Porcupine family: Difference between revisions
Cmloegcmluin (talk | contribs) add unchanged-intervals along with eigenmonzo, per prior agreement on Xenwiki Work Group |
Cmloegcmluin (talk | contribs) "optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence |
||
Line 35: | Line 35: | ||
* 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015] | * 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015] | ||
{{ | {{Optimal ET sequence|legend=1| 7, 15, 22, 95c }} | ||
[[Badness]]: 0.030778 | [[Badness]]: 0.030778 | ||
Line 52: | Line 52: | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867 | Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 15, 22, 73ce, 95ce }} | ||
Badness: 0.0097 | Badness: 0.0097 | ||
Line 67: | Line 67: | ||
Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094 | Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 23bc, 30, 37, 44 }} | ||
Badness: 0.0305 | Badness: 0.0305 | ||
Line 98: | Line 98: | ||
* 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636] | * 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636] | ||
{{ | {{Optimal ET sequence|legend=1| 7, 15, 22, 37, 59, 81bd }} | ||
[[Badness]]: 0.041057 | [[Badness]]: 0.041057 | ||
Line 120: | Line 120: | ||
* 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636] | * 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636] | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 15, 22, 37, 59 }} | ||
Badness: 0.021562 | Badness: 0.021562 | ||
Line 144: | Line 144: | ||
* 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636 | * 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 15, 22f, 37f }} | ||
Badness: 0.021276 | Badness: 0.021276 | ||
Line 170: | Line 170: | ||
* 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162 | * 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162 | ||
Optimal | {{Optimal ET sequence|legend=1| 15, 22, 37 }} | ||
Badness: 0.025314 | Badness: 0.025314 | ||
Line 187: | Line 187: | ||
: Eigenmonzo basis (unchanged-interval basis): 2.13/7 | : Eigenmonzo basis (unchanged-interval basis): 2.13/7 | ||
Optimal | {{Optimal ET sequence|legend=1| 15f, 22f, 37, 59f }} | ||
Badness: 0.035130 | Badness: 0.035130 | ||
Line 204: | Line 204: | ||
: Eigenmonzo basis (unchanged-interval basis): 2.9/7 | : Eigenmonzo basis (unchanged-interval basis): 2.9/7 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 15f, 22 }} | ||
Badness: 0.026043 | Badness: 0.026043 | ||
Line 224: | Line 224: | ||
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis]] ([[unchanged-interval basis]]): 2.7 | * [[7-odd-limit|7-]] and [[9-odd-limit]] [[eigenmonzo basis]] ([[unchanged-interval basis]]): 2.7 | ||
{{ | {{Optimal ET sequence|legend=1| 7d, 8d, 15 }} | ||
[[Badness]]: 0.040650 | [[Badness]]: 0.040650 | ||
Line 240: | Line 240: | ||
* 11-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7 | * 11-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7 | ||
Optimal | {{Optimal ET sequence|legend=1| 7d, 8d, 15 }} | ||
Badness: 0.022325 | Badness: 0.022325 | ||
Line 256: | Line 256: | ||
* 13- and 15-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7 | * 13- and 15-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7 | ||
Optimal | {{Optimal ET sequence|legend=1| 7d, 8d, 15, 38bceff }} | ||
Badness: 0.019389 | Badness: 0.019389 | ||
Line 277: | Line 277: | ||
: [[Eigenmonzo basis]] ([[unchanged-interval basis]]): 2.7/5 | : [[Eigenmonzo basis]] ([[unchanged-interval basis]]): 2.7/5 | ||
{{ | {{Optimal ET sequence|legend=1| 7d, 15d, 22, 29, 51, 73c }} | ||
[[Badness]]: 0.054389 | [[Badness]]: 0.054389 | ||
Line 294: | Line 294: | ||
: Eigenmonzo basis (unchanged-interval basis): 2.7/5 | : Eigenmonzo basis (unchanged-interval basis): 2.7/5 | ||
Optimal | {{Optimal ET sequence|legend=1| 7d, 15d, 22, 51 }} | ||
Badness: 0.027268 | Badness: 0.027268 | ||
Line 307: | Line 307: | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782 | Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782 | ||
Optimal | {{Optimal ET sequence|legend=1| 7d, 22, 29, 51f, 80cdeff }} | ||
Badness: 0.026543 | Badness: 0.026543 | ||
Line 328: | Line 328: | ||
: [[Eigenmonzo basis]] ([[unchanged-interval basis]]): 2.3 | : [[Eigenmonzo basis]] ([[unchanged-interval basis]]): 2.3 | ||
{{ | {{Optimal ET sequence|legend=1| 7, 22d, 29, 65c, 94cd }} | ||
[[Badness]]: 0.118344 | [[Badness]]: 0.118344 | ||
Line 345: | Line 345: | ||
: Eigenmonzo basis (unchanged-interval basis): 2.3 | : Eigenmonzo basis (unchanged-interval basis): 2.3 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 22d, 29, 65ce }} | ||
Badness: 0.049669 | Badness: 0.049669 | ||
Line 362: | Line 362: | ||
: Eigenmonzo basis (unchanged-interval basis): 2.3 | : Eigenmonzo basis (unchanged-interval basis): 2.3 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 22d, 29, 65cef }} | ||
Badness: 0.030233 | Badness: 0.030233 | ||
Line 383: | Line 383: | ||
: [[Eigenmonzo basis]] ([[unchanged-interval basis]]): 2.5 | : [[Eigenmonzo basis]] ([[unchanged-interval basis]]): 2.5 | ||
{{ | {{Optimal ET sequence|legend=1| 7, 8d, 15d }} | ||
[[Badness]]: 0.044944 | [[Badness]]: 0.044944 | ||
Line 396: | Line 396: | ||
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684 | Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684 | ||
Optimal | {{Optimal ET sequence|legend=1| 7, 8d, 15d }} | ||
Badness: 0.026790 | Badness: 0.026790 | ||
Line 413: | Line 413: | ||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 161.3408 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~10/9 = 161.3408 | ||
{{ | {{Optimal ET sequence|legend=1| 7d }} | ||
[[Badness]]: 0.059866 | [[Badness]]: 0.059866 | ||
Line 435: | Line 435: | ||
[[Optimal tuning]] ([[CTE]]): ~7/5 = 1\2, ~9/7 = 435.2580 | [[Optimal tuning]] ([[CTE]]): ~7/5 = 1\2, ~9/7 = 435.2580 | ||
{{ | {{Optimal ET sequence|legend=1| 8d, 14c, 22 }} | ||
[[Badness]]: 0.043983 | [[Badness]]: 0.043983 | ||
Line 448: | Line 448: | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281 | Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 14c, 22, 58ce }} | ||
Badness: 0.023095 | Badness: 0.023095 | ||
Line 461: | Line 461: | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087 | Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 14cf, 22 }} | ||
Badness: 0.021516 | Badness: 0.021516 | ||
Line 474: | Line 474: | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856 | Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856 | ||
Optimal | {{Optimal ET sequence|legend=1| 14c, 22f }} | ||
Badness: 0.025233 | Badness: 0.025233 | ||
Line 487: | Line 487: | ||
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289 | Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289 | ||
Optimal | {{Optimal ET sequence|legend=1| 22 }} | ||
Badness: 0.068406 | Badness: 0.068406 | ||
Line 507: | Line 507: | ||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~21/20 = 81.9143 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~21/20 = 81.9143 | ||
{{ | {{Optimal ET sequence|legend=1| 14c, 15, 29 }} | ||
[[Badness]]: 0.057420 | [[Badness]]: 0.057420 | ||
Line 520: | Line 520: | ||
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017 | Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017 | ||
Optimal | {{Optimal ET sequence|legend=1| 14c, 15, 29 }} | ||
Badness: 0.026023 | Badness: 0.026023 | ||
Line 533: | Line 533: | ||
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123 | Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123 | ||
Optimal | {{Optimal ET sequence|legend=1| 14cf, 15, 29 }} | ||
Badness: 0.022285 | Badness: 0.022285 | ||
Line 546: | Line 546: | ||
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342 | Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342 | ||
Optimal | {{Optimal ET sequence|legend=1| 14c, 15 }} | ||
Badness: 0.029816 | Badness: 0.029816 | ||
Line 566: | Line 566: | ||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~9/7 = 454.5500 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~9/7 = 454.5500 | ||
{{ | {{Optimal ET sequence|legend=1| 8d, 21cd, 29, 37, 66 }} | ||
[[Badness]]: 0.107686 | [[Badness]]: 0.107686 | ||
Line 579: | Line 579: | ||
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050 | Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 21cde, 29, 37, 66 }} | ||
Badness: 0.045694 | Badness: 0.045694 | ||
Line 592: | Line 592: | ||
Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798 | Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798 | ||
Optimal | {{Optimal ET sequence|legend=1| 8d, 21cdef, 29, 37, 66 }} | ||
Badness: 0.027168 | Badness: 0.027168 | ||
Line 609: | Line 609: | ||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~36/35 = 54.8040 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~36/35 = 54.8040 | ||
{{ | {{Optimal ET sequence|legend=1| 1c, 21c, 22 }} | ||
[[Badness]]: 0.115304 | [[Badness]]: 0.115304 | ||
Line 622: | Line 622: | ||
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019 | Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019 | ||
Optimal | {{Optimal ET sequence|legend=1| 1ce, 21ce, 22 }} | ||
Badness: 0.051319 | Badness: 0.051319 | ||
Line 635: | Line 635: | ||
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751 | Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751 | ||
Optimal | {{Optimal ET sequence|legend=1| 1ce, 21cef, 22 }} | ||
Badness: 0.044739 | Badness: 0.044739 |
Revision as of 16:47, 7 May 2023
The 5-limit parent comma for the porcupine family is 250/243, the maximal diesis or porcupine comma. Its monzo is [1 -5 3⟩, and flipping that yields ⟨⟨ 3 5 1 ]] for the wedgie. This tells us the generator is a minor whole tone, the 10/9 interval, and that three of these add up to a perfect fourth (4/3), with two more giving the minor sixth (8/5). In fact, (10/9)3 = 4/3 × 250/243, and (10/9)5 = 8/5 × (250/243)2. 3\22 is a very recommendable generator, and mos scales of 7, 8 and 15 notes make for some nice scale possibilities.
Notice 250/243 = (55/54)(100/99), the temperament thus extends naturally to the 2.3.5.11 subgroup, sometimes known as porkypine.
The second comma of the normal comma list defines which 7-limit family member we are looking at. That means
- 64/63, the archytas comma, for septimal porcupine,
- 36/35, the septimal quarter tone, for hystrix,
- 50/49, the jubilisma, for hedgehog, and
- 49/48, the slendro diesis, for nautilus.
Temperaments discussed elsewhere include jamesbond.
Porcupine
Subgroup: 2.3.5
Comma list: 250/243
Mapping: [⟨1 2 3], ⟨0 -3 -5]]
- mapping generators: ~2, ~10/9
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.1659
- 5-odd-limit diamond monotone: ~10/9 = [150.000, 171.429] (1\8 to 1\7)
- 5-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 5-odd-limit diamond monotone and tradeoff: ~10/9 = [157.821, 166.015]
Optimal ET sequence: 7, 15, 22, 95c
Badness: 0.030778
2.3.5.11 subgroup (porkypine)
Subgroup: 2.3.5.11
Comma list: 55/54, 100/99
Sval mapping: [⟨1 2 3 4], ⟨0 -3 -5 -4]]
Gencom mapping: [⟨1 2 3 0 4], ⟨0 -3 -5 0 -4]]
Gencom: [2 10/9; 55/54, 100/99]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.8867
Optimal ET sequence: 7, 15, 22, 73ce, 95ce
Badness: 0.0097
Undecimation
Subgroup: 2.3.5.11.13
Comma list: 55/54, 100/99, 512/507
Sval mapping: [⟨1 5 8 8 2], ⟨0 -6 -10 -8 3]]
- sval mapping generators: ~2, ~65/44
Optimal tuning (CTE): ~2 = 1\1, ~88/65 = 518.2094
Optimal ET sequence: 7, 23bc, 30, 37, 44
Badness: 0.0305
Septimal porcupine
Septimal porcupine uses six of its minor tone generator steps to get to 7/4. For this to work you need a small minor tone such as 22edo provides, and once again 3\22 is a good tuning choice, though we might pick in preference 8\59, 11\81, or 19\140 for our generator.
Subgroup: 2.3.5.7
Comma list: 64/63, 250/243
Mapping: [⟨1 2 3 2], ⟨0 -3 -5 6]]
Wedgie: ⟨⟨ 3 5 -6 1 -18 -28 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 163.2032
- 7-odd-limit: ~10/9 = [3/5 0 -1/5⟩
- 9-odd-limit: ~10/9 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis (unchanged-interval basis): 2.9/7
- 7- and 9-odd-limit diamond monotone: ~10/9 = [160.000, 163.636] (2\15 to 3\22)
- 7-odd-limit diamond tradeoff: ~10/9 = [157.821, 166.015]
- 9-odd-limit diamond tradeoff: ~10/9 = [157.821, 182.404]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 163.636]
Optimal ET sequence: 7, 15, 22, 37, 59, 81bd
Badness: 0.041057
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 64/63, 100/99
Mapping: [⟨1 2 3 2 4], ⟨0 -3 -5 6 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.1055
Minimax tuning:
- 11-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis (unchanged-interval basis): 2.9/7
Tuning ranges:
- 11-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 11-odd-limit diamond tradeoff: ~11/10 = [150.637, 182.404]
- 11-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
Optimal ET sequence: 7, 15, 22, 37, 59
Badness: 0.021562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 55/54, 64/63, 66/65
Mapping: [⟨1 2 3 2 4 4], ⟨0 -3 -5 6 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.4425
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [1 0 0 0 -1/4⟩
- Eigenmonzo basis (unchanged-interval basis): 2.11
Tuning ranges:
- 13-odd-limit diamond monotone: ~11/10 = [160.000, 163.636] (2\15 to 3\22)
- 15-odd-limit diamond monotone: ~11/10 = 163.636 (3\22)
- 13- and 15-odd-limit diamond tradeoff: ~11/10 = [138.573, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~11/10 = [160.000, 163.636]
- 15-odd-limit diamond monotone and tradeoff: ~11/10 = 163.636
Optimal ET sequence: 7, 15, 22f, 37f
Badness: 0.021276
Porcupinefish
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 91/90, 100/99
Mapping: [⟨1 2 3 2 4 6], ⟨0 -3 -5 6 -4 -17]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 162.6361
Minimax tuning:
- 13- and 15-odd-limit: ~10/9 = [2/13 0 0 0 1/13 -1/13⟩
- Eigenmonzo basis (unchanged-interval basis): 2.13/11
Tuning ranges:
- 13-odd-limit diamond monotone: ~10/9 = [160.000, 162.162] (2\15 to 5\37)
- 15-odd-limit diamond monotone: ~10/9 = 162.162 (5\37)
- 13- and 15-odd-limit diamond tradeoff: ~10/9 = [150.637, 182.404]
- 13-odd-limit diamond monotone and tradeoff: ~10/9 = [160.000, 162.162]
- 15-odd-limit diamond monotone and tradeoff: ~10/9 = 162.162
Optimal ET sequence: 15, 22, 37
Badness: 0.025314
Pourcup
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 100/99, 196/195
Mapping: [⟨1 2 3 2 4 1], ⟨0 -3 -5 6 -4 20]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.3781
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/14 0 0 -1/14 0 1/14⟩
- Eigenmonzo basis (unchanged-interval basis): 2.13/7
Optimal ET sequence: 15f, 22f, 37, 59f
Badness: 0.035130
Porkpie
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 64/63, 65/63, 100/99
Mapping: [⟨1 2 3 2 4 3], ⟨0 -3 -5 6 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 163.6778
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [1/6 -1/6 0 1/12⟩
- Eigenmonzo basis (unchanged-interval basis): 2.9/7
Optimal ET sequence: 7, 15f, 22
Badness: 0.026043
Opossum
Opossum can be described as 7d & 8d. Tempering out 28/27, the perfect fifth of three generator steps is conflated with not 32/21 as in porcupine but 14/9. Three such fifths or nine generator steps octave reduced give a flat 7/4. 2\15 is a good generator.
Subgroup: 2.3.5.7
Comma list: 28/27, 126/125
Mapping: [⟨1 2 3 4], ⟨0 -3 -5 -9]]
Wedgie: ⟨⟨ 3 5 9 1 6 7 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 161.3063
- 7- and 9-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7
Optimal ET sequence: 7d, 8d, 15
Badness: 0.040650
11-limit
Subgroup: 2.3.5.7.11
Comma list: 28/27, 55/54, 77/75
Mapping: [⟨1 2 3 4 4], ⟨0 -3 -5 -9 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.3646
Minimax tuning:
- 11-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7
Optimal ET sequence: 7d, 8d, 15
Badness: 0.022325
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 28/27, 40/39, 55/54, 66/65
Mapping: [⟨1 2 3 4 4 4], ⟨0 -3 -5 -9 -4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 161.6312
Minimax tuning:
- 13- and 15-odd-limit eigenmonzo basis (unchanged-interval basis): 2.7
Optimal ET sequence: 7d, 8d, 15, 38bceff
Badness: 0.019389
Porky
Porky can be described as 7d & 22, suggesting a less sharp perfect fifth. 7\51 is a good generator.
Subgroup: 2.3.5.7
Comma list: 225/224, 250/243
Mapping: [⟨1 2 3 5], ⟨0 -3 -5 -16]]
Wedgie: ⟨⟨ 3 5 16 1 17 23 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 164.3913
- 7- and 9-odd-limit: ~10/9 = [2/11 0 1/11 -1/11⟩
- Eigenmonzo basis (unchanged-interval basis): 2.7/5
Optimal ET sequence: 7d, 15d, 22, 29, 51, 73c
Badness: 0.054389
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 225/224
Mapping: [⟨1 2 3 5 4], ⟨0 -3 -5 -16 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.3207
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/11 0 1/11 -1/11⟩
- Eigenmonzo basis (unchanged-interval basis): 2.7/5
Optimal ET sequence: 7d, 15d, 22, 51
Badness: 0.027268
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 91/90, 100/99
Mapping: [⟨1 2 3 5 4 3], ⟨0 -3 -5 -16 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.4782
Optimal ET sequence: 7d, 22, 29, 51f, 80cdeff
Badness: 0.026543
Coendou
Coendou can be described as 7 & 29, suggesting an even less sharp or near-just perfect fifth. 9\65 is a good generator.
Subgroup: 2.3.5.7
Comma list: 250/243, 525/512
Mapping: [⟨1 2 3 1], ⟨0 -3 -5 13]]
Wedgie: ⟨⟨ 3 5 -13 1 -29 -44 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 166.0938
- 7- and 9-odd-limit: ~10/9 = [2/3 -1/3⟩
Optimal ET sequence: 7, 22d, 29, 65c, 94cd
Badness: 0.118344
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 525/512
Mapping: [⟨1 2 3 1 4], ⟨0 -3 -5 13 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 165.9246
Minimax tuning:
- 11-odd-limit: ~11/10 = [2/3 -1/3⟩
- Eigenmonzo basis (unchanged-interval basis): 2.3
Optimal ET sequence: 7, 22d, 29, 65ce
Badness: 0.049669
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/64, 100/99, 105/104
Mapping: [⟨1 2 3 1 4 3], ⟨0 -3 -5 13 -4 5]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 166.0459
Minimax tuning:
- 13- and 15-odd-limit: ~11/10 = [2/3 -1/3⟩
- Eigenmonzo basis (unchanged-interval basis): 2.3
Optimal ET sequence: 7, 22d, 29, 65cef
Badness: 0.030233
Hystrix
Hystrix provides a less complex avenue to the 7-limit, with the generator taking on the role of approximating 8/7. Unfortunately in temperaments as in life you get what you pay for, and hystrix, for which a generator of 2\15 or 9\68 can be used, is a temperament for the adventurous souls who have probably already tried 15edo. They can try the even sharper fifth of hystrix in 68edo and see how that suits.
Subgroup: 2.3.5.7
Comma list: 36/35, 160/147
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -1]]
Wedgie: ⟨⟨ 3 5 1 1 -7 -12 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 165.1845
- 7- and 9-odd-limit: ~10/9 = [3/5 0 -1/5⟩
Optimal ET sequence: 7, 8d, 15d
Badness: 0.044944
11-limit
Subgroup: 2.3.5.7.11
Comma list: 22/21, 36/35, 80/77
Mapping: [⟨1 2 3 3 4], ⟨0 -3 -5 -1 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 164.7684
Optimal ET sequence: 7, 8d, 15d
Badness: 0.026790
Oxygen
Oxygen is perhaps not meant to be used as a serious temperament of harmony. Its comma basis suggests potential utility to construct Fokker blocks.
Subgroup: 2.3.5.7
Comma list: 21/20, 175/162
Mapping: [⟨1 2 3 3], ⟨0 -3 -5 -2]]
Wedgie: ⟨⟨ 3 5 2 1 -5 -9 ]]
Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 161.3408
Badness: 0.059866
Hedgehog
Hedgehog has a period 1/2 octave and a generator which can be taken to be 9/7 instead of 10/9. It also tempers out 245/243, the sensamagic comma. 22edo provides the obvious tuning, but if you are looking for an alternative, you could try the ⟨146 232 338 411] (146bccdd) val with generator 10\73, or you could try 164 cents if you are fond of round numbers. The 14-note mos gives scope for harmony while stopping well short of 22.
Subgroup: 2.3.5.7
Comma list: 50/49, 245/243
Mapping: [⟨2 1 1 2], ⟨0 3 5 5]]
- mapping generators: ~7/5, ~9/7
Wedgie: ⟨⟨ 6 10 10 2 -1 -5 ]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.2580
Optimal ET sequence: 8d, 14c, 22
Badness: 0.043983
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 99/98
Mapping: [⟨2 1 1 2 4], ⟨0 3 5 5 4]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.5281
Optimal ET sequence: 8d, 14c, 22, 58ce
Badness: 0.023095
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 99/98
Mapping: [⟨2 1 1 2 4 3], ⟨0 3 5 5 4 6]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 436.3087
Optimal ET sequence: 8d, 14cf, 22
Badness: 0.021516
Urchin
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 66/65
Mapping: [⟨2 1 1 2 4 6], ⟨0 3 5 5 4 2]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.1856
Badness: 0.025233
Hedgepig
Subgroup: 2.3.5.7.11
Comma list: 50/49, 245/243, 385/384
Mapping: [⟨2 1 1 2 12], ⟨0 3 5 5 -7]]
Optimal tuning (CTE): ~7/5 = 1\2, ~9/7 = 435.3289
Badness: 0.068406
- Music
- Phobos Light by Chris Vaisvil in hedgehog[14] to 22edo.
Nautilus
Subgroup: 2.3.5.7
Comma list: 49/48, 250/243
Mapping: [⟨1 2 3 3], ⟨0 -6 -10 -3]]
- mapping generators: ~2, ~21/20
Wedgie: ⟨⟨ 6 10 3 2 -12 -21 ]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9143
Optimal ET sequence: 14c, 15, 29
Badness: 0.057420
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 55/54, 245/242
Mapping: [⟨1 2 3 3 4], ⟨0 -6 -10 -3 -8]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.8017
Optimal ET sequence: 14c, 15, 29
Badness: 0.026023
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 55/54, 91/90, 100/99
Mapping: [⟨1 2 3 3 4 5], ⟨0 -6 -10 -3 -8 -19]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 81.9123
Optimal ET sequence: 14cf, 15, 29
Badness: 0.022285
Belauensis
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 49/48, 55/54, 66/65
Mapping: [⟨1 2 3 3 4 4], ⟨0 -6 -10 -3 -8 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~21/20 = 82.0342
Badness: 0.029816
- Music
Ammonite
Subgroup: 2.3.5.7
Comma list: 250/243, 686/675
Mapping: [⟨1 5 8 10], ⟨0 -9 -15 -19]]
- mapping generators: ~2, ~9/7
Wedgie: ⟨⟨ 9 15 19 3 5 2 ]]
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5500
Optimal ET sequence: 8d, 21cd, 29, 37, 66
Badness: 0.107686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 686/675
Mapping: [⟨1 5 8 10 8], ⟨0 -9 -15 -19 -12]]
Optimal tuning (CTE): ~2 = 1\1, ~9/7 = 454.5050
Optimal ET sequence: 8d, 21cde, 29, 37, 66
Badness: 0.045694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 91/90, 100/99, 169/168
Mapping: [⟨1 5 8 10 8 9], ⟨0 -9 -15 -19 -12 -14]]
Optimal tuning (CTE): ~2 = 1\1, ~13/10 = 454.4798
Optimal ET sequence: 8d, 21cdef, 29, 37, 66
Badness: 0.027168
Ceratitid
Subgroup: 2.3.5.7
Comma list: 250/243, 1728/1715
Mapping: [⟨1 2 3 3], ⟨0 -9 -15 -4]]
- mapping generators: ~2, ~36/35
Wedgie: ⟨⟨ 9 15 4 3 -19 -33 ]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.8040
Optimal ET sequence: 1c, 21c, 22
Badness: 0.115304
11-limit
Subgroup: 2.3.5.7.11
Comma list: 55/54, 100/99, 352/343
Mapping: [⟨1 2 3 3 4], ⟨0 -9 -15 -4 -12]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.7019
Optimal ET sequence: 1ce, 21ce, 22
Badness: 0.051319
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 65/63, 100/99, 352/343
Mapping: [⟨1 2 3 3 4 4], ⟨0 -9 -15 -4 -12 -7]]
Optimal tuning (CTE): ~2 = 1\1, ~36/35 = 54.5751
Optimal ET sequence: 1ce, 21cef, 22
Badness: 0.044739