113edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
m simplify link
No edit summary
Line 3: Line 3:
113edo is the 30th [[prime EDO]].
113edo is the 30th [[prime EDO]].


Since 113edo has a step of 10.6195 cents, it also allows one to use its MOS scales as circulating temperaments. It is the first edo which allows one to use an MOS scale of 90 tones or more as a circulating temperament.
{| class="wikitable"
|+Circulating temperaments in 113edo
!Tones
!Pattern
!L:s
|-
|5
|[[3L 2s]]
|23:22
|-
|6
|[[5L 1s]]
|19:18
|-
|7
|[[1L 6s]]
|17:16
|-
|8
|[[1L 7s]]
|15:14
|-
|9
|[[5L 4s]]
|13:12
|-
|10
|[[3L 7s]]
|12:11
|-
|11
|[[3L 8s]]
|11:10
|-
|12
|[[5L 7s]]
|10:9
|-
|13
|[[9L 4s]]
| rowspan="2" |9:8
|-
|14
|[[1L 13s]]
|-
|15
|[[7L 8s]]
| rowspan="2" |8:7
|-
|16
|1L 15s
|-
|17
|[[11L 6s]]
| rowspan="2" |7:6
|-
|18
|5L 13s
|-
|19
|18L 1s
| rowspan="4" |6:5
|-
|20
|[[13L 7s]]
|-
|21
|[[8L 13s]]
|-
|22
|[[3L 19s]]
|-
|23
|21L 2s
| rowspan="6" |5:4
|-
|24
|[[17L 7s]]
|-
|25
|13L 12s
|-
|26
|9L 17s
|-
|27
|[[5L 22s]]
|-
|28
|1L 27s
|-
|29
|26L 3s
| rowspan="9" |4:3
|-
|30
|23L 7s
|-
|31
|20L 11s
|-
|32
|17L 15s
|-
|33
|14L 19s
|-
|34
|11L 23s
|-
|35
|8L 27s
|-
|36
|5L 31s
|-
|37
|2L 35s
|-
|38
|37L 1s
| rowspan="19" |3:2
|-
|39
|35L 4s
|-
|40
|33L 7s
|-
|41
|31L 10s
|-
|42
|29L 13s
|-
|43
|27L 16s
|-
|44
|25L 19s
|-
|45
|23L 22s
|-
|46
|21L 25s
|-
|47
|19L 28s
|-
|48
|17L 31s
|-
|49
|15L 34s
|-
|50
|13L 37s
|-
|51
|11L 40s
|-
|52
|9L  43s
|-
|53
|7L 46s
|-
|54
|5L 49s
|-
|55
|3L 52s
|-
|56
|1L 55s
|-
|57
|56L 1s
| rowspan="34" |2:1
|-
|58
|55L 3s
|-
|59
|54L 5s
|-
|60
|53L 7s
|-
|61
|52L 9s
|-
|62
|51L 11s
|-
|63
|50L 13s
|-
|64
|49L 15s
|-
|65
|48L 17s
|-
|66
|47L 19s
|-
|67
|46L 21s
|-
|68
|45L 23s
|-
|69
|44L 25s
|-
|70
|43L 27s
|-
|71
|42L 29s
|-
|72
|41L 31s
|-
|73
|40L 33s
|-
|74
|39L 35s
|-
|75
|38L 37s
|-
|76
|37L 39s
|-
|77
|36L 41s
|-
|78
|35L 43s
|-
|79
|34L 45s
|-
|80
|33L 47s
|-
|81
|32L 49s
|-
|82
|31L 51s
|-
|83
|30L 53s
|-
|84
|29L 55s
|-
|85
|28L 57s
|-
|86
|27L 59s
|-
|87
|26L 61s
|-
|88
|25L 63s
|-
|89
|24L 65s
|-
|90
|23L 67s
|}
[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Prime EDO]]
[[Category:Prime EDO]]
[[Category:Theory]]
[[Category:Theory]]

Revision as of 17:09, 21 April 2021

113edo is the equal division of the octave into 113 parts of 10.6195 cents each. It tempers out 1600000/1594323 and 34171875/33554432 in the 5-limit; 225/224, 1029/1024 and 1071875/1062882 in the 7-limit; 243/242, 385/384, and 441/440 in the 11-limit; 325/324, 364/363, 729/728, and 1625/1617 in the 13-limit. It supports the 5-limit amity temperament, 7-limit amicable temperament, 7- and 11-limit miracle temperament, and 13-limit manna temperament.

113edo is the 30th prime EDO.

Since 113edo has a step of 10.6195 cents, it also allows one to use its MOS scales as circulating temperaments. It is the first edo which allows one to use an MOS scale of 90 tones or more as a circulating temperament.

Circulating temperaments in 113edo
Tones Pattern L:s
5 3L 2s 23:22
6 5L 1s 19:18
7 1L 6s 17:16
8 1L 7s 15:14
9 5L 4s 13:12
10 3L 7s 12:11
11 3L 8s 11:10
12 5L 7s 10:9
13 9L 4s 9:8
14 1L 13s
15 7L 8s 8:7
16 1L 15s
17 11L 6s 7:6
18 5L 13s
19 18L 1s 6:5
20 13L 7s
21 8L 13s
22 3L 19s
23 21L 2s 5:4
24 17L 7s
25 13L 12s
26 9L 17s
27 5L 22s
28 1L 27s
29 26L 3s 4:3
30 23L 7s
31 20L 11s
32 17L 15s
33 14L 19s
34 11L 23s
35 8L 27s
36 5L 31s
37 2L 35s
38 37L 1s 3:2
39 35L 4s
40 33L 7s
41 31L 10s
42 29L 13s
43 27L 16s
44 25L 19s
45 23L 22s
46 21L 25s
47 19L 28s
48 17L 31s
49 15L 34s
50 13L 37s
51 11L 40s
52 9L 43s
53 7L 46s
54 5L 49s
55 3L 52s
56 1L 55s
57 56L 1s 2:1
58 55L 3s
59 54L 5s
60 53L 7s
61 52L 9s
62 51L 11s
63 50L 13s
64 49L 15s
65 48L 17s
66 47L 19s
67 46L 21s
68 45L 23s
69 44L 25s
70 43L 27s
71 42L 29s
72 41L 31s
73 40L 33s
74 39L 35s
75 38L 37s
76 37L 39s
77 36L 41s
78 35L 43s
79 34L 45s
80 33L 47s
81 32L 49s
82 31L 51s
83 30L 53s
84 29L 55s
85 28L 57s
86 27L 59s
87 26L 61s
88 25L 63s
89 24L 65s
90 23L 67s