186zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
Contribution (talk | contribs) |
||
Line 104: | Line 104: | ||
== Intervals and notation == | == Intervals and notation == | ||
There are multiple ways to approach notation. The simplest method is to use the notations from [[41edo]]. However, this approach will not preserve octave compression when the audio is rendered by notation software. To address this, consider using the ups and downs notation from [[124edo]] at every 3-degree step (i.e., the [[edonoi]] [[124ed8]]). | There are multiple ways to approach notation. The simplest method is to use the notations from [[41edo]]. However, this approach will not preserve octave compression when the audio is rendered by notation software. To address this, consider using the ups and downs notation from [[124edo]] at every 3-degree step (i.e., the [[edonoi]] [[124ed8]]). | ||
{| class="wikitable center-all right-2 left-3" | |||
|- | |||
! Step | |||
! Cents | |||
! Ratios | |||
|- | |||
| 0 | |||
| 0.000 | |||
| | |||
|- | |||
| 1 | |||
| 29.025 | |||
| | |||
|- | |||
| 2 | |||
| 58.050 | |||
| '''32/31''', '''<u>31/30'''</u>, '''<u>30/29'''</u>, '''29/28''', 28/27, <small>27/26</small>, <small><small>26/25</small></small>, <small><small><small>25/24</small></small></small> | |||
|- | |||
| 3 | |||
| 87.075 | |||
| <small><small><small>24/23</small></small></small>, <small><small>23/22</small></small>, 22/21, '''21/20''', '''<u>20/19'''</u>, 19/18, <small><small>18/17</small></small> | |||
|- | |||
| 4 | |||
| 116.100 | |||
| <small><small>17/16</small></small>, '''16/15''', '''<u>31/29'''</u>, '''15/14''', <small>29/27</small>, <small><small><small>14/13</small></small></small> | |||
|- | |||
| 5 | |||
| 145.124 | |||
| <small><small>27/25</small></small>, 13/12, '''<u>25/23'''</u>, 12/11, <small><small><small>23/21</small></small></small> | |||
|- | |||
| 6 | |||
| 174.149 | |||
| <small>11/10</small>, '''32/29''', '''<u>21/19'''</u>, '''<u>31/28'''</u>, <small>10/9</small> | |||
|- | |||
| 7 | |||
| 203.174 | |||
| <small><small><small>29/26</small></small></small>, <small><small>19/17</small></small>, 28/25, '''<u>9/8'''</u>, <small>26/23</small>, <small><small><small>17/15</small></small></small> | |||
|- | |||
| 8 | |||
| 232.199 | |||
| <small><small>25/22</small></small>, '''<u>8/7'''</u>, 31/27, <small><small>23/20</small></small> | |||
|- | |||
| 9 | |||
| 261.224 | |||
| <small><small><small>15/13</small></small></small>, <small>22/19</small>, '''29/25''', 7/6 | |||
|- | |||
| 10 | |||
| 290.249 | |||
| <small><small><small>27/23</small></small></small>, <small>20/17</small>, '''<u>13/11'''</u>, '''32/27''', <small>19/16</small>, <small><small>25/21</small></small>, <small><small><small>31/26</small></small></small> | |||
|- | |||
| 11 | |||
| 319.274 | |||
| '''6/5''', <small>29/24</small>, <small><small>23/19</small></small> | |||
|- | |||
| 12 | |||
| 348.299 | |||
| <small><small><small>17/14</small></small></small>, <small>28/23</small>, '''<u>11/9'''</u>, 27/22, <small><small>16/13</small></small> | |||
|- | |||
| 13 | |||
| 377.323 | |||
| <small><small>21/17</small></small>, <small>26/21</small>, 31/25, <small>5/4</small> | |||
|- | |||
| 14 | |||
| 406.348 | |||
| 29/23, '''<u>24/19'''</u>, '''19/15''', <small><small>14/11</small></small> | |||
|- | |||
| 15 | |||
| 435.373 | |||
| <small><small>23/18</small></small>, <small>32/25</small>, '''<u>9/7'''</u>, <small>31/24</small>, <small><small>22/17</small></small> | |||
|- | |||
| 16 | |||
| 464.398 | |||
| <small><small>13/10</small></small>, '''30/23''', '''<u>17/13'''</u>, 21/16, <small><small>25/19</small></small>, <small><small><small>29/22</small></small></small> | |||
|- | |||
| 17 | |||
| 493.423 | |||
| '''4/3''' | |||
|- | |||
| 18 | |||
| 522.448 | |||
| 31/23, '''27/20''', '''<u>23/17'''</u>, 19/14, <small><small><small>15/11</small></small></small> | |||
|- | |||
| 19 | |||
| 551.473 | |||
| <small>26/19</small>, '''<u>11/8'''</u>, <small>29/21</small>, <small><small>18/13</small></small> | |||
|- | |||
| 20 | |||
| 580.498 | |||
| <small><small>25/18</small></small>, <small>32/23</small>, '''<u>7/5'''</u>, <small><small><small>31/22</small></small></small> | |||
|- | |||
| 21 | |||
| 609.523 | |||
| <small><small><small>24/17</small></small></small>, 17/12, '''<u>27/19'''</u>, <small>10/7</small> | |||
|- | |||
| 22 | |||
| 638.547 | |||
| <small><small>23/16</small></small>, '''<u>13/9'''</u>, '''29/20''', <small><small>16/11</small></small> | |||
|- | |||
| 23 | |||
| 667.572 | |||
| <small><small>19/13</small></small>, '''22/15''', '''<u>25/17'''</u>, '''28/19''', 31/21 | |||
|- | |||
| 24 | |||
| 696.597 | |||
| 3/2 | |||
|- | |||
| 25 | |||
| 725.622 | |||
| '''32/21''', 29/19, <small><small>26/17</small></small>, <small><small><small>23/15</small></small></small> | |||
|- | |||
| 26 | |||
| 754.647 | |||
| <small>20/13</small>, '''<u>17/11'''</u>, '''31/20''', <small><small>14/9</small></small> | |||
|- | |||
| 27 | |||
| 783.672 | |||
| <small><small>25/16</small></small>, '''<u>11/7'''</u>, 30/19, <small><small>19/12</small></small> | |||
|- | |||
| 28 | |||
| 812.697 | |||
| <small><small>27/17</small></small>, '''<u>8/5'''</u>, <small><small><small>29/18</small></small></small> | |||
|- | |||
| 29 | |||
| 841.722 | |||
| <small><small>21/13</small></small>, '''<u>13/8'''</u>, 31/19, <small><small>18/11</small></small> | |||
|- | |||
| 30 | |||
| 870.746 | |||
| <small><small>23/14</small></small>, 28/17, <small><small><small>5/3</small></small></small> | |||
|- | |||
| 31 | |||
| 899.771 | |||
| '''32/19''', 27/16, <small><small>22/13</small></small> | |||
|- | |||
| 32 | |||
| 928.796 | |||
| <small><small>17/10</small></small>, '''29/17''', '''12/7''', <small><small><small>31/18</small></small></small> | |||
|- | |||
| 33 | |||
| 957.821 | |||
| <small><small>19/11</small></small>, 26/15, <small><small>7/4</small></small> | |||
|- | |||
| 34 | |||
| 986.846 | |||
| '''30/17''', '''<u>23/13'''</u>, <small>16/9</small> | |||
|- | |||
| 35 | |||
| 1015.871 | |||
| <small><small>25/14</small></small>, '''<u>9/5'''</u>, <small><small><small>29/16</small></small></small> | |||
|- | |||
| 36 | |||
| 1044.896 | |||
| <small><small>20/11</small></small>, '''31/17''', '''11/6''' | |||
|- | |||
| 37 | |||
| 1073.921 | |||
| <small><small><small>24/13</small></small></small>, '''<u>13/7'''</u>, 28/15, <small><small><small>15/8</small></small></small> | |||
|- | |||
| 38 | |||
| 1102.946 | |||
| <small>32/17</small>, '''<u>17/9'''</u>, <small>19/10</small> | |||
|- | |||
| 39 | |||
| 1131.970 | |||
| <small><small><small>21/11</small></small></small>, 23/12, '''<u>25/13'''</u>, 27/14, <small>29/15</small>, <small><small><small>31/16</small></small></small> | |||
|- | |||
| 40 | |||
| 1160.995 | |||
| | |||
|- | |||
| 41 | |||
| 1190.020 | |||
| <small><small>2/1</small></small> | |||
|- | |||
| 42 | |||
| 1219.045 | |||
| | |||
|- | |||
| 43 | |||
| 1248.070 | |||
| <small>31/15</small>, <small><small><small>29/14</small></small></small> | |||
|- | |||
| 44 | |||
| 1277.095 | |||
| <small><small>27/13</small></small>, 25/12, '''<u>23/11'''</u>, <small>21/10</small> | |||
|- | |||
| 45 | |||
| 1306.120 | |||
| <small><small><small>19/9</small></small></small>, '''<u>17/8'''</u>, 32/15, <small><small><small>15/7</small></small></small> | |||
|- | |||
| 46 | |||
| 1335.145 | |||
| 28/13, '''13/6''' | |||
|- | |||
| 47 | |||
| 1364.170 | |||
| <small><small><small>24/11</small></small></small>, '''<u>11/5'''</u>, <small><small>31/14</small></small> | |||
|- | |||
| 48 | |||
| 1393.194 | |||
| <small><small>20/9</small></small>, '''29/13''', <small><small>9/4</small></small> | |||
|- | |||
| 49 | |||
| 1422.219 | |||
| '''<u>25/11'''</u>, <small>16/7</small> | |||
|- | |||
| 50 | |||
| 1451.244 | |||
| <small>23/10</small>, '''30/13''' | |||
|- | |||
| 51 | |||
| 1480.269 | |||
| <small><small><small>7/3</small></small></small>, <small>26/11</small> | |||
|- | |||
| 52 | |||
| 1509.294 | |||
| <small><small>19/8</small></small>, '''31/13''', 12/5 | |||
|- | |||
| 53 | |||
| 1538.319 | |||
| <small><small>29/12</small></small>, '''<u>17/7'''</u>, <small>22/9</small> | |||
|- | |||
| 54 | |||
| 1567.344 | |||
| <small><small><small>27/11</small></small></small>, <small>32/13</small> | |||
|- | |||
| 55 | |||
| 1596.369 | |||
| <small><small>5/2</small></small> | |||
|- | |||
| 56 | |||
| 1625.393 | |||
| <small>28/11</small>, '''<u>23/9'''</u>, <small><small>18/7</small></small> | |||
|- | |||
| 57 | |||
| 1654.418 | |||
| <small><small>31/12</small></small>, '''<u>13/5'''</u> | |||
|- | |||
| 58 | |||
| 1683.443 | |||
| <small><small><small>21/8</small></small></small>, 29/11 | |||
|- | |||
| 59 | |||
| 1712.468 | |||
| <small><small><small>8/3</small></small></small>, 27/10 | |||
|- | |||
| 60 | |||
| 1741.493 | |||
| <small><small><small>19/7</small></small></small>, '''30/11''', <small><small>11/4</small></small> | |||
|- | |||
| 61 | |||
| 1770.518 | |||
| '''<u>25/9'''</u>, <small><small>14/5</small></small> | |||
|- | |||
| 62 | |||
| 1799.543 | |||
| 31/11, '''17/6''' | |||
|- | |||
| 63 | |||
| 1828.568 | |||
| <small><small>20/7</small></small>, '''<u>23/8'''</u>, <small>26/9</small> | |||
|- | |||
| 64 | |||
| 1857.593 | |||
| <small><small><small>29/10</small></small></small>, <small>32/11</small> | |||
|- | |||
| 65 | |||
| 1886.617 | |||
| | |||
|- | |||
| 66 | |||
| 1915.642 | |||
| <small><small><small>3/1</small></small></small> | |||
|- | |||
| 67 | |||
| 1944.667 | |||
| <small><small><small>31/10</small></small></small> | |||
|- | |||
| 68 | |||
| 1973.692 | |||
| <small>28/9</small>, '''<u>25/8'''</u>, <small>22/7</small> | |||
|- | |||
| 69 | |||
| 2002.717 | |||
| 19/6, <small><small>16/5</small></small> | |||
|- | |||
| 70 | |||
| 2031.742 | |||
| 29/9, <small>13/4</small> | |||
|- | |||
| 71 | |||
| 2060.767 | |||
| '''<u>23/7'''</u> | |||
|- | |||
| 72 | |||
| 2089.792 | |||
| 10/3 | |||
|- | |||
| 73 | |||
| 2118.816 | |||
| <small><small><small>27/8</small></small></small>, '''<u>17/5'''</u>, <small><small><small>24/7</small></small></small> | |||
|- | |||
| 74 | |||
| 2147.841 | |||
| 31/9 | |||
|- | |||
| 75 | |||
| 2176.866 | |||
| <small>7/2</small> | |||
|- | |||
| 76 | |||
| 2205.891 | |||
| <small><small>32/9</small></small>, '''<u>25/7'''</u>, <small><small>18/5</small></small> | |||
|- | |||
| 77 | |||
| 2234.916 | |||
| 29/8, <small><small><small>11/3</small></small></small> | |||
|- | |||
| 78 | |||
| 2263.941 | |||
| <small>26/7</small> | |||
|- | |||
| 79 | |||
| 2292.966 | |||
| '''15/4''' | |||
|- | |||
| 80 | |||
| 2321.991 | |||
| <small><small>19/5</small></small>, '''23/6''' | |||
|- | |||
| 81 | |||
| 2351.016 | |||
| <small><small><small>27/7</small></small></small>, 31/8 | |||
|- | |||
| 82 | |||
| 2380.040 | |||
| | |||
|- | |||
| 83 | |||
| 2409.065 | |||
| <small>4/1</small> | |||
|- | |||
| 84 | |||
| 2438.090 | |||
| | |||
|- | |||
| 85 | |||
| 2467.115 | |||
| 29/7, '''25/6''' | |||
|- | |||
| 86 | |||
| 2496.140 | |||
| <small><small>21/5</small></small>, <small>17/4</small> | |||
|- | |||
| 87 | |||
| 2525.165 | |||
| 30/7, <small><small><small>13/3</small></small></small> | |||
|- | |||
| 88 | |||
| 2554.190 | |||
| <small><small>22/5</small></small> | |||
|- | |||
| 89 | |||
| 2583.215 | |||
| 31/7 | |||
|- | |||
| 90 | |||
| 2612.239 | |||
| <small>9/2</small> | |||
|- | |||
| 91 | |||
| 2641.264 | |||
| <small><small>32/7</small></small>, '''<u>23/5'''</u> | |||
|- | |||
| 92 | |||
| 2670.289 | |||
| '''14/3''' | |||
|- | |||
| 93 | |||
| 2699.314 | |||
| '''<u>19/4'''</u> | |||
|- | |||
| 94 | |||
| 2728.339 | |||
| <small><small><small>24/5</small></small></small>, '''<u>29/6'''</u> | |||
|- | |||
| 95 | |||
| 2757.364 | |||
| | |||
|- | |||
| 96 | |||
| 2786.389 | |||
| '''<u>5/1'''</u> | |||
|- | |||
| 97 | |||
| 2815.414 | |||
| | |||
|- | |||
| 98 | |||
| 2844.439 | |||
| '''<u>31/6'''</u>, <small><small>26/5</small></small> | |||
|- | |||
| 99 | |||
| 2873.463 | |||
| '''21/4''' | |||
|- | |||
| 100 | |||
| 2902.488 | |||
| '''16/3''' | |||
|- | |||
| 101 | |||
| 2931.513 | |||
| <small><small>27/5</small></small> | |||
|- | |||
| 102 | |||
| 2960.538 | |||
| <small>11/2</small> | |||
|- | |||
| 103 | |||
| 2989.563 | |||
| 28/5, <small><small><small>17/3</small></small></small> | |||
|- | |||
| 104 | |||
| 3018.588 | |||
| <small><small>23/4</small></small> | |||
|- | |||
| 105 | |||
| 3047.613 | |||
| '''29/5''' | |||
|- | |||
| 106 | |||
| 3076.638 | |||
| | |||
|- | |||
| 107 | |||
| 3105.663 | |||
| '''6/1''' | |||
|- | |||
| 108 | |||
| 3134.687 | |||
| | |||
|- | |||
| 109 | |||
| 3163.712 | |||
| 31/5, <small>25/4</small> | |||
|- | |||
| 110 | |||
| 3192.737 | |||
| '''19/3''' | |||
|- | |||
| 111 | |||
| 3221.762 | |||
| <small>32/5</small> | |||
|- | |||
| 112 | |||
| 3250.787 | |||
| <small><small>13/2</small></small> | |||
|- | |||
| 113 | |||
| 3279.812 | |||
| '''20/3''' | |||
|- | |||
| 114 | |||
| 3308.837 | |||
| '''27/4''' | |||
|- | |||
| 115 | |||
| 3337.862 | |||
| | |||
|- | |||
| 116 | |||
| 3366.886 | |||
| '''<u>7/1'''</u> | |||
|- | |||
| 117 | |||
| 3395.911 | |||
| | |||
|- | |||
| 118 | |||
| 3424.936 | |||
| '''29/4''' | |||
|- | |||
| 119 | |||
| 3453.961 | |||
| '''22/3''' | |||
|- | |||
| 120 | |||
| 3482.986 | |||
| 15/2 | |||
|- | |||
| 121 | |||
| 3512.011 | |||
| <small><small><small>23/3</small></small></small> | |||
|- | |||
| 122 | |||
| 3541.036 | |||
| '''31/4''' | |||
|- | |||
| 123 | |||
| 3570.061 | |||
| | |||
|- | |||
| 124 | |||
| 3599.086 | |||
| '''<u>8/1'''</u> | |||
|- | |||
| 125 | |||
| 3628.110 | |||
| | |||
|- | |||
| 126 | |||
| 3657.135 | |||
| <small><small><small>25/3</small></small></small> | |||
|- | |||
| 127 | |||
| 3686.160 | |||
| | |||
|- | |||
| 128 | |||
| 3715.185 | |||
| <small><small>17/2</small></small> | |||
|- | |||
| 129 | |||
| 3744.210 | |||
| 26/3 | |||
|- | |||
| 130 | |||
| 3773.235 | |||
| | |||
|- | |||
| 131 | |||
| 3802.260 | |||
| '''<u>9/1'''</u> | |||
|- | |||
| 132 | |||
| 3831.285 | |||
| | |||
|- | |||
| 133 | |||
| 3860.309 | |||
| 28/3 | |||
|- | |||
| 134 | |||
| 3889.334 | |||
| <small>19/2</small> | |||
|- | |||
| 135 | |||
| 3918.359 | |||
| <small>29/3</small> | |||
|- | |||
| 136 | |||
| 3947.384 | |||
| | |||
|- | |||
| 137 | |||
| 3976.409 | |||
| <small><small>10/1</small></small> | |||
|- | |||
| 138 | |||
| 4005.434 | |||
| | |||
|- | |||
| 139 | |||
| 4034.459 | |||
| <small>31/3</small> | |||
|- | |||
| 140 | |||
| 4063.484 | |||
| <small>21/2</small> | |||
|- | |||
| 141 | |||
| 4092.509 | |||
| 32/3 | |||
|- | |||
| 142 | |||
| 4121.533 | |||
| | |||
|- | |||
| 143 | |||
| 4150.558 | |||
| '''<u>11/1'''</u> | |||
|- | |||
| 144 | |||
| 4179.583 | |||
| | |||
|- | |||
| 145 | |||
| 4208.608 | |||
| | |||
|- | |||
| 146 | |||
| 4237.633 | |||
| <small>23/2</small> | |||
|- | |||
| 147 | |||
| 4266.658 | |||
| | |||
|- | |||
| 148 | |||
| 4295.683 | |||
| 12/1 | |||
|- | |||
| 149 | |||
| 4324.708 | |||
| | |||
|- | |||
| 150 | |||
| 4353.732 | |||
| | |||
|- | |||
| 151 | |||
| 4382.757 | |||
| <small><small>25/2</small></small> | |||
|- | |||
| 152 | |||
| 4411.782 | |||
| | |||
|- | |||
| 153 | |||
| 4440.807 | |||
| '''<u>13/1'''</u> | |||
|- | |||
| 154 | |||
| 4469.832 | |||
| | |||
|- | |||
| 155 | |||
| 4498.857 | |||
| 27/2 | |||
|- | |||
| 156 | |||
| 4527.882 | |||
| | |||
|- | |||
| 157 | |||
| 4556.907 | |||
| <small><small>14/1</small></small> | |||
|- | |||
| 158 | |||
| 4585.932 | |||
| | |||
|- | |||
| 159 | |||
| 4614.956 | |||
| | |||
|- | |||
| 160 | |||
| 4643.981 | |||
| <small><small><small>29/2</small></small></small> | |||
|- | |||
| 161 | |||
| 4673.006 | |||
| | |||
|- | |||
| 162 | |||
| 4702.031 | |||
| <small><small><small>15/1</small></small></small> | |||
|- | |||
| 163 | |||
| 4731.056 | |||
| <small><small><small>31/2</small></small></small> | |||
|- | |||
| 164 | |||
| 4760.081 | |||
| | |||
|- | |||
| 165 | |||
| 4789.106 | |||
| <small><small>16/1</small></small> | |||
|- | |||
| 166 | |||
| 4818.131 | |||
| | |||
|- | |||
| 167 | |||
| 4847.156 | |||
| | |||
|- | |||
| 168 | |||
| 4876.180 | |||
| | |||
|- | |||
| 169 | |||
| 4905.205 | |||
| '''<u>17/1'''</u> | |||
|- | |||
| 170 | |||
| 4934.230 | |||
| | |||
|- | |||
| 171 | |||
| 4963.255 | |||
| | |||
|- | |||
| 172 | |||
| 4992.280 | |||
| <small><small>18/1</small></small> | |||
|- | |||
| 173 | |||
| 5021.305 | |||
| | |||
|- | |||
| 174 | |||
| 5050.330 | |||
| | |||
|- | |||
| 175 | |||
| 5079.355 | |||
| | |||
|- | |||
| 176 | |||
| 5108.379 | |||
| <small><small>19/1</small></small> | |||
|- | |||
| 177 | |||
| 5137.404 | |||
| | |||
|- | |||
| 178 | |||
| 5166.429 | |||
| | |||
|- | |||
| 179 | |||
| 5195.454 | |||
| <small>20/1</small> | |||
|- | |||
| 180 | |||
| 5224.479 | |||
| | |||
|- | |||
| 181 | |||
| 5253.504 | |||
| | |||
|- | |||
| 182 | |||
| 5282.529 | |||
| <small><small>21/1</small></small> | |||
|- | |||
| 183 | |||
| 5311.554 | |||
| | |||
|- | |||
| 184 | |||
| 5340.579 | |||
| <small><small>22/1</small></small> | |||
|- | |||
| 185 | |||
| 5369.603 | |||
| | |||
|- | |||
| 186 | |||
| 5398.628 | |||
| | |||
|- | |||
| 187 | |||
| 5427.653 | |||
| '''<u>23/1'''</u> | |||
|- | |||
| 188 | |||
| 5456.678 | |||
| | |||
|- | |||
| 189 | |||
| 5485.703 | |||
| | |||
|- | |||
| 190 | |||
| 5514.728 | |||
| <small><small><small>24/1</small></small></small> | |||
|- | |||
| 191 | |||
| 5543.753 | |||
| | |||
|- | |||
| 192 | |||
| 5572.778 | |||
| '''<u>25/1'''</u> | |||
|- | |||
| 193 | |||
| 5601.802 | |||
| | |||
|- | |||
| 194 | |||
| 5630.827 | |||
| <small><small>26/1</small></small> | |||
|- | |||
| 195 | |||
| 5659.852 | |||
| | |||
|- | |||
| 196 | |||
| 5688.877 | |||
| | |||
|- | |||
| 197 | |||
| 5717.902 | |||
| <small><small>27/1</small></small> | |||
|- | |||
| 198 | |||
| 5746.927 | |||
| | |||
|- | |||
| 199 | |||
| 5775.952 | |||
| 28/1 | |||
|- | |||
| 200 | |||
| 5804.977 | |||
| | |||
|- | |||
| 201 | |||
| 5834.002 | |||
| '''29/1''' | |||
|- | |||
| 202 | |||
| 5863.026 | |||
| | |||
|- | |||
| 203 | |||
| 5892.051 | |||
| '''30/1''' | |||
|- | |||
| 204 | |||
| 5921.076 | |||
| | |||
|- | |||
| 205 | |||
| 5950.101 | |||
| 31/1 | |||
|- | |||
| 206 | |||
| 5979.126 | |||
| | |||
|- | |||
| 207 | |||
| 6008.151 | |||
| <small>32/1</small> | |||
|} | |||
=== Approximation to JI === | === Approximation to JI === |
Revision as of 23:13, 28 June 2024
186 zeta peak index (abbreviated 186zpi), is the equal-step tuning system obtained from the 186st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 0.241233 | 11.567493 | 41edo | 1190.02021518380 | 2 | 2 |
Theory
Record on the Riemann zeta function with primes 2 and 3 removed
186zpi sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is 125zpi and the next one is 565zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with primes 2 and 3 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
125zpi | 30.6006474885974 | 39.2148564976330 | 1.468164 | 31edo | 1215.66055142662 | 30.5974484926723 | 39.2189564527704 | 3.769318 | 31edo | 1215.78765003588 |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 41edo | 1190.02021518380 | 41.3477989230936 | 29.0221010852836 | 4.469823 | 41edo | 1189.90614449663 |
565zpi | 98.6209462564991 | 12.1678005084130 | 2.305330 | 99edo | 1204.61225033289 | 98.6257548378926 | 12.1672072570942 | 4.883729 | 99edo | 1204.55351845233 |
Harmonic series
As a non-octave, non-tritave scale, 186zpi features a well-balanced harmonic series segment from 5 to 9, and performs exceptionally well across all prime harmonics from 5 to 23, with the exception of 19.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.0 | +13.7 | +9.1 | +0.1 | +3.7 | -1.9 | -0.9 | -1.7 | -9.9 | -0.8 | -6.3 | +0.3 | -11.9 | +13.8 | -10.9 |
Relative (%) | -34.4 | +47.2 | +31.2 | +0.3 | +12.8 | -6.7 | -3.2 | -5.7 | -34.1 | -2.6 | -21.6 | +1.0 | -41.1 | +47.4 | -37.5 | |
Step | 41 | 66 | 83 | 96 | 107 | 116 | 124 | 131 | 137 | 143 | 148 | 153 | 157 | 162 | 165 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.2 | -11.6 | +10.9 | +9.1 | +11.7 | -10.7 | -0.6 | +12.8 | +0.2 | -9.7 | +12.0 | +7.1 | +4.4 | +3.8 | +5.1 | +8.2 |
Relative (%) | +0.9 | -40.1 | +37.4 | +31.5 | +40.5 | -37.0 | -2.1 | +44.0 | +0.5 | -33.4 | +41.5 | +24.6 | +15.2 | +13.0 | +17.5 | +28.1 | |
Step | 169 | 172 | 176 | 179 | 182 | 184 | 187 | 190 | 192 | 194 | 197 | 199 | 201 | 203 | 205 | 207 |
Approximation of EDONOIs
Based on harmonics with less than 1 cent of error, 186zpi can be approximated by 96ed5, 124ed8 (or every 3 steps of 124edo), 143ed11, 153ed13, 169ed17, 187ed23, and 192ed25.
Intervals and notation
There are multiple ways to approach notation. The simplest method is to use the notations from 41edo. However, this approach will not preserve octave compression when the audio is rendered by notation software. To address this, consider using the ups and downs notation from 124edo at every 3-degree step (i.e., the edonoi 124ed8).
Step | Cents | Ratios |
---|---|---|
0 | 0.000 | |
1 | 29.025 | |
2 | 58.050 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24 |
3 | 87.075 | 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17 |
4 | 116.100 | 17/16, 16/15, 31/29, 15/14, 29/27, 14/13 |
5 | 145.124 | 27/25, 13/12, 25/23, 12/11, 23/21 |
6 | 174.149 | 11/10, 32/29, 21/19, 31/28, 10/9 |
7 | 203.174 | 29/26, 19/17, 28/25, 9/8, 26/23, 17/15 |
8 | 232.199 | 25/22, 8/7, 31/27, 23/20 |
9 | 261.224 | 15/13, 22/19, 29/25, 7/6 |
10 | 290.249 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26 |
11 | 319.274 | 6/5, 29/24, 23/19 |
12 | 348.299 | 17/14, 28/23, 11/9, 27/22, 16/13 |
13 | 377.323 | 21/17, 26/21, 31/25, 5/4 |
14 | 406.348 | 29/23, 24/19, 19/15, 14/11 |
15 | 435.373 | 23/18, 32/25, 9/7, 31/24, 22/17 |
16 | 464.398 | 13/10, 30/23, 17/13, 21/16, 25/19, 29/22 |
17 | 493.423 | 4/3 |
18 | 522.448 | 31/23, 27/20, 23/17, 19/14, 15/11 |
19 | 551.473 | 26/19, 11/8, 29/21, 18/13 |
20 | 580.498 | 25/18, 32/23, 7/5, 31/22 |
21 | 609.523 | 24/17, 17/12, 27/19, 10/7 |
22 | 638.547 | 23/16, 13/9, 29/20, 16/11 |
23 | 667.572 | 19/13, 22/15, 25/17, 28/19, 31/21 |
24 | 696.597 | 3/2 |
25 | 725.622 | 32/21, 29/19, 26/17, 23/15 |
26 | 754.647 | 20/13, 17/11, 31/20, 14/9 |
27 | 783.672 | 25/16, 11/7, 30/19, 19/12 |
28 | 812.697 | 27/17, 8/5, 29/18 |
29 | 841.722 | 21/13, 13/8, 31/19, 18/11 |
30 | 870.746 | 23/14, 28/17, 5/3 |
31 | 899.771 | 32/19, 27/16, 22/13 |
32 | 928.796 | 17/10, 29/17, 12/7, 31/18 |
33 | 957.821 | 19/11, 26/15, 7/4 |
34 | 986.846 | 30/17, 23/13, 16/9 |
35 | 1015.871 | 25/14, 9/5, 29/16 |
36 | 1044.896 | 20/11, 31/17, 11/6 |
37 | 1073.921 | 24/13, 13/7, 28/15, 15/8 |
38 | 1102.946 | 32/17, 17/9, 19/10 |
39 | 1131.970 | 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 |
40 | 1160.995 | |
41 | 1190.020 | 2/1 |
42 | 1219.045 | |
43 | 1248.070 | 31/15, 29/14 |
44 | 1277.095 | 27/13, 25/12, 23/11, 21/10 |
45 | 1306.120 | 19/9, 17/8, 32/15, 15/7 |
46 | 1335.145 | 28/13, 13/6 |
47 | 1364.170 | 24/11, 11/5, 31/14 |
48 | 1393.194 | 20/9, 29/13, 9/4 |
49 | 1422.219 | 25/11, 16/7 |
50 | 1451.244 | 23/10, 30/13 |
51 | 1480.269 | 7/3, 26/11 |
52 | 1509.294 | 19/8, 31/13, 12/5 |
53 | 1538.319 | 29/12, 17/7, 22/9 |
54 | 1567.344 | 27/11, 32/13 |
55 | 1596.369 | 5/2 |
56 | 1625.393 | 28/11, 23/9, 18/7 |
57 | 1654.418 | 31/12, 13/5 |
58 | 1683.443 | 21/8, 29/11 |
59 | 1712.468 | 8/3, 27/10 |
60 | 1741.493 | 19/7, 30/11, 11/4 |
61 | 1770.518 | 25/9, 14/5 |
62 | 1799.543 | 31/11, 17/6 |
63 | 1828.568 | 20/7, 23/8, 26/9 |
64 | 1857.593 | 29/10, 32/11 |
65 | 1886.617 | |
66 | 1915.642 | 3/1 |
67 | 1944.667 | 31/10 |
68 | 1973.692 | 28/9, 25/8, 22/7 |
69 | 2002.717 | 19/6, 16/5 |
70 | 2031.742 | 29/9, 13/4 |
71 | 2060.767 | 23/7 |
72 | 2089.792 | 10/3 |
73 | 2118.816 | 27/8, 17/5, 24/7 |
74 | 2147.841 | 31/9 |
75 | 2176.866 | 7/2 |
76 | 2205.891 | 32/9, 25/7, 18/5 |
77 | 2234.916 | 29/8, 11/3 |
78 | 2263.941 | 26/7 |
79 | 2292.966 | 15/4 |
80 | 2321.991 | 19/5, 23/6 |
81 | 2351.016 | 27/7, 31/8 |
82 | 2380.040 | |
83 | 2409.065 | 4/1 |
84 | 2438.090 | |
85 | 2467.115 | 29/7, 25/6 |
86 | 2496.140 | 21/5, 17/4 |
87 | 2525.165 | 30/7, 13/3 |
88 | 2554.190 | 22/5 |
89 | 2583.215 | 31/7 |
90 | 2612.239 | 9/2 |
91 | 2641.264 | 32/7, 23/5 |
92 | 2670.289 | 14/3 |
93 | 2699.314 | 19/4 |
94 | 2728.339 | 24/5, 29/6 |
95 | 2757.364 | |
96 | 2786.389 | 5/1 |
97 | 2815.414 | |
98 | 2844.439 | 31/6, 26/5 |
99 | 2873.463 | 21/4 |
100 | 2902.488 | 16/3 |
101 | 2931.513 | 27/5 |
102 | 2960.538 | 11/2 |
103 | 2989.563 | 28/5, 17/3 |
104 | 3018.588 | 23/4 |
105 | 3047.613 | 29/5 |
106 | 3076.638 | |
107 | 3105.663 | 6/1 |
108 | 3134.687 | |
109 | 3163.712 | 31/5, 25/4 |
110 | 3192.737 | 19/3 |
111 | 3221.762 | 32/5 |
112 | 3250.787 | 13/2 |
113 | 3279.812 | 20/3 |
114 | 3308.837 | 27/4 |
115 | 3337.862 | |
116 | 3366.886 | 7/1 |
117 | 3395.911 | |
118 | 3424.936 | 29/4 |
119 | 3453.961 | 22/3 |
120 | 3482.986 | 15/2 |
121 | 3512.011 | 23/3 |
122 | 3541.036 | 31/4 |
123 | 3570.061 | |
124 | 3599.086 | 8/1 |
125 | 3628.110 | |
126 | 3657.135 | 25/3 |
127 | 3686.160 | |
128 | 3715.185 | 17/2 |
129 | 3744.210 | 26/3 |
130 | 3773.235 | |
131 | 3802.260 | 9/1 |
132 | 3831.285 | |
133 | 3860.309 | 28/3 |
134 | 3889.334 | 19/2 |
135 | 3918.359 | 29/3 |
136 | 3947.384 | |
137 | 3976.409 | 10/1 |
138 | 4005.434 | |
139 | 4034.459 | 31/3 |
140 | 4063.484 | 21/2 |
141 | 4092.509 | 32/3 |
142 | 4121.533 | |
143 | 4150.558 | 11/1 |
144 | 4179.583 | |
145 | 4208.608 | |
146 | 4237.633 | 23/2 |
147 | 4266.658 | |
148 | 4295.683 | 12/1 |
149 | 4324.708 | |
150 | 4353.732 | |
151 | 4382.757 | 25/2 |
152 | 4411.782 | |
153 | 4440.807 | 13/1 |
154 | 4469.832 | |
155 | 4498.857 | 27/2 |
156 | 4527.882 | |
157 | 4556.907 | 14/1 |
158 | 4585.932 | |
159 | 4614.956 | |
160 | 4643.981 | 29/2 |
161 | 4673.006 | |
162 | 4702.031 | 15/1 |
163 | 4731.056 | 31/2 |
164 | 4760.081 | |
165 | 4789.106 | 16/1 |
166 | 4818.131 | |
167 | 4847.156 | |
168 | 4876.180 | |
169 | 4905.205 | 17/1 |
170 | 4934.230 | |
171 | 4963.255 | |
172 | 4992.280 | 18/1 |
173 | 5021.305 | |
174 | 5050.330 | |
175 | 5079.355 | |
176 | 5108.379 | 19/1 |
177 | 5137.404 | |
178 | 5166.429 | |
179 | 5195.454 | 20/1 |
180 | 5224.479 | |
181 | 5253.504 | |
182 | 5282.529 | 21/1 |
183 | 5311.554 | |
184 | 5340.579 | 22/1 |
185 | 5369.603 | |
186 | 5398.628 | |
187 | 5427.653 | 23/1 |
188 | 5456.678 | |
189 | 5485.703 | |
190 | 5514.728 | 24/1 |
191 | 5543.753 | |
192 | 5572.778 | 25/1 |
193 | 5601.802 | |
194 | 5630.827 | 26/1 |
195 | 5659.852 | |
196 | 5688.877 | |
197 | 5717.902 | 27/1 |
198 | 5746.927 | |
199 | 5775.952 | 28/1 |
200 | 5804.977 | |
201 | 5834.002 | 29/1 |
202 | 5863.026 | |
203 | 5892.051 | 30/1 |
204 | 5921.076 | |
205 | 5950.101 | 31/1 |
206 | 5979.126 | |
207 | 6008.151 | 32/1 |
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 186zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
17/13 | 0.030 | 0.102 |
5/1 | 0.075 | 0.259 |
25/17 | 0.100 | 0.344 |
25/13 | 0.129 | 0.446 |
23/11 | 0.138 | 0.477 |
25/1 | 0.150 | 0.517 |
11/8 | 0.155 | 0.533 |
17/5 | 0.175 | 0.602 |
13/5 | 0.204 | 0.704 |
17/1 | 0.250 | 0.861 |
13/1 | 0.279 | 0.963 |
9/7 | 0.289 | 0.996 |
23/8 | 0.293 | 1.011 |
23/1 | 0.621 | 2.140 |
31/29 | 0.641 | 2.209 |
30/29 | 0.642 | 2.211 |
23/5 | 0.696 | 2.399 |
29/6 | 0.717 | 2.470 |
9/8 | 0.736 | 2.535 |
11/1 | 0.760 | 2.617 |
25/23 | 0.771 | 2.657 |
11/5 | 0.835 | 2.876 |
23/17 | 0.871 | 3.001 |
21/19 | 0.881 | 3.037 |
11/9 | 0.891 | 3.069 |
23/13 | 0.901 | 3.103 |
25/11 | 0.910 | 3.135 |
8/1 | 0.914 | 3.151 |
8/5 | 0.990 | 3.409 |
17/11 | 1.009 | 3.478 |
8/7 | 1.025 | 3.531 |
23/9 | 1.029 | 3.546 |
13/11 | 1.039 | 3.580 |
25/8 | 1.065 | 3.668 |
17/8 | 1.164 | 4.012 |
27/19 | 1.171 | 4.033 |
11/7 | 1.180 | 4.065 |
13/8 | 1.194 | 4.114 |
31/30 | 1.283 | 4.420 |
23/7 | 1.318 | 4.542 |
31/6 | 1.358 | 4.679 |
9/1 | 1.650 | 5.686 |
9/5 | 1.725 | 5.944 |
20/19 | 1.726 | 5.947 |
25/9 | 1.800 | 6.203 |
19/4 | 1.801 | 6.205 |
17/9 | 1.900 | 6.547 |
24/19 | 1.906 | 6.568 |
13/9 | 1.930 | 6.649 |
7/1 | 1.939 | 6.682 |
7/5 | 2.015 | 6.941 |
31/28 | 2.060 | 7.099 |
25/7 | 2.090 | 7.199 |
17/7 | 2.189 | 7.543 |
13/7 | 2.219 | 7.645 |
21/20 | 2.607 | 8.984 |
21/4 | 2.683 | 9.242 |
29/28 | 2.702 | 9.308 |
32/19 | 2.716 | 9.356 |
19/3 | 2.821 | 9.719 |
19/15 | 2.896 | 9.977 |
27/20 | 2.897 | 9.980 |
27/4 | 2.972 | 10.238 |
32/31 | 3.085 | 10.630 |
15/14 | 3.343 | 11.519 |
14/3 | 3.418 | 11.777 |
13/6 | 3.428 | 11.811 |
17/6 | 3.458 | 11.913 |
30/13 | 3.503 | 12.069 |
30/17 | 3.533 | 12.171 |
25/6 | 3.557 | 12.256 |
32/21 | 3.597 | 12.393 |
6/5 | 3.632 | 12.515 |
6/1 | 3.708 | 12.774 |
32/29 | 3.726 | 12.839 |
28/19 | 3.741 | 12.887 |
30/1 | 3.783 | 13.032 |
32/27 | 3.886 | 13.389 |
31/4 | 4.000 | 13.781 |
31/20 | 4.075 | 14.039 |
29/13 | 4.145 | 14.280 |
29/17 | 4.174 | 14.382 |
29/25 | 4.274 | 14.726 |
23/6 | 4.329 | 14.914 |
12/7 | 4.333 | 14.928 |
29/5 | 4.349 | 14.985 |
16/15 | 4.368 | 15.050 |
30/23 | 4.404 | 15.172 |
29/1 | 4.424 | 15.243 |
16/3 | 4.443 | 15.309 |
11/6 | 4.467 | 15.391 |
22/15 | 4.523 | 15.583 |
30/11 | 4.542 | 15.649 |
20/3 | 4.547 | 15.666 |
22/3 | 4.598 | 15.842 |
4/3 | 4.622 | 15.924 |
29/4 | 4.641 | 15.990 |
15/4 | 4.697 | 16.183 |
29/20 | 4.716 | 16.248 |
31/13 | 4.786 | 16.489 |
31/17 | 4.816 | 16.591 |
28/27 | 4.911 | 16.920 |
31/25 | 4.915 | 16.935 |
31/5 | 4.990 | 17.194 |
29/23 | 5.046 | 17.383 |
31/1 | 5.066 | 17.452 |
27/14 | 5.069 | 17.463 |
29/11 | 5.184 | 17.860 |
15/2 | 5.283 | 18.201 |
29/8 | 5.339 | 18.394 |
3/2 | 5.358 | 18.459 |
10/3 | 5.433 | 18.718 |
12/11 | 5.513 | 18.993 |
32/3 | 5.536 | 19.075 |
26/15 | 5.562 | 19.164 |
32/15 | 5.612 | 19.334 |
26/3 | 5.637 | 19.422 |
7/6 | 5.647 | 19.456 |
23/12 | 5.651 | 19.470 |
31/23 | 5.687 | 19.592 |
30/7 | 5.722 | 19.714 |
31/19 | 5.801 | 19.986 |
31/11 | 5.825 | 20.069 |
31/8 | 5.980 | 20.603 |
29/9 | 6.075 | 20.929 |
27/16 | 6.094 | 20.994 |
19/14 | 6.239 | 21.496 |
27/22 | 6.248 | 21.528 |
12/1 | 6.272 | 21.610 |
12/5 | 6.347 | 21.869 |
29/7 | 6.364 | 21.925 |
21/16 | 6.383 | 21.991 |
25/12 | 6.422 | 22.127 |
29/19 | 6.442 | 22.195 |
17/12 | 6.522 | 22.471 |
19/18 | 6.528 | 22.492 |
22/21 | 6.538 | 22.524 |
13/12 | 6.552 | 22.573 |
28/3 | 6.561 | 22.606 |
28/15 | 6.637 | 22.865 |
31/21 | 6.682 | 23.023 |
31/9 | 6.716 | 23.138 |
28/13 | 6.846 | 23.588 |
28/17 | 6.876 | 23.690 |
31/27 | 6.972 | 24.019 |
28/25 | 6.976 | 24.034 |
31/7 | 7.005 | 24.134 |
27/2 | 7.008 | 24.145 |
28/5 | 7.051 | 24.292 |
27/10 | 7.083 | 24.404 |
30/19 | 7.084 | 24.406 |
28/1 | 7.126 | 24.551 |
19/6 | 7.159 | 24.665 |
19/16 | 7.264 | 25.027 |
27/26 | 7.288 | 25.108 |
21/2 | 7.297 | 25.141 |
29/21 | 7.324 | 25.232 |
21/10 | 7.372 | 25.400 |
22/19 | 7.419 | 25.561 |
26/21 | 7.577 | 26.104 |
29/27 | 7.613 | 26.228 |
31/24 | 7.707 | 26.554 |
28/23 | 7.747 | 26.691 |
26/7 | 7.761 | 26.739 |
32/13 | 7.871 | 27.119 |
28/11 | 7.886 | 27.168 |
32/17 | 7.901 | 27.221 |
10/7 | 7.965 | 27.443 |
32/25 | 8.001 | 27.565 |
7/2 | 8.040 | 27.702 |
26/9 | 8.050 | 27.735 |
32/5 | 8.076 | 27.824 |
32/1 | 8.151 | 28.082 |
19/2 | 8.179 | 28.178 |
19/10 | 8.254 | 28.437 |
10/9 | 8.254 | 28.439 |
9/2 | 8.329 | 28.698 |
29/24 | 8.348 | 28.763 |
26/19 | 8.458 | 29.141 |
31/3 | 8.622 | 29.705 |
31/15 | 8.697 | 29.964 |
32/23 | 8.772 | 30.222 |
28/9 | 8.776 | 30.237 |
13/4 | 8.786 | 30.270 |
22/7 | 8.800 | 30.319 |
17/4 | 8.815 | 30.372 |
20/13 | 8.861 | 30.529 |
20/17 | 8.891 | 30.631 |
32/11 | 8.910 | 30.699 |
25/4 | 8.915 | 30.716 |
26/11 | 8.941 | 30.803 |
16/7 | 8.955 | 30.852 |
5/4 | 8.990 | 30.974 |
4/1 | 9.065 | 31.233 |
26/23 | 9.079 | 31.281 |
22/9 | 9.089 | 31.315 |
20/1 | 9.140 | 31.492 |
11/10 | 9.145 | 31.508 |
11/2 | 9.220 | 31.766 |
16/9 | 9.244 | 31.848 |
29/3 | 9.263 | 31.914 |
23/10 | 9.284 | 31.985 |
29/15 | 9.338 | 32.173 |
23/2 | 9.359 | 32.243 |
23/4 | 9.686 | 33.373 |
18/7 | 9.691 | 33.387 |
26/1 | 9.700 | 33.421 |
23/20 | 9.762 | 33.632 |
26/5 | 9.775 | 33.679 |
32/9 | 9.801 | 33.768 |
11/4 | 9.825 | 33.850 |
26/25 | 9.850 | 33.938 |
20/11 | 9.900 | 34.109 |
10/1 | 9.905 | 34.125 |
26/17 | 9.950 | 34.282 |
2/1 | 9.980 | 34.384 |
5/2 | 10.055 | 34.642 |
32/7 | 10.090 | 34.764 |
23/22 | 10.118 | 34.861 |
25/2 | 10.130 | 34.901 |
16/11 | 10.135 | 34.917 |
17/10 | 10.155 | 34.986 |
13/10 | 10.184 | 35.088 |
17/2 | 10.230 | 35.244 |
13/2 | 10.259 | 35.346 |
14/9 | 10.269 | 35.380 |
23/16 | 10.273 | 35.394 |
19/13 | 10.587 | 36.475 |
19/17 | 10.617 | 36.577 |
29/12 | 10.697 | 36.853 |
9/4 | 10.716 | 36.919 |
25/19 | 10.716 | 36.921 |
22/1 | 10.739 | 37.001 |
20/9 | 10.791 | 37.177 |
19/5 | 10.791 | 37.180 |
22/5 | 10.814 | 37.259 |
19/1 | 10.866 | 37.438 |
18/11 | 10.870 | 37.452 |
25/22 | 10.890 | 37.518 |
16/1 | 10.894 | 37.534 |
16/5 | 10.969 | 37.793 |
22/17 | 10.989 | 37.862 |
7/4 | 11.005 | 37.915 |
23/18 | 11.009 | 37.929 |
22/13 | 11.019 | 37.964 |
25/16 | 11.044 | 38.052 |
20/7 | 11.080 | 38.174 |
17/16 | 11.144 | 38.395 |
14/11 | 11.160 | 38.448 |
16/13 | 11.174 | 38.497 |
23/14 | 11.298 | 38.925 |
31/12 | 11.338 | 39.062 |
21/13 | 11.468 | 39.512 |
23/19 | 11.488 | 39.579 |
21/17 | 11.498 | 39.614 |
25/21 | 11.598 | 39.958 |
19/11 | 11.626 | 40.056 |
18/1 | 11.630 | 40.069 |
21/5 | 11.673 | 40.216 |
18/5 | 11.705 | 40.328 |
21/1 | 11.748 | 40.475 |
27/13 | 11.758 | 40.508 |
25/18 | 11.780 | 40.587 |
19/8 | 11.781 | 40.589 |
27/17 | 11.787 | 40.610 |
18/17 | 11.880 | 40.930 |
19/12 | 11.886 | 40.952 |
27/25 | 11.887 | 40.954 |
18/13 | 11.910 | 41.032 |
14/1 | 11.919 | 41.066 |
27/5 | 11.962 | 41.213 |
14/5 | 11.994 | 41.324 |
27/1 | 12.037 | 41.471 |
31/14 | 12.040 | 41.482 |
25/14 | 12.069 | 41.583 |
17/14 | 12.169 | 41.926 |
14/13 | 12.199 | 42.028 |
31/18 | 12.329 | 42.478 |
23/21 | 12.369 | 42.615 |
24/13 | 12.493 | 43.044 |
21/11 | 12.507 | 43.092 |
19/9 | 12.517 | 43.124 |
24/17 | 12.523 | 43.146 |
25/24 | 12.623 | 43.489 |
27/23 | 12.658 | 43.611 |
21/8 | 12.662 | 43.626 |
29/14 | 12.681 | 43.691 |
24/5 | 12.698 | 43.748 |
24/1 | 12.773 | 44.006 |
27/11 | 12.797 | 44.089 |
19/7 | 12.806 | 44.120 |
27/8 | 12.951 | 44.622 |
29/18 | 12.970 | 44.687 |
31/16 | 13.065 | 45.014 |
31/22 | 13.220 | 45.547 |
15/7 | 13.323 | 45.902 |
24/23 | 13.394 | 46.147 |
7/3 | 13.398 | 46.161 |
13/3 | 13.408 | 46.194 |
17/3 | 13.437 | 46.296 |
15/13 | 13.483 | 46.453 |
17/15 | 13.513 | 46.555 |
24/11 | 13.532 | 46.624 |
25/3 | 13.537 | 46.640 |
5/3 | 13.612 | 46.898 |
3/1 | 13.687 | 47.157 |
29/16 | 13.706 | 47.223 |
15/1 | 13.762 | 47.416 |
29/22 | 13.861 | 47.756 |
27/7 | 13.976 | 48.153 |
31/2 | 13.980 | 48.164 |
31/10 | 14.055 | 48.423 |
29/26 | 14.125 | 48.664 |
31/26 | 14.259 | 49.127 |
23/3 | 14.308 | 49.297 |
24/7 | 14.313 | 49.312 |
29/10 | 14.329 | 49.368 |
15/8 | 14.348 | 49.434 |
23/15 | 14.384 | 49.556 |
29/2 | 14.404 | 49.627 |
8/3 | 14.423 | 49.692 |
11/3 | 14.447 | 49.774 |
15/11 | 14.503 | 49.967 |