15 | 1088.269 | 3 × 5 | 5-limit major seventh | 5-limit / close to 19 degrees of 21edo / 10 degrees of 11edo |
241 | 1095.467 | prime | ||
121 | 1102.636 | 11 × 11 | 11-limit / close to 11 degrees of 12edo, square root of 57 | |
243 | 1109.775 | 3 × 3 × 3 × 3 × 3 | Pythagorean major seventh | close to 12 degrees of 13edo |
61 | 1116.885 | prime | close to 13 degrees of 14edo | |
245 | 1123.9655 | 5 × 7 × 7 | close to 16 degrees of 17edo | |
123 | 1131.017 | 3 × 41 | close to 17 degrees of 18edo, 18 degrees of 19edo, square root of 59 | |
247 | 1138.041 | 13 × 19 | close to 19 degrees of 20edo | |
31 | 1145.036 | prime | close to 21 degrees of 22edo | |
249 | 1152.002 | 3 × 83 | close to 24 degrees of 25edo | |
125 | 1158.941 | 5 × 5 × 5 | 5-limit, close to square root of 61 | |
251 | 1165.852 | prime | ||
63 | 1172.736 | 3 × 3 × 7 | 7-limit | |
253 | 1179.592 | 11 × 23 | ||
127 | 1186.422 | prime | close to square root of 63 | |
255 | 1193.224 | 3 × 5 × 17 | ||
2 | 1200 | prime | octave | 2-limit |
- ↑ cent values are given for the octave reduced equivalent