186zpi: Difference between revisions
Contribution (talk | contribs) |
Contribution (talk | contribs) |
||
Line 1,384: | Line 1,384: | ||
!Error (rel, [[Relative cent| %]]) | !Error (rel, [[Relative cent| %]]) | ||
|- | |- | ||
|[[17/13]] | | [[17/13]] | ||
|0.030 | | 0.030 | ||
|0.102 | | 0.102 | ||
|- | |- | ||
|'''[[5/1]]''' | | '''[[5/1]]''' | ||
|'''0.075''' | | '''0.075''' | ||
|'''0.259''' | | '''0.259''' | ||
|- | |- | ||
|[[25/17]] | | [[25/17]] | ||
|0.100 | | 0.100 | ||
|0.344 | | 0.344 | ||
|- | |- | ||
|[[25/13]] | | [[25/13]] | ||
|0.129 | | 0.129 | ||
|0.446 | | 0.446 | ||
|- | |- | ||
|[[23/11]] | | [[23/11]] | ||
|0.138 | | 0.138 | ||
|0.477 | | 0.477 | ||
|- | |- | ||
|[[25/1]] | | [[25/1]] | ||
|0.150 | | 0.150 | ||
|0.517 | | 0.517 | ||
|- | |- | ||
|''[[11/8]]'' | | ''[[11/8]]'' | ||
|''0.155'' | | ''0.155'' | ||
| | | ''0.533'' | ||
''0.533'' | |||
|- | |- | ||
|[[17/5]] | | [[17/5]] | ||
|0.175 | | 0.175 | ||
|0.602 | | 0.602 | ||
|- | |- | ||
|[[13/5]] | | [[13/5]] | ||
|0.204 | | 0.204 | ||
|0.704 | | 0.704 | ||
|- | |- | ||
|'''[[17/1]]''' | | '''[[17/1]]''' | ||
|'''0.250''' | | '''0.250''' | ||
|'''0.861''' | | '''0.861''' | ||
|- | |- | ||
|'''[[13/1]]''' | | '''[[13/1]]''' | ||
|'''0.279''' | | '''0.279''' | ||
|'''0.963''' | | '''0.963''' | ||
|- | |- | ||
| | | ''[[9/7]]'' | ||
''[[9/7]]'' | | ''0.289'' | ||
|''0.289'' | | ''0.996'' | ||
|''0.996'' | |||
|- | |- | ||
|''[[23/8]]'' | | ''[[23/8]]'' | ||
|''0.293'' | | ''0.293'' | ||
|''1.011'' | | ''1.011'' | ||
|- | |- | ||
|'''[[23/1]]''' | | '''[[23/1]]''' | ||
|'''0.621''' | | '''0.621''' | ||
|'''2.140''' | | '''2.140''' | ||
|- | |- | ||
|[[31/29]] | | [[31/29]] | ||
|0.641 | | 0.641 | ||
|2.209 | | 2.209 | ||
|- | |- | ||
|[[30/29]] | | [[30/29]] | ||
|0.642 | | 0.642 | ||
|2.211 | | 2.211 | ||
|- | |- | ||
|[[23/5]] | | [[23/5]] | ||
|0.696 | | 0.696 | ||
|2.399 | | 2.399 | ||
|- | |- | ||
|[[29/6]] | | [[29/6]] | ||
|0.717 | | 0.717 | ||
|2.470 | | 2.470 | ||
|- | |- | ||
| | | ''[[9/8]]'' | ||
''[[9/8]]'' | | ''0.736'' | ||
|''0.736'' | | ''2.535'' | ||
|''2.535'' | |||
|- | |- | ||
|'''[[11/1]]''' | | '''[[11/1]]''' | ||
|'''0.760''' | | '''0.760''' | ||
|'''2.617''' | | '''2.617''' | ||
|- | |- | ||
|[[25/23]] | | [[25/23]] | ||
|0.771 | | 0.771 | ||
|2.657 | | 2.657 | ||
|- | |- | ||
|[[11/5]] | | [[11/5]] | ||
|0.835 | | 0.835 | ||
|2.876 | | 2.876 | ||
|- | |- | ||
|[[23/17]] | | [[23/17]] | ||
|0.871 | | 0.871 | ||
|3.001 | | 3.001 | ||
|- | |- | ||
|[[21/19]] | | [[21/19]] | ||
|0.881 | | 0.881 | ||
|3.037 | | 3.037 | ||
|- | |- | ||
|''[[11/9]]'' | | ''[[11/9]]'' | ||
|''0.891'' | | ''0.891'' | ||
|''3.069'' | | ''3.069'' | ||
|- | |- | ||
|[[23/13]] | | [[23/13]] | ||
|0.901 | | 0.901 | ||
|3.103 | | 3.103 | ||
|- | |- | ||
|[[25/11]] | | [[25/11]] | ||
|0.910 | | 0.910 | ||
|3.135 | | 3.135 | ||
|- | |- | ||
| | | ''[[8/1]]'' | ||
''[[8/1]]'' | | ''0.914'' | ||
|''0.914'' | | ''3.151'' | ||
|''3.151'' | |||
|- | |- | ||
| | | ''[[8/5]]'' | ||
''[[8/5]]'' | | ''0.990'' | ||
|''0.990'' | | ''3.409'' | ||
|''3.409'' | |||
|- | |- | ||
|[[17/11]] | | [[17/11]] | ||
|1.009 | | 1.009 | ||
|3.478 | | 3.478 | ||
|- | |- | ||
| | | ''[[8/7]]'' | ||
''[[8/7]]'' | | ''1.025'' | ||
|''1.025'' | | ''3.531'' | ||
|''3.531'' | |||
|- | |- | ||
|''[[23/9]]'' | | ''[[23/9]]'' | ||
|''1.029'' | | ''1.029'' | ||
|''3.546'' | | ''3.546'' | ||
|- | |- | ||
|[[13/11]] | | [[13/11]] | ||
|1.039 | | 1.039 | ||
|3.580 | | 3.580 | ||
|- | |- | ||
|''[[25/8]]'' | | ''[[25/8]]'' | ||
|''1.065'' | | ''1.065'' | ||
|''3.668'' | | ''3.668'' | ||
|- | |- | ||
|''[[17/8]]'' | | ''[[17/8]]'' | ||
|''1.164'' | | ''1.164'' | ||
|''4.012'' | | ''4.012'' | ||
|- | |- | ||
|''[[27/19]]'' | | ''[[27/19]]'' | ||
|''1.171'' | | ''1.171'' | ||
| | | ''4.033'' | ||
''4.033'' | |||
|- | |- | ||
|[[11/7]] | | [[11/7]] | ||
|1.180 | | 1.180 | ||
|4.065 | | 4.065 | ||
|- | |- | ||
|''[[13/8]]'' | | ''[[13/8]]'' | ||
|''1.194'' | | ''1.194'' | ||
|''4.114'' | | ''4.114'' | ||
|- | |- | ||
|[[31/30]] | | [[31/30]] | ||
|1.283 | | 1.283 | ||
|4.420 | | 4.420 | ||
|- | |- | ||
|[[23/7]] | | [[23/7]] | ||
|1.318 | | 1.318 | ||
|4.542 | | 4.542 | ||
|- | |- | ||
|[[31/6]] | | [[31/6]] | ||
|1.358 | | 1.358 | ||
|4.679 | | 4.679 | ||
|- | |- | ||
| | | ''[[9/1]]'' | ||
''[[9/1]]'' | | ''1.650'' | ||
|''1.650'' | | ''5.686'' | ||
|''5.686'' | |||
|- | |- | ||
| | | ''[[9/5]]'' | ||
''[[9/5]]'' | | ''1.725'' | ||
|''1.725'' | | ''5.944'' | ||
|''5.944'' | |||
|- | |- | ||
|''[[20/19]]'' | | ''[[20/19]]'' | ||
|''1.726'' | | ''1.726'' | ||
|''5.947'' | | ''5.947'' | ||
|- | |- | ||
|''[[25/9]]'' | | ''[[25/9]]'' | ||
|''1.800'' | | ''1.800'' | ||
|''6.203'' | | ''6.203'' | ||
|- | |- | ||
|''[[19/4]]'' | | ''[[19/4]]'' | ||
|''1.801'' | | ''1.801'' | ||
|''6.205'' | | ''6.205'' | ||
|- | |- | ||
|''[[17/9]]'' | | ''[[17/9]]'' | ||
|''1.900'' | | ''1.900'' | ||
|''6.547'' | | ''6.547'' | ||
|- | |- | ||
|''[[24/19]]'' | | ''[[24/19]]'' | ||
|''1.906'' | | ''1.906'' | ||
|''6.568'' | | ''6.568'' | ||
|- | |- | ||
|''[[13/9]]'' | | ''[[13/9]]'' | ||
|''1.930'' | | ''1.930'' | ||
|''6.649'' | | ''6.649'' | ||
|- | |- | ||
|'''[[7/1]]''' | | '''[[7/1]]''' | ||
|'''1.939''' | | '''1.939''' | ||
|'''6.682''' | | '''6.682''' | ||
|- | |- | ||
| | | [[7/5]] | ||
[[7/5]] | | 2.015 | ||
|2.015 | | 6.941 | ||
|6.941 | |||
|- | |- | ||
|''[[31/28]]'' | | ''[[31/28]]'' | ||
|''2.060'' | | ''2.060'' | ||
| | | ''7.099'' | ||
''7.099'' | |||
|- | |- | ||
|[[25/7]] | | [[25/7]] | ||
|2.090 | | 2.090 | ||
|7.199 | | 7.199 | ||
|- | |- | ||
|[[17/7]] | | [[17/7]] | ||
|2.189 | | 2.189 | ||
|7.543 | | 7.543 | ||
|- | |- | ||
|[[13/7]] | | [[13/7]] | ||
|2.219 | | 2.219 | ||
|7.645 | | 7.645 | ||
|- | |- | ||
|''[[21/20]]'' | | ''[[21/20]]'' | ||
|''2.607'' | | ''2.607'' | ||
|''8.984'' | | ''8.984'' | ||
|- | |- | ||
|''[[21/4]]'' | | ''[[21/4]]'' | ||
|''2.683'' | | ''2.683'' | ||
|''9.242'' | | ''9.242'' | ||
|- | |- | ||
|''[[29/28]]'' | | ''[[29/28]]'' | ||
|''2.702'' | | ''2.702'' | ||
|''9.308'' | | ''9.308'' | ||
|- | |- | ||
|''[[32/19]]'' | | ''[[32/19]]'' | ||
|''2.716'' | | ''2.716'' | ||
| | | ''9.356'' | ||
''9.356'' | |||
|- | |- | ||
|[[19/3]] | | [[19/3]] | ||
|2.821 | | 2.821 | ||
|9.719 | | 9.719 | ||
|- | |- | ||
|[[19/15]] | | [[19/15]] | ||
|2.896 | | 2.896 | ||
|9.977 | | 9.977 | ||
|- | |- | ||
|''[[27/20]]'' | | ''[[27/20]]'' | ||
|''2.897'' | | ''2.897'' | ||
|''9.980'' | | ''9.980'' | ||
|- | |- | ||
|''[[27/4]]'' | | ''[[27/4]]'' | ||
|''2.972'' | | ''2.972'' | ||
|''10.238'' | | ''10.238'' | ||
|- | |- | ||
|''[[32/31]]'' | | ''[[32/31]]'' | ||
|''3.085'' | | ''3.085'' | ||
|''10.630'' | | ''10.630'' | ||
|- | |- | ||
|''[[15/14]]'' | | ''[[15/14]]'' | ||
|''3.343'' | | ''3.343'' | ||
|''11.519'' | | ''11.519'' | ||
|- | |- | ||
|''[[14/3]]'' | | ''[[14/3]]'' | ||
|''3.418'' | | ''3.418'' | ||
|''11.777'' | | ''11.777'' | ||
|- | |- | ||
|[[13/6]] | | [[13/6]] | ||
|3.428 | | 3.428 | ||
|11.811 | | 11.811 | ||
|- | |- | ||
|[[17/6]] | | [[17/6]] | ||
|3.458 | | 3.458 | ||
| 11.913 | | 11.913 | ||
|- | |- | ||
|[[30/13]] | | [[30/13]] | ||
|3.503 | | 3.503 | ||
| 12.069 | | 12.069 | ||
|- | |- | ||
|[[30/17]] | | [[30/17]] | ||
|3.533 | | 3.533 | ||
|12.171 | | 12.171 | ||
|- | |- | ||
|[[25/6]] | | [[25/6]] | ||
|3.557 | | 3.557 | ||
|12.256 | | 12.256 | ||
|- | |- | ||
|''[[32/21]]'' | | ''[[32/21]]'' | ||
|''3.597'' | | ''3.597'' | ||
| | | ''12.393'' | ||
''12.393'' | |||
|- | |- | ||
|[[6/5]] | | [[6/5]] | ||
|3.632 | | 3.632 | ||
|12.515 | | 12.515 | ||
|- | |- | ||
|[[6/1]] | | [[6/1]] | ||
|3.708 | | 3.708 | ||
|12.774 | | 12.774 | ||
|- | |- | ||
|''[[32/29]]'' | | ''[[32/29]]'' | ||
|''3.726'' | | ''3.726'' | ||
|''12.839'' | | ''12.839'' | ||
|- | |- | ||
|''[[28/19]]'' | | ''[[28/19]]'' | ||
|''3.741'' | | ''3.741'' | ||
|''12.887'' | | ''12.887'' | ||
|- | |- | ||
|[[30/1]] | | [[30/1]] | ||
|3.783 | | 3.783 | ||
|13.032 | | 13.032 | ||
|- | |- | ||
|''[[32/27]]'' | | ''[[32/27]]'' | ||
|''3.886'' | | ''3.886'' | ||
|''13.389'' | | ''13.389'' | ||
|- | |- | ||
|''[[31/4]]'' | | ''[[31/4]]'' | ||
|''4.000'' | | ''4.000'' | ||
|''13.781'' | | ''13.781'' | ||
|- | |- | ||
|''[[31/20]]'' | | ''[[31/20]]'' | ||
|''4.075'' | | ''4.075'' | ||
|''14.039'' | | ''14.039'' | ||
|- | |- | ||
|[[29/13]] | | [[29/13]] | ||
|4.145 | | 4.145 | ||
| 14.280 | | 14.280 | ||
|- | |- | ||
|[[29/17]] | | [[29/17]] | ||
|4.174 | | 4.174 | ||
| 14.382 | | 14.382 | ||
|- | |- | ||
|[[29/25]] | | [[29/25]] | ||
|4.274 | | 4.274 | ||
|14.726 | | 14.726 | ||
|- | |- | ||
|[[23/6]] | | [[23/6]] | ||
|4.329 | | 4.329 | ||
|14.914 | | 14.914 | ||
|- | |- | ||
|[[12/7]] | | [[12/7]] | ||
|4.333 | | 4.333 | ||
|14.928 | | 14.928 | ||
|- | |- | ||
|[[29/5]] | | [[29/5]] | ||
|4.349 | | 4.349 | ||
|14.985 | | 14.985 | ||
|- | |- | ||
|''[[16/15]]'' | | ''[[16/15]]'' | ||
|''4.368'' | | ''4.368'' | ||
|''15.050'' | | ''15.050'' | ||
|- | |- | ||
|[[30/23]] | | [[30/23]] | ||
|4.404 | | 4.404 | ||
|15.172 | | 15.172 | ||
|- | |- | ||
|'''[[29/1]]''' | | '''[[29/1]]''' | ||
|'''4.424''' | | '''4.424''' | ||
|'''15.243''' | | '''15.243''' | ||
|- | |- | ||
|''[[16/3]]'' | | ''[[16/3]]'' | ||
|''4.443'' | | ''4.443'' | ||
|''15.309'' | | ''15.309'' | ||
|- | |- | ||
|[[11/6]] | | [[11/6]] | ||
|4.467 | | 4.467 | ||
|15.391 | | 15.391 | ||
|- | |- | ||
|''[[22/15]]'' | | ''[[22/15]]'' | ||
|''4.523'' | | ''4.523'' | ||
|''15.583'' | | ''15.583'' | ||
|- | |- | ||
|[[30/11]] | | [[30/11]] | ||
|4.542 | | 4.542 | ||
|15.649 | | 15.649 | ||
|- | |- | ||
|''[[20/3]]'' | | ''[[20/3]]'' | ||
|''4.547'' | | ''4.547'' | ||
|''15.666'' | | ''15.666'' | ||
|- | |- | ||
|''[[22/3]]'' | | ''[[22/3]]'' | ||
|''4.598'' | | ''4.598'' | ||
|''15.842'' | | ''15.842'' | ||
|- | |- | ||
| | | ''[[4/3]]'' | ||
''[[4/3]]'' | | ''4.622'' | ||
|''4.622'' | | ''15.924'' | ||
|''15.924'' | |||
|- | |- | ||
|''[[29/4]]'' | | ''[[29/4]]'' | ||
|''4.641'' | | ''4.641'' | ||
|''15.990'' | | ''15.990'' | ||
|- | |- | ||
|''[[15/4]]'' | | ''[[15/4]]'' | ||
|''4.697'' | | ''4.697'' | ||
|''16.183'' | | ''16.183'' | ||
|- | |- | ||
|''[[29/20]]'' | | ''[[29/20]]'' | ||
|''4.716'' | | ''4.716'' | ||
|''16.248'' | | ''16.248'' | ||
|- | |- | ||
|[[31/13]] | | [[31/13]] | ||
|4.786 | | 4.786 | ||
| 16.489 | | 16.489 | ||
|- | |- | ||
|[[31/17]] | | [[31/17]] | ||
|4.816 | | 4.816 | ||
|16.591 | | 16.591 | ||
|- | |- | ||
|''[[28/27]]'' | | ''[[28/27]]'' | ||
|''4.911'' | | ''4.911'' | ||
|''16.920'' | | ''16.920'' | ||
|- | |- | ||
|[[31/25]] | | [[31/25]] | ||
|4.915 | | 4.915 | ||
|16.935 | | 16.935 | ||
|- | |- | ||
|[[31/5]] | | [[31/5]] | ||
|4.990 | | 4.990 | ||
| 17.194 | | 17.194 | ||
|- | |- | ||
|[[29/23]] | | [[29/23]] | ||
|5.046 | | 5.046 | ||
|17.383 | | 17.383 | ||
|- | |- | ||
|'''[[31/1]]''' | | '''[[31/1]]''' | ||
|'''5.066''' | | '''5.066''' | ||
|'''17.452''' | | '''17.452''' | ||
|- | |- | ||
|''[[27/14]]'' | | ''[[27/14]]'' | ||
|''5.069'' | | ''5.069'' | ||
|''17.463'' | | ''17.463'' | ||
|- | |- | ||
|[[29/11]] | | [[29/11]] | ||
|5.184 | | 5.184 | ||
|17.860 | | 17.860 | ||
|- | |- | ||
|''[[15/2]]'' | | ''[[15/2]]'' | ||
|''5.283'' | | ''5.283'' | ||
|''18.201'' | | ''18.201'' | ||
|- | |- | ||
|''[[29/8]]'' | | ''[[29/8]]'' | ||
|''5.339'' | | ''5.339'' | ||
|''18.394'' | | ''18.394'' | ||
|- | |- | ||
| | | ''[[3/2]]'' | ||
''[[3/2]]'' | | ''5.358'' | ||
|''5.358'' | | ''18.459'' | ||
|''18.459'' | |||
|- | |- | ||
|''[[10/3]]'' | | ''[[10/3]]'' | ||
|''5.433'' | | ''5.433'' | ||
|''18.718'' | | ''18.718'' | ||
|- | |- | ||
|[[12/11]] | | [[12/11]] | ||
|5.513 | | 5.513 | ||
|18.993 | | 18.993 | ||
|- | |- | ||
|''[[32/3]]'' | | ''[[32/3]]'' | ||
|''5.536'' | | ''5.536'' | ||
|''19.075'' | | ''19.075'' | ||
|- | |- | ||
|''[[26/15]]'' | | ''[[26/15]]'' | ||
|''5.562'' | | ''5.562'' | ||
|''19.164'' | | ''19.164'' | ||
|- | |- | ||
|''[[32/15]]'' | | ''[[32/15]]'' | ||
|''5.612'' | | ''5.612'' | ||
|''19.334'' | | ''19.334'' | ||
|- | |- | ||
|''[[26/3]]'' | | ''[[26/3]]'' | ||
|''5.637'' | | ''5.637'' | ||
| | | ''19.422'' | ||
''19.422'' | |||
|- | |- | ||
|[[7/6]] | | [[7/6]] | ||
|5.647 | | 5.647 | ||
| 19.456 | | 19.456 | ||
|- | |- | ||
|[[23/12]] | | [[23/12]] | ||
|5.651 | | 5.651 | ||
| 19.470 | | 19.470 | ||
|- | |- | ||
|[[31/23]] | | [[31/23]] | ||
|5.687 | | 5.687 | ||
|19.592 | | 19.592 | ||
|- | |- | ||
|[[30/7]] | | [[30/7]] | ||
|5.722 | | 5.722 | ||
| 19.714 | | 19.714 | ||
|- | |- | ||
|[[31/19]] | | [[31/19]] | ||
|5.801 | | 5.801 | ||
| 19.986 | | 19.986 | ||
|- | |- | ||
|[[31/11]] | | [[31/11]] | ||
|5.825 | | 5.825 | ||
|20.069 | | 20.069 | ||
|- | |- | ||
|''[[31/8]]'' | | ''[[31/8]]'' | ||
|''5.980'' | | ''5.980'' | ||
|''20.603'' | | ''20.603'' | ||
|- | |- | ||
|''[[29/9]]'' | | ''[[29/9]]'' | ||
|''6.075'' | | ''6.075'' | ||
|''20.929'' | | ''20.929'' | ||
|- | |- | ||
|''[[27/16]]'' | | ''[[27/16]]'' | ||
|''6.094'' | | ''6.094'' | ||
|''20.994'' | | ''20.994'' | ||
|- | |- | ||
|''[[19/14]]'' | | ''[[19/14]]'' | ||
|''6.239'' | | ''6.239'' | ||
|''21.496'' | | ''21.496'' | ||
|- | |- | ||
|''[[27/22]]'' | | ''[[27/22]]'' | ||
|''6.248'' | | ''6.248'' | ||
|''21.528'' | | ''21.528'' | ||
|- | |- | ||
|[[12/1]] | | [[12/1]] | ||
|6.272 | | 6.272 | ||
|21.610 | | 21.610 | ||
|- | |- | ||
|[[12/5]] | | [[12/5]] | ||
|6.347 | | 6.347 | ||
|21.869 | | 21.869 | ||
|- | |- | ||
|[[29/7]] | | [[29/7]] | ||
|6.364 | | 6.364 | ||
|21.925 | | 21.925 | ||
|- | |- | ||
|''[[21/16]]'' | | ''[[21/16]]'' | ||
|''6.383'' | | ''6.383'' | ||
|''21.991'' | | ''21.991'' | ||
|- | |- | ||
|[[25/12]] | | [[25/12]] | ||
|6.422 | | 6.422 | ||
| 22.127 | | 22.127 | ||
|- | |- | ||
|[[29/19]] | | [[29/19]] | ||
|6.442 | | 6.442 | ||
| 22.195 | | 22.195 | ||
|- | |- | ||
|[[17/12]] | | [[17/12]] | ||
|6.522 | | 6.522 | ||
| 22.471 | | 22.471 | ||
|- | |- | ||
|[[19/18]] | | [[19/18]] | ||
|6.528 | | 6.528 | ||
|22.492 | | 22.492 | ||
|- | |- | ||
|''[[22/21]]'' | | ''[[22/21]]'' | ||
|''6.538'' | | ''6.538'' | ||
|''22.524'' | | ''22.524'' | ||
|- | |- | ||
|[[13/12]] | | [[13/12]] | ||
|6.552 | | 6.552 | ||
|22.573 | | 22.573 | ||
|- | |- | ||
|''[[28/3]]'' | | ''[[28/3]]'' | ||
|''6.561'' | | ''6.561'' | ||
|''22.606'' | | ''22.606'' | ||
|- | |- | ||
|''[[28/15]]'' | | ''[[28/15]]'' | ||
|''6.637'' | | ''6.637'' | ||
|''22.865'' | | ''22.865'' | ||
|- | |- | ||
|[[31/21]] | | [[31/21]] | ||
|6.682 | | 6.682 | ||
|23.023 | | 23.023 | ||
|- | |- | ||
|''[[31/9]]'' | | ''[[31/9]]'' | ||
|''6.716'' | | ''6.716'' | ||
|''23.138'' | | ''23.138'' | ||
|- | |- | ||
|''[[28/13]]'' | | ''[[28/13]]'' | ||
|''6.846'' | | ''6.846'' | ||
|''23.588'' | | ''23.588'' | ||
|- | |- | ||
|''[[28/17]]'' | | ''[[28/17]]'' | ||
|''6.876'' | | ''6.876'' | ||
|''23.690'' | | ''23.690'' | ||
|- | |- | ||
|''[[31/27]]'' | | ''[[31/27]]'' | ||
|''6.972'' | | ''6.972'' | ||
|''24.019'' | | ''24.019'' | ||
|- | |- | ||
|''[[28/25]]'' | | ''[[28/25]]'' | ||
|''6.976'' | | ''6.976'' | ||
|''24.034'' | | ''24.034'' | ||
|- | |- | ||
|[[31/7]] | | [[31/7]] | ||
|7.005 | | 7.005 | ||
|24.134 | | 24.134 | ||
|- | |- | ||
|''[[27/2]]'' | | ''[[27/2]]'' | ||
|''7.008'' | | ''7.008'' | ||
|''24.145'' | | ''24.145'' | ||
|- | |- | ||
|''[[28/5]]'' | | ''[[28/5]]'' | ||
|''7.051'' | | ''7.051'' | ||
|''24.292'' | | ''24.292'' | ||
|- | |- | ||
|''[[27/10]]'' | | ''[[27/10]]'' | ||
|''7.083'' | | ''7.083'' | ||
|''24.404'' | | ''24.404'' | ||
|- | |- | ||
|[[30/19]] | | [[30/19]] | ||
|7.084 | | 7.084 | ||
|24.406 | | 24.406 | ||
|- | |- | ||
|''[[28/1]]'' | | ''[[28/1]]'' | ||
|''7.126'' | | ''7.126'' | ||
|''24.551'' | | ''24.551'' | ||
|- | |- | ||
|[[19/6]] | | [[19/6]] | ||
|7.159 | | 7.159 | ||
|24.665 | | 24.665 | ||
|- | |- | ||
|''[[19/16]]'' | | ''[[19/16]]'' | ||
|''7.264'' | | ''7.264'' | ||
|''25.027'' | | ''25.027'' | ||
|- | |- | ||
|''[[27/26]]'' | | ''[[27/26]]'' | ||
|''7.288'' | | ''7.288'' | ||
|''25.108'' | | ''25.108'' | ||
|- | |- | ||
|''[[21/2]]'' | | ''[[21/2]]'' | ||
|''7.297'' | | ''7.297'' | ||
|''25.141'' | | ''25.141'' | ||
|- | |- | ||
|[[29/21]] | | [[29/21]] | ||
|7.324 | | 7.324 | ||
|25.232 | | 25.232 | ||
|- | |- | ||
|''[[21/10]]'' | | ''[[21/10]]'' | ||
|''7.372'' | | ''7.372'' | ||
|''25.400'' | | ''25.400'' | ||
|- | |- | ||
|''[[22/19]]'' | | ''[[22/19]]'' | ||
|''7.419'' | | ''7.419'' | ||
|''25.561'' | | ''25.561'' | ||
|- | |- | ||
|''[[26/21]]'' | | ''[[26/21]]'' | ||
|''7.577'' | | ''7.577'' | ||
|''26.104'' | | ''26.104'' | ||
|- | |- | ||
|''[[29/27]]'' | | ''[[29/27]]'' | ||
|''7.613'' | | ''7.613'' | ||
|''26.228'' | | ''26.228'' | ||
|- | |- | ||
|''[[31/24]]'' | | ''[[31/24]]'' | ||
|''7.707'' | | ''7.707'' | ||
|''26.554'' | | ''26.554'' | ||
|- | |- | ||
|''[[28/23]]'' | | ''[[28/23]]'' | ||
|''7.747'' | | ''7.747'' | ||
|''26.691'' | | ''26.691'' | ||
|- | |- | ||
|[[26/7]] | | [[26/7]] | ||
|7.761 | | 7.761 | ||
|26.739 | | 26.739 | ||
|- | |- | ||
|''[[32/13]]'' | | ''[[32/13]]'' | ||
|''7.871'' | | ''7.871'' | ||
|''27.119'' | | ''27.119'' | ||
|- | |- | ||
|''[[28/11]]'' | | ''[[28/11]]'' | ||
|''7.886'' | | ''7.886'' | ||
|''27.168'' | | ''27.168'' | ||
|- | |- | ||
|''[[32/17]]'' | | ''[[32/17]]'' | ||
|''7.901'' | | ''7.901'' | ||
|''27.221'' | | ''27.221'' | ||
|- | |- | ||
|[[10/7]] | | [[10/7]] | ||
|7.965 | | 7.965 | ||
|27.443 | | 27.443 | ||
|- | |- | ||
|''[[32/25]]'' | | ''[[32/25]]'' | ||
|''8.001'' | | ''8.001'' | ||
| | | ''27.565'' | ||
''27.565'' | |||
|- | |- | ||
|[[7/2]] | | [[7/2]] | ||
|8.040 | | 8.040 | ||
|27.702 | | 27.702 | ||
|- | |- | ||
|''[[26/9]]'' | | ''[[26/9]]'' | ||
|''8.050'' | | ''8.050'' | ||
|''27.735'' | | ''27.735'' | ||
|- | |- | ||
|''[[32/5]]'' | | ''[[32/5]]'' | ||
|''8.076'' | | ''8.076'' | ||
|''27.824'' | | ''27.824'' | ||
|- | |- | ||
|''[[32/1]]'' | | ''[[32/1]]'' | ||
|''8.151'' | | ''8.151'' | ||
|''28.082'' | | ''28.082'' | ||
|- | |- | ||
|''[[19/2]]'' | | ''[[19/2]]'' | ||
|''8.179'' | | ''8.179'' | ||
|''28.178'' | | ''28.178'' | ||
|- | |- | ||
|''[[19/10]]'' | | ''[[19/10]]'' | ||
|''8.254'' | | ''8.254'' | ||
|''28.437'' | | ''28.437'' | ||
|- | |- | ||
|''[[10/9]]'' | | ''[[10/9]]'' | ||
|''8.254'' | | ''8.254'' | ||
|''28.439'' | | ''28.439'' | ||
|- | |- | ||
| | | ''[[9/2]]'' | ||
''[[9/2]]'' | | ''8.329'' | ||
|''8.329'' | | ''28.698'' | ||
|''28.698'' | |||
|- | |- | ||
|''[[29/24]]'' | | ''[[29/24]]'' | ||
|''8.348'' | | ''8.348'' | ||
|''28.763'' | | ''28.763'' | ||
|- | |- | ||
|''[[26/19]]'' | | ''[[26/19]]'' | ||
|''8.458'' | | ''8.458'' | ||
|''29.141'' | | ''29.141'' | ||
|- | |- | ||
|[[31/3]] | | [[31/3]] | ||
|8.622 | | 8.622 | ||
| 29.705 | | 29.705 | ||
|- | |- | ||
|[[31/15]] | | [[31/15]] | ||
|8.697 | | 8.697 | ||
|29.964 | | 29.964 | ||
|- | |- | ||
|''[[32/23]]'' | | ''[[32/23]]'' | ||
|''8.772'' | | ''8.772'' | ||
|''30.222'' | | ''30.222'' | ||
|- | |- | ||
|''[[28/9]]'' | | ''[[28/9]]'' | ||
|''8.776'' | | ''8.776'' | ||
|''30.237'' | | ''30.237'' | ||
|- | |- | ||
|''[[13/4]]'' | | ''[[13/4]]'' | ||
|''8.786'' | | ''8.786'' | ||
|''30.270'' | | ''30.270'' | ||
|- | |- | ||
|[[22/7]] | | [[22/7]] | ||
|8.800 | | 8.800 | ||
|30.319 | | 30.319 | ||
|- | |- | ||
|''[[17/4]]'' | | ''[[17/4]]'' | ||
|''8.815'' | | ''8.815'' | ||
|''30.372'' | | ''30.372'' | ||
|- | |- | ||
|''[[20/13]]'' | | ''[[20/13]]'' | ||
|''8.861'' | | ''8.861'' | ||
|''30.529'' | | ''30.529'' | ||
|- | |- | ||
|''[[20/17]]'' | | ''[[20/17]]'' | ||
|''8.891'' | | ''8.891'' | ||
|''30.631'' | | ''30.631'' | ||
|- | |- | ||
|''[[32/11]]'' | | ''[[32/11]]'' | ||
|''8.910'' | | ''8.910'' | ||
|''30.699'' | | ''30.699'' | ||
|- | |- | ||
|''[[25/4]]'' | | ''[[25/4]]'' | ||
|''8.915'' | | ''8.915'' | ||
|''30.716'' | | ''30.716'' | ||
|- | |- | ||
|[[26/11]] | | [[26/11]] | ||
|8.941 | | 8.941 | ||
|30.803 | | 30.803 | ||
|- | |- | ||
|''[[16/7]]'' | | ''[[16/7]]'' | ||
|''8.955'' | | ''8.955'' | ||
|''30.852'' | | ''30.852'' | ||
|- | |- | ||
| | | ''[[5/4]]'' | ||
''[[5/4]]'' | | ''8.990'' | ||
|''8.990'' | | ''30.974'' | ||
|''30.974'' | |||
|- | |- | ||
| | | ''[[4/1]]'' | ||
''[[4/1]]'' | | ''9.065'' | ||
|''9.065'' | | ''31.233'' | ||
|''31.233'' | |||
|- | |- | ||
|[[26/23]] | | [[26/23]] | ||
|9.079 | | 9.079 | ||
|31.281 | | 31.281 | ||
|- | |- | ||
|''[[22/9]]'' | | ''[[22/9]]'' | ||
|''9.089'' | | ''9.089'' | ||
|''31.315'' | | ''31.315'' | ||
|- | |- | ||
|''[[20/1]]'' | | ''[[20/1]]'' | ||
|''9.140'' | | ''9.140'' | ||
|''31.492'' | | ''31.492'' | ||
|- | |- | ||
|[[11/10]] | | [[11/10]] | ||
|9.145 | | 9.145 | ||
|31.508 | | 31.508 | ||
|- | |- | ||
|[[11/2]] | | [[11/2]] | ||
|9.220 | | 9.220 | ||
|31.766 | | 31.766 | ||
|- | |- | ||
|''[[16/9]]'' | | ''[[16/9]]'' | ||
|''9.244'' | | ''9.244'' | ||
|''31.848'' | | ''31.848'' | ||
|- | |- | ||
|[[29/3]] | | [[29/3]] | ||
|9.263 | | 9.263 | ||
| 31.914 | | 31.914 | ||
|- | |- | ||
|[[23/10]] | | [[23/10]] | ||
|9.284 | | 9.284 | ||
| 31.985 | | 31.985 | ||
|- | |- | ||
|[[29/15]] | | [[29/15]] | ||
|9.338 | | 9.338 | ||
|32.173 | | 32.173 | ||
|- | |- | ||
|[[23/2]] | | [[23/2]] | ||
|9.359 | | 9.359 | ||
|32.243 | | 32.243 | ||
|- | |- | ||
|''[[23/4]]'' | | ''[[23/4]]'' | ||
|''9.686'' | | ''9.686'' | ||
|''33.373'' | | ''33.373'' | ||
|- | |- | ||
|''[[18/7]]'' | | ''[[18/7]]'' | ||
|''9.691'' | | ''9.691'' | ||
|''33.387'' | | ''33.387'' | ||
|- | |- | ||
|[[26/1]] | | [[26/1]] | ||
|9.700 | | 9.700 | ||
|33.421 | | 33.421 | ||
|- | |- | ||
|''[[23/20]]'' | | ''[[23/20]]'' | ||
|''9.762'' | | ''9.762'' | ||
|''33.632'' | | ''33.632'' | ||
|- | |- | ||
|[[26/5]] | | [[26/5]] | ||
|9.775 | | 9.775 | ||
|33.679 | | 33.679 | ||
|- | |- | ||
|''[[32/9]]'' | | ''[[32/9]]'' | ||
|''9.801'' | | ''9.801'' | ||
|''33.768'' | | ''33.768'' | ||
|- | |- | ||
|''[[11/4]]'' | | ''[[11/4]]'' | ||
|''9.825'' | | ''9.825'' | ||
|''33.850'' | | ''33.850'' | ||
|- | |- | ||
|[[26/25]] | | [[26/25]] | ||
|9.850 | | 9.850 | ||
|33.938 | | 33.938 | ||
|- | |- | ||
|''[[20/11]]'' | | ''[[20/11]]'' | ||
|''9.900'' | | ''9.900'' | ||
|''34.109'' | | ''34.109'' | ||
|- | |- | ||
|[[10/1]] | | [[10/1]] | ||
|9.905 | | 9.905 | ||
| 34.125 | | 34.125 | ||
|- | |- | ||
|[[26/17]] | | [[26/17]] | ||
|9.950 | | 9.950 | ||
|34.282 | | 34.282 | ||
|- | |- | ||
|'''[[2/1]]''' | | '''[[2/1]]''' | ||
|'''9.980''' | | '''9.980''' | ||
|'''34.384''' | | '''34.384''' | ||
|- | |- | ||
|[[5/2]] | | [[5/2]] | ||
|10.055 | | 10.055 | ||
|34.642 | | 34.642 | ||
|- | |- | ||
|''[[32/7]]'' | | ''[[32/7]]'' | ||
| | | ''10.090'' | ||
''10.090'' | | ''34.764'' | ||
|''34.764'' | |||
|- | |- | ||
|[[23/22]] | | [[23/22]] | ||
|10.118 | | 10.118 | ||
|34.861 | | 34.861 | ||
|- | |- | ||
|[[25/2]] | | [[25/2]] | ||
|10.130 | | 10.130 | ||
|34.901 | | 34.901 | ||
|- | |- | ||
|''[[16/11]]'' | | ''[[16/11]]'' | ||
| | | ''10.135'' | ||
''10.135'' | | ''34.917'' | ||
|''34.917'' | |||
|- | |- | ||
|[[17/10]] | | [[17/10]] | ||
|10.155 | | 10.155 | ||
| 34.986 | | 34.986 | ||
|- | |- | ||
|[[13/10]] | | [[13/10]] | ||
|10.184 | | 10.184 | ||
|35.088 | | 35.088 | ||
|- | |- | ||
|[[17/2]] | | [[17/2]] | ||
|10.230 | | 10.230 | ||
|35.244 | | 35.244 | ||
|- | |- | ||
|[[13/2]] | | [[13/2]] | ||
|10.259 | | 10.259 | ||
|35.346 | | 35.346 | ||
|- | |- | ||
|''[[14/9]]'' | | ''[[14/9]]'' | ||
| | | ''10.269'' | ||
''10.269'' | | ''35.380'' | ||
|''35.380'' | |||
|- | |- | ||
|''[[23/16]]'' | | ''[[23/16]]'' | ||
| | | ''10.273'' | ||
''10.273'' | | ''35.394'' | ||
|''35.394'' | |||
|- | |- | ||
|[[19/13]] | | [[19/13]] | ||
|10.587 | | 10.587 | ||
| 36.475 | | 36.475 | ||
|- | |- | ||
|[[19/17]] | | [[19/17]] | ||
|10.617 | | 10.617 | ||
| 36.577 | | 36.577 | ||
|- | |- | ||
|[[29/12]] | | [[29/12]] | ||
|10.697 | | 10.697 | ||
|36.853 | | 36.853 | ||
|- | |- | ||
|''[[9/4]]'' | | ''[[9/4]]'' | ||
| | | ''10.716'' | ||
''10.716'' | | ''36.919'' | ||
|''36.919'' | |||
|- | |- | ||
|[[25/19]] | | [[25/19]] | ||
|10.716 | | 10.716 | ||
|36.921 | | 36.921 | ||
|- | |- | ||
|[[22/1]] | | [[22/1]] | ||
|10.739 | | 10.739 | ||
|37.001 | | 37.001 | ||
|- | |- | ||
|''[[20/9]]'' | | ''[[20/9]]'' | ||
| | | ''10.791'' | ||
''10.791'' | | ''37.177'' | ||
|''37.177'' | |||
|- | |- | ||
|[[19/5]] | | [[19/5]] | ||
|10.791 | | 10.791 | ||
|37.180 | | 37.180 | ||
|- | |- | ||
|[[22/5]] | | [[22/5]] | ||
|10.814 | | 10.814 | ||
|37.259 | | 37.259 | ||
|- | |- | ||
|'''[[19/1]]''' | | '''[[19/1]]''' | ||
|'''10.866''' | | '''10.866''' | ||
|'''37.438''' | | '''37.438''' | ||
|- | |- | ||
|''[[18/11]]'' | | ''[[18/11]]'' | ||
| | | ''10.870'' | ||
''10.870'' | | ''37.452'' | ||
|''37.452'' | |||
|- | |- | ||
|[[25/22]] | | [[25/22]] | ||
|10.890 | | 10.890 | ||
|37.518 | | 37.518 | ||
|- | |- | ||
|''[[16/1]]'' | | ''[[16/1]]'' | ||
| | | ''10.894'' | ||
''10.894'' | | ''37.534'' | ||
|''37.534'' | |||
|- | |- | ||
|''[[16/5]]'' | | ''[[16/5]]'' | ||
| | | ''10.969'' | ||
''10.969'' | | ''37.793'' | ||
|''37.793'' | |||
|- | |- | ||
|[[22/17]] | | [[22/17]] | ||
|10.989 | | 10.989 | ||
|37.862 | | 37.862 | ||
|- | |- | ||
|''[[7/4]]'' | | ''[[7/4]]'' | ||
| | | ''11.005'' | ||
''11.005'' | | ''37.915'' | ||
|''37.915'' | |||
|- | |- | ||
|''[[23/18]]'' | | ''[[23/18]]'' | ||
| | | ''11.009'' | ||
''11.009'' | | ''37.929'' | ||
|''37.929'' | |||
|- | |- | ||
|[[22/13]] | | [[22/13]] | ||
|11.019 | | 11.019 | ||
|37.964 | | 37.964 | ||
|- | |- | ||
|''[[25/16]]'' | | ''[[25/16]]'' | ||
| | | ''11.044'' | ||
''11.044'' | | ''38.052'' | ||
|''38.052'' | |||
|- | |- | ||
|''[[20/7]]'' | | ''[[20/7]]'' | ||
| | | ''11.080'' | ||
''11.080'' | | ''38.174'' | ||
|''38.174'' | |||
|- | |- | ||
|''[[17/16]]'' | | ''[[17/16]]'' | ||
| | | ''11.144'' | ||
''11.144'' | | ''38.395'' | ||
|''38.395'' | |||
|- | |- | ||
|[[14/11]] | | [[14/11]] | ||
|11.160 | | 11.160 | ||
|38.448 | | 38.448 | ||
|- | |- | ||
|''[[16/13]]'' | | ''[[16/13]]'' | ||
| | | ''11.174'' | ||
''11.174'' | | ''38.497'' | ||
|''38.497'' | |||
|- | |- | ||
|[[23/14]] | | [[23/14]] | ||
|11.298 | | 11.298 | ||
| 38.925 | | 38.925 | ||
|- | |- | ||
|[[31/12]] | | [[31/12]] | ||
|11.338 | | 11.338 | ||
| 39.062 | | 39.062 | ||
|- | |- | ||
|[[21/13]] | | [[21/13]] | ||
|11.468 | | 11.468 | ||
| 39.512 | | 39.512 | ||
|- | |- | ||
|[[23/19]] | | [[23/19]] | ||
|11.488 | | 11.488 | ||
| 39.579 | | 39.579 | ||
|- | |- | ||
|[[21/17]] | | [[21/17]] | ||
|11.498 | | 11.498 | ||
| 39.614 | | 39.614 | ||
|- | |- | ||
|[[25/21]] | | [[25/21]] | ||
|11.598 | | 11.598 | ||
| 39.958 | | 39.958 | ||
|- | |- | ||
|[[19/11]] | | [[19/11]] | ||
|11.626 | | 11.626 | ||
|40.056 | | 40.056 | ||
|- | |- | ||
|''[[18/1]]'' | | ''[[18/1]]'' | ||
| | | ''11.630'' | ||
''11.630'' | | ''40.069'' | ||
|''40.069'' | |||
|- | |- | ||
|[[21/5]] | | [[21/5]] | ||
|11.673 | | 11.673 | ||
|40.216 | | 40.216 | ||
|- | |- | ||
|''[[18/5]]'' | | ''[[18/5]]'' | ||
| | | ''11.705'' | ||
''11.705'' | | ''40.328'' | ||
|''40.328'' | |||
|- | |- | ||
|[[21/1]] | | [[21/1]] | ||
|11.748 | | 11.748 | ||
|40.475 | | 40.475 | ||
|- | |- | ||
|''[[27/13]]'' | | ''[[27/13]]'' | ||
| | | ''11.758'' | ||
''11.758'' | | ''40.508'' | ||
|''40.508'' | |||
|- | |- | ||
|''[[25/18]]'' | | ''[[25/18]]'' | ||
| | | ''11.780'' | ||
''11.780'' | | ''40.587'' | ||
|''40.587'' | |||
|- | |- | ||
|''[[19/8]]'' | | ''[[19/8]]'' | ||
| | | ''11.781'' | ||
''11.781'' | | ''40.589'' | ||
|''40.589'' | |||
|- | |- | ||
|''[[27/17]]'' | | ''[[27/17]]'' | ||
| | | ''11.787'' | ||
''11.787'' | | ''40.610'' | ||
|''40.610'' | |||
|- | |- | ||
|''[[18/17]]'' | | ''[[18/17]]'' | ||
| | | ''11.880'' | ||
''11.880'' | | ''40.930'' | ||
|''40.930'' | |||
|- | |- | ||
|''[[19/12]]'' | | ''[[19/12]]'' | ||
| | | ''11.886'' | ||
''11.886'' | | ''40.952'' | ||
|''40.952'' | |||
|- | |- | ||
|''[[27/25]]'' | | ''[[27/25]]'' | ||
| | | ''11.887'' | ||
''11.887'' | | ''40.954'' | ||
|''40.954'' | |||
|- | |- | ||
|''[[18/13]]'' | | ''[[18/13]]'' | ||
| | | ''11.910'' | ||
''11.910'' | | ''41.032'' | ||
|''41.032'' | |||
|- | |- | ||
|[[14/1]] | | [[14/1]] | ||
|11.919 | | 11.919 | ||
|41.066 | | 41.066 | ||
|- | |- | ||
|''[[27/5]]'' | | ''[[27/5]]'' | ||
| | | ''11.962'' | ||
''11.962'' | | ''41.213'' | ||
|''41.213'' | |||
|- | |- | ||
|[[14/5]] | | [[14/5]] | ||
|11.994 | | 11.994 | ||
|41.324 | | 41.324 | ||
|- | |- | ||
|''[[27/1]]'' | | ''[[27/1]]'' | ||
| | | ''12.037'' | ||
''12.037'' | | ''41.471'' | ||
|''41.471'' | |||
|- | |- | ||
|''[[31/14]]'' | | ''[[31/14]]'' | ||
| | | ''12.040'' | ||
''12.040'' | | ''41.482'' | ||
|''41.482'' | |||
|- | |- | ||
|[[25/14]] | | [[25/14]] | ||
|12.069 | | 12.069 | ||
| 41.583 | | 41.583 | ||
|- | |- | ||
|[[17/14]] | | [[17/14]] | ||
|12.169 | | 12.169 | ||
| 41.926 | | 41.926 | ||
|- | |- | ||
|[[14/13]] | | [[14/13]] | ||
|12.199 | | 12.199 | ||
| 42.028 | | 42.028 | ||
|- | |- | ||
|[[31/18]] | | [[31/18]] | ||
|12.329 | | 12.329 | ||
| 42.478 | | 42.478 | ||
|- | |- | ||
|[[23/21]] | | [[23/21]] | ||
|12.369 | | 12.369 | ||
|42.615 | | 42.615 | ||
|- | |- | ||
|''[[24/13]]'' | | ''[[24/13]]'' | ||
| | | ''12.493'' | ||
''12.493'' | | ''43.044'' | ||
|''43.044'' | |||
|- | |- | ||
|[[21/11]] | | [[21/11]] | ||
|12.507 | | 12.507 | ||
|43.092 | | 43.092 | ||
|- | |- | ||
|''[[19/9]]'' | | ''[[19/9]]'' | ||
| | | ''12.517'' | ||
''12.517'' | | ''43.124'' | ||
|''43.124'' | |||
|- | |- | ||
|''[[24/17]]'' | | ''[[24/17]]'' | ||
| | | ''12.523'' | ||
''12.523'' | | ''43.146'' | ||
|''43.146'' | |||
|- | |- | ||
|''[[25/24]]'' | | ''[[25/24]]'' | ||
| | | ''12.623'' | ||
''12.623'' | | ''43.489'' | ||
|''43.489'' | |||
|- | |- | ||
|''[[27/23]]'' | | ''[[27/23]]'' | ||
| | | ''12.658'' | ||
''12.658'' | | ''43.611'' | ||
|''43.611'' | |||
|- | |- | ||
|''[[21/8]]'' | | ''[[21/8]]'' | ||
| | | ''12.662'' | ||
''12.662'' | | ''43.626'' | ||
|''43.626'' | |||
|- | |- | ||
|''[[29/14]]'' | | ''[[29/14]]'' | ||
| | | ''12.681'' | ||
''12.681'' | | ''43.691'' | ||
|''43.691'' | |||
|- | |- | ||
|''[[24/5]]'' | | ''[[24/5]]'' | ||
| | | ''12.698'' | ||
''12.698'' | | ''43.748'' | ||
|''43.748'' | |||
|- | |- | ||
|''[[24/1]]'' | | ''[[24/1]]'' | ||
| | | ''12.773'' | ||
''12.773'' | | ''44.006'' | ||
|''44.006'' | |||
|- | |- | ||
|''[[27/11]]'' | | ''[[27/11]]'' | ||
| | | ''12.797'' | ||
''12.797'' | | ''44.089'' | ||
|''44.089'' | |||
|- | |- | ||
|[[19/7]] | | [[19/7]] | ||
|12.806 | | 12.806 | ||
|44.120 | | 44.120 | ||
|- | |- | ||
|''[[27/8]]'' | | ''[[27/8]]'' | ||
| | | ''12.951'' | ||
''12.951'' | | ''44.622'' | ||
|''44.622'' | |||
|- | |- | ||
|[[29/18]] | | [[29/18]] | ||
|12.970 | | 12.970 | ||
|44.687 | | 44.687 | ||
|- | |- | ||
|''[[31/16]]'' | | ''[[31/16]]'' | ||
| | | ''13.065'' | ||
''13.065'' | | ''45.014'' | ||
|''45.014'' | |||
|- | |- | ||
|''[[31/22]]'' | | ''[[31/22]]'' | ||
| | | ''13.220'' | ||
''13.220'' | | ''45.547'' | ||
|''45.547'' | |||
|- | |- | ||
|''[[15/7]]'' | | ''[[15/7]]'' | ||
| | | ''13.323'' | ||
''13.323'' | | ''45.902'' | ||
|''45.902'' | |||
|- | |- | ||
|''[[24/23]]'' | | ''[[24/23]]'' | ||
| | | ''13.394'' | ||
''13.394'' | | ''46.147'' | ||
|''46.147'' | |||
|- | |- | ||
|''[[7/3]]'' | | ''[[7/3]]'' | ||
| | | ''13.398'' | ||
''13.398'' | | ''46.161'' | ||
|''46.161'' | |||
|- | |- | ||
|[[13/3]] | | [[13/3]] | ||
|13.408 | | 13.408 | ||
|46.194 | | 46.194 | ||
|- | |- | ||
|[[17/3]] | | [[17/3]] | ||
|13.437 | | 13.437 | ||
| 46.296 | | 46.296 | ||
|- | |- | ||
|[[15/13]] | | [[15/13]] | ||
|13.483 | | 13.483 | ||
| 46.453 | | 46.453 | ||
|- | |- | ||
|[[17/15]] | | [[17/15]] | ||
|13.513 | | 13.513 | ||
|46.555 | | 46.555 | ||
|- | |- | ||
|''[[24/11]]'' | | ''[[24/11]]'' | ||
| | | ''13.532'' | ||
''13.532'' | | ''46.624'' | ||
|''46.624'' | |||
|- | |- | ||
|[[25/3]] | | [[25/3]] | ||
|13.537 | | 13.537 | ||
|46.640 | | 46.640 | ||
|- | |- | ||
|[[5/3]] | | [[5/3]] | ||
|13.612 | | 13.612 | ||
|46.898 | | 46.898 | ||
|- | |- | ||
|'''[[3/1]]''' | | '''[[3/1]]''' | ||
|'''13.687''' | | '''13.687''' | ||
|'''47.157''' | | '''47.157''' | ||
|- | |- | ||
|''[[29/16]]'' | | ''[[29/16]]'' | ||
| | | ''13.706'' | ||
''13.706'' | | ''47.223'' | ||
|''47.223'' | |||
|- | |- | ||
|[[15/1]] | | [[15/1]] | ||
|13.762 | | 13.762 | ||
|47.416 | | 47.416 | ||
|- | |- | ||
|''[[29/22]]'' | | ''[[29/22]]'' | ||
| | | ''13.861'' | ||
''13.861'' | | ''47.756'' | ||
|''47.756'' | |||
|- | |- | ||
|''[[27/7]]'' | | ''[[27/7]]'' | ||
| | | ''13.976'' | ||
''13.976'' | | ''48.153'' | ||
|''48.153'' | |||
|- | |- | ||
|''[[31/2]]'' | | ''[[31/2]]'' | ||
| | | ''13.980'' | ||
''13.980'' | | ''48.164'' | ||
|''48.164'' | |||
|- | |- | ||
|''[[31/10]]'' | | ''[[31/10]]'' | ||
| | | ''14.055'' | ||
''14.055'' | | ''48.423'' | ||
|''48.423'' | |||
|- | |- | ||
|[[29/26]] | | [[29/26]] | ||
|14.125 | | 14.125 | ||
|48.664 | | 48.664 | ||
|- | |- | ||
|''[[31/26]]'' | | ''[[31/26]]'' | ||
| | | ''14.259'' | ||
''14.259'' | | ''49.127'' | ||
|''49.127'' | |||
|- | |- | ||
|[[23/3]] | | [[23/3]] | ||
|14.308 | | 14.308 | ||
|49.297 | | 49.297 | ||
|- | |- | ||
|[[24/7]] | | [[24/7]] | ||
|14.313 | | 14.313 | ||
| 49.312 | | 49.312 | ||
|- | |- | ||
|[[29/10]] | | [[29/10]] | ||
|14.329 | | 14.329 | ||
|49.368 | | 49.368 | ||
|- | |- | ||
|''[[15/8]]'' | | ''[[15/8]]'' | ||
| | | ''14.348'' | ||
''14.348'' | | ''49.434'' | ||
|''49.434'' | |||
|- | |- | ||
|[[23/15]] | | [[23/15]] | ||
|14.384 | | 14.384 | ||
|49.556 | | 49.556 | ||
|- | |- | ||
|[[29/2]] | | [[29/2]] | ||
|14.404 | | 14.404 | ||
|49.627 | | 49.627 | ||
|- | |- | ||
|''[[8/3]]'' | | ''[[8/3]]'' | ||
| | | ''14.423'' | ||
''14.423'' | | ''49.692'' | ||
|''49.692'' | |||
|- | |- | ||
|[[11/3]] | | [[11/3]] | ||
|14.447 | | 14.447 | ||
|49.774 | | 49.774 | ||
|- | |- | ||
|''[[15/11]]'' | | ''[[15/11]]'' | ||
| | | ''14.503'' | ||
''14.503'' | | ''49.967'' | ||
|''49.967'' | |||
|} | |} | ||
[[Category:Zeta peak indexes]] | [[Category:Zeta peak indexes]] |
Revision as of 00:23, 11 August 2024
186 zeta peak index (abbreviated 186zpi), is the equal-step tuning system obtained from the 186st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 0.241233 | 11.567493 | 41edo | 1190.02021518380 | 2 | 2 |
Theory
Record on the Riemann zeta function with primes 2 and 3 removed
186zpi sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is 125zpi and the next one is 565zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with primes 2 and 3 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
125zpi | 30.6006474885974 | 39.2148564976330 | 1.468164 | 31edo | 1215.66055142662 | 30.5974484926723 | 39.2189564527704 | 3.769318 | 31edo | 1215.78765003588 |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 41edo | 1190.02021518380 | 41.3477989230936 | 29.0221010852836 | 4.469823 | 41edo | 1189.90614449663 |
565zpi | 98.6209462564991 | 12.1678005084130 | 2.305330 | 99edo | 1204.61225033289 | 98.6257548378926 | 12.1672072570942 | 4.883729 | 99edo | 1204.55351845233 |
Harmonic series
As a non-octave, non-tritave scale, 186zpi features a well-balanced harmonic series segment from 5 to 9, and performs exceptionally well across all prime harmonics from 5 to 23, with the exception of 19.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.0 | +13.7 | +9.1 | +0.1 | +3.7 | -1.9 | -0.9 | -1.7 | -9.9 | -0.8 | -6.3 | +0.3 | -11.9 | +13.8 | -10.9 |
Relative (%) | -34.4 | +47.2 | +31.2 | +0.3 | +12.8 | -6.7 | -3.2 | -5.7 | -34.1 | -2.6 | -21.6 | +1.0 | -41.1 | +47.4 | -37.5 | |
Step | 41 | 66 | 83 | 96 | 107 | 116 | 124 | 131 | 137 | 143 | 148 | 153 | 157 | 162 | 165 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.2 | -11.6 | +10.9 | +9.1 | +11.7 | -10.7 | -0.6 | +12.8 | +0.2 | -9.7 | +12.0 | +7.1 | +4.4 | +3.8 | +5.1 | +8.2 |
Relative (%) | +0.9 | -40.1 | +37.4 | +31.5 | +40.5 | -37.0 | -2.1 | +44.0 | +0.5 | -33.4 | +41.5 | +24.6 | +15.2 | +13.0 | +17.5 | +28.1 | |
Step | 169 | 172 | 176 | 179 | 182 | 184 | 187 | 190 | 192 | 194 | 197 | 199 | 201 | 203 | 205 | 207 |
Approximation of EDONOIs
Based on harmonics with less than 1 cent of error, 186zpi can be approximated by 96ed5, 124ed8 (or every 3 steps of 124edo), 143ed11, 153ed13, 169ed17, 187ed23, and 192ed25.
Intervals and notation
There are several ways to approach notation. The simplest method involves using the notations from 41edo. However, this method does not preserve octave compression when rendered by notation software. To address this issue, consider using the ups and downs notation from 124edo at every 3-degree step (i.e., the edonoi 124ed8).
It is important to note that 124edo provides two possible fifths (3/2). The closest one, from the val <124 197] (i.e. the patent val), is the fifth mapped to 73 steps of 124edo with a relative error of +46.465%. The second closest, from the val <124 196] (i.e. the val 124b), is mapped to 72 steps of 124edo with a relative error of -53.535%. This second fifth, which appears in 124ed8, also corresponds to the fifth of 31edo. Therefore, we choose to use the ups and downs notation of the 124b temperament, denoted as <124 196].
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 20 steps Limma = 12 steps Apotome = 8 steps | |||
Degree | Cents | Ratios | Ups and Downs Notation | Step |
---|---|---|---|---|
0 | 0.000 | P1 | 0 | |
1 | 29.025 | ^^^1 | 3 | |
2 | 58.050 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24 | vvA1, ^^d2 | 6 |
3 | 87.075 | 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17 | vvvm2 | 9 |
4 | 116.100 | 17/16, 16/15, 31/29, 15/14, 29/27, 14/13 | m2 | 12 |
5 | 145.124 | 27/25, 13/12, 25/23, 12/11, 23/21 | ^^^m2 | 15 |
6 | 174.149 | 11/10, 32/29, 21/19, 31/28, 10/9 | vvM2 | 18 |
7 | 203.174 | 29/26, 19/17, 28/25, 9/8, 26/23, 17/15 | ^M2 | 21 |
8 | 232.199 | 25/22, 8/7, 31/27, 23/20 | ^4M2 | 24 |
9 | 261.224 | 15/13, 22/19, 29/25, 7/6 | ^^^d3 | 27 |
10 | 290.249 | 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26 | vvm3 | 30 |
11 | 319.274 | 6/5, 29/24, 23/19 | ^m3 | 33 |
12 | 348.299 | 17/14, 28/23, 11/9, 27/22, 16/13 | ~3 | 36 |
13 | 377.323 | 21/17, 26/21, 31/25, 5/4 | vM3 | 39 |
14 | 406.348 | 29/23, 24/19, 19/15, 14/11 | ^^M3 | 42 |
15 | 435.373 | 23/18, 32/25, 9/7, 31/24, 22/17 | vvvA3 | 45 |
16 | 464.398 | 13/10, 30/23, 17/13, 21/16, 25/19, 29/22 | v44 | 48 |
17 | 493.423 | 4/3 | v4 | 51 |
18 | 522.448 | 31/23, 27/20, 23/17, 19/14, 15/11 | ^^4 | 54 |
19 | 551.473 | 26/19, 11/8, 29/21, 18/13 | vvvA4 | 57 |
20 | 580.498 | 25/18, 32/23, 7/5, 31/22 | A4 | 60 |
21 | 609.523 | 24/17, 17/12, 27/19, 10/7 | vd5 | 63 |
22 | 638.547 | 23/16, 13/9, 29/20, 16/11 | ^^d5 | 66 |
23 | 667.572 | 19/13, 22/15, 25/17, 28/19, 31/21 | vvv5 | 69 |
24 | 696.597 | 3/2 | P5 | 72 |
25 | 725.622 | 32/21, 29/19, 26/17, 23/15 | ^^^5 | 75 |
26 | 754.647 | 20/13, 17/11, 31/20, 14/9 | vvA5, ^^d6 | 78 |
27 | 783.672 | 25/16, 11/7, 30/19, 19/12 | vvvm6 | 81 |
28 | 812.697 | 27/17, 8/5, 29/18 | m6 | 84 |
29 | 841.722 | 21/13, 13/8, 31/19, 18/11 | ^^^m6 | 87 |
30 | 870.746 | 23/14, 28/17, 5/3 | vvM6 | 90 |
31 | 899.771 | 32/19, 27/16, 22/13 | ^M6 | 93 |
32 | 928.796 | 17/10, 29/17, 12/7, 31/18 | ^4M6 | 96 |
33 | 957.821 | 19/11, 26/15, 7/4 | ^^^d7 | 99 |
34 | 986.846 | 30/17, 23/13, 16/9 | vvm7 | 102 |
35 | 1015.871 | 25/14, 9/5, 29/16 | ^m7 | 105 |
36 | 1044.896 | 20/11, 31/17, 11/6 | ~7 | 108 |
37 | 1073.921 | 24/13, 13/7, 28/15, 15/8 | vM7 | 111 |
38 | 1102.946 | 32/17, 17/9, 19/10 | ^^M7 | 114 |
39 | 1131.970 | 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | vvvA7 | 117 |
40 | 1160.995 | v41 +1oct | 120 | |
41 | 1190.020 | 2/1 | v1 +1oct | 123 |
42 | 1219.045 | ^^1 +1oct | 126 | |
43 | 1248.070 | 31/15, 29/14 | vvvA1 +1oct | 129 |
44 | 1277.095 | 27/13, 25/12, 23/11, 21/10 | v4m2 +1oct | 132 |
45 | 1306.120 | 19/9, 17/8, 32/15, 15/7 | vm2 +1oct | 135 |
46 | 1335.145 | 28/13, 13/6 | ^^m2 +1oct | 138 |
47 | 1364.170 | 24/11, 11/5, 31/14 | vvvM2 +1oct | 141 |
48 | 1393.194 | 20/9, 29/13, 9/4 | M2 +1oct | 144 |
49 | 1422.219 | 25/11, 16/7 | ^^^M2 +1oct | 147 |
50 | 1451.244 | 23/10, 30/13 | vvA2 +1oct, ^^d3 +1oct | 150 |
51 | 1480.269 | 7/3, 26/11 | vvvm3 +1oct | 153 |
52 | 1509.294 | 19/8, 31/13, 12/5 | m3 +1oct | 156 |
53 | 1538.319 | 29/12, 17/7, 22/9 | ^^^m3 +1oct | 159 |
54 | 1567.344 | 27/11, 32/13 | vvM3 +1oct | 162 |
55 | 1596.369 | 5/2 | ^M3 +1oct | 165 |
56 | 1625.393 | 28/11, 23/9, 18/7 | ^4M3 +1oct | 168 |
57 | 1654.418 | 31/12, 13/5 | ^^^d4 +1oct | 171 |
58 | 1683.443 | 21/8, 29/11 | vv4 +1oct | 174 |
59 | 1712.468 | 8/3, 27/10 | ^4 +1oct | 177 |
60 | 1741.493 | 19/7, 30/11, 11/4 | ~4 +1oct | 180 |
61 | 1770.518 | 25/9, 14/5 | vA4 +1oct | 183 |
62 | 1799.543 | 31/11, 17/6 | ^^A4 +1oct, vvd5 +1oct | 186 |
63 | 1828.568 | 20/7, 23/8, 26/9 | ^d5 +1oct | 189 |
64 | 1857.593 | 29/10, 32/11 | ~5 +1oct | 192 |
65 | 1886.617 | v5 +1oct | 195 | |
66 | 1915.642 | 3/1 | ^^5 +1oct | 198 |
67 | 1944.667 | 31/10 | vvvA5 +1oct | 201 |
68 | 1973.692 | 28/9, 25/8, 22/7 | v4m6 +1oct | 204 |
69 | 2002.717 | 19/6, 16/5 | vm6 +1oct | 207 |
70 | 2031.742 | 29/9, 13/4 | ^^m6 +1oct | 210 |
71 | 2060.767 | 23/7 | vvvM6 +1oct | 213 |
72 | 2089.792 | 10/3 | M6 +1oct | 216 |
73 | 2118.816 | 27/8, 17/5, 24/7 | ^^^M6 +1oct | 219 |
74 | 2147.841 | 31/9 | vvA6 +1oct, ^^d7 +1oct | 222 |
75 | 2176.866 | 7/2 | vvvm7 +1oct | 225 |
76 | 2205.891 | 32/9, 25/7, 18/5 | m7 +1oct | 228 |
77 | 2234.916 | 29/8, 11/3 | ^^^m7 +1oct | 231 |
78 | 2263.941 | 26/7 | vvM7 +1oct | 234 |
79 | 2292.966 | 15/4 | ^M7 +1oct | 237 |
80 | 2321.991 | 19/5, 23/6 | ^4M7 +1oct | 240 |
81 | 2351.016 | 27/7, 31/8 | ^^^d1 +2oct | 243 |
82 | 2380.040 | vv1 +2oct | 246 | |
83 | 2409.065 | 4/1 | ^1 +2oct | 249 |
84 | 2438.090 | ^41 +2oct | 252 | |
85 | 2467.115 | 29/7, 25/6 | ^^^d2 +2oct | 255 |
86 | 2496.140 | 21/5, 17/4 | vvm2 +2oct | 258 |
87 | 2525.165 | 30/7, 13/3 | ^m2 +2oct | 261 |
88 | 2554.190 | 22/5 | ~2 +2oct | 264 |
89 | 2583.215 | 31/7 | vM2 +2oct | 267 |
90 | 2612.239 | 9/2 | ^^M2 +2oct | 270 |
91 | 2641.264 | 32/7, 23/5 | vvvA2 +2oct | 273 |
92 | 2670.289 | 14/3 | v4m3 +2oct | 276 |
93 | 2699.314 | 19/4 | vm3 +2oct | 279 |
94 | 2728.339 | 24/5, 29/6 | ^^m3 +2oct | 282 |
95 | 2757.364 | vvvM3 +2oct | 285 | |
96 | 2786.389 | 5/1 | M3 +2oct | 288 |
97 | 2815.414 | ^^^M3 +2oct | 291 | |
98 | 2844.439 | 31/6, 26/5 | vvA3 +2oct, ^^d4 +2oct | 294 |
99 | 2873.463 | 21/4 | vvv4 +2oct | 297 |
100 | 2902.488 | 16/3 | P4 +2oct | 300 |
101 | 2931.513 | 27/5 | ^^^4 +2oct | 303 |
102 | 2960.538 | 11/2 | vvA4 +2oct | 306 |
103 | 2989.563 | 28/5, 17/3 | ^A4 +2oct | 309 |
104 | 3018.588 | 23/4 | d5 +2oct | 312 |
105 | 3047.613 | 29/5 | ^^^d5 +2oct | 315 |
106 | 3076.638 | vv5 +2oct | 318 | |
107 | 3105.663 | 6/1 | ^5 +2oct | 321 |
108 | 3134.687 | ^45 +2oct | 324 | |
109 | 3163.712 | 31/5, 25/4 | ^^^d6 +2oct | 327 |
110 | 3192.737 | 19/3 | vvm6 +2oct | 330 |
111 | 3221.762 | 32/5 | ^m6 +2oct | 333 |
112 | 3250.787 | 13/2 | ~6 +2oct | 336 |
113 | 3279.812 | 20/3 | vM6 +2oct | 339 |
114 | 3308.837 | 27/4 | ^^M6 +2oct | 342 |
115 | 3337.862 | vvvA6 +2oct | 345 | |
116 | 3366.886 | 7/1 | v4m7 +2oct | 348 |
117 | 3395.911 | vm7 +2oct | 351 | |
118 | 3424.936 | 29/4 | ^^m7 +2oct | 354 |
119 | 3453.961 | 22/3 | vvvM7 +2oct | 357 |
120 | 3482.986 | 15/2 | M7 +2oct | 360 |
121 | 3512.011 | 23/3 | ^^^M7 +2oct | 363 |
122 | 3541.036 | 31/4 | vvA7 +2oct, ^^d1 +3oct | 366 |
123 | 3570.061 | vvv1 +3oct | 369 | |
124 | 3599.086 | 8/1 | P1 +3oct | 372 |
125 | 3628.110 | ^^^1 +3oct | 375 | |
126 | 3657.135 | 25/3 | vvA1 +3oct, ^^d2 +3oct | 378 |
127 | 3686.160 | vvvm2 +3oct | 381 | |
128 | 3715.185 | 17/2 | m2 +3oct | 384 |
129 | 3744.210 | 26/3 | ^^^m2 +3oct | 387 |
130 | 3773.235 | vvM2 +3oct | 390 | |
131 | 3802.260 | 9/1 | ^M2 +3oct | 393 |
132 | 3831.285 | ^4M2 +3oct | 396 | |
133 | 3860.309 | 28/3 | ^^^d3 +3oct | 399 |
134 | 3889.334 | 19/2 | vvm3 +3oct | 402 |
135 | 3918.359 | 29/3 | ^m3 +3oct | 405 |
136 | 3947.384 | ~3 +3oct | 408 | |
137 | 3976.409 | 10/1 | vM3 +3oct | 411 |
138 | 4005.434 | ^^M3 +3oct | 414 | |
139 | 4034.459 | 31/3 | vvvA3 +3oct | 417 |
140 | 4063.484 | 21/2 | v44 +3oct | 420 |
141 | 4092.509 | 32/3 | v4 +3oct | 423 |
142 | 4121.533 | ^^4 +3oct | 426 | |
143 | 4150.558 | 11/1 | vvvA4 +3oct | 429 |
144 | 4179.583 | A4 +3oct | 432 | |
145 | 4208.608 | vd5 +3oct | 435 | |
146 | 4237.633 | 23/2 | ^^d5 +3oct | 438 |
147 | 4266.658 | vvv5 +3oct | 441 | |
148 | 4295.683 | 12/1 | P5 +3oct | 444 |
149 | 4324.708 | ^^^5 +3oct | 447 | |
150 | 4353.732 | vvA5 +3oct, ^^d6 +3oct | 450 | |
151 | 4382.757 | 25/2 | vvvm6 +3oct | 453 |
152 | 4411.782 | m6 +3oct | 456 | |
153 | 4440.807 | 13/1 | ^^^m6 +3oct | 459 |
154 | 4469.832 | vvM6 +3oct | 462 | |
155 | 4498.857 | 27/2 | ^M6 +3oct | 465 |
156 | 4527.882 | ^4M6 +3oct | 468 | |
157 | 4556.907 | 14/1 | ^^^d7 +3oct | 471 |
158 | 4585.932 | vvm7 +3oct | 474 | |
159 | 4614.956 | ^m7 +3oct | 477 | |
160 | 4643.981 | 29/2 | ~7 +3oct | 480 |
161 | 4673.006 | vM7 +3oct | 483 | |
162 | 4702.031 | 15/1 | ^^M7 +3oct | 486 |
163 | 4731.056 | 31/2 | vvvA7 +3oct | 489 |
164 | 4760.081 | v41 +4oct | 492 | |
165 | 4789.106 | 16/1 | v1 +4oct | 495 |
166 | 4818.131 | ^^1 +4oct | 498 | |
167 | 4847.156 | vvvA1 +4oct | 501 | |
168 | 4876.180 | v4m2 +4oct | 504 | |
169 | 4905.205 | 17/1 | vm2 +4oct | 507 |
170 | 4934.230 | ^^m2 +4oct | 510 | |
171 | 4963.255 | vvvM2 +4oct | 513 | |
172 | 4992.280 | 18/1 | M2 +4oct | 516 |
173 | 5021.305 | ^^^M2 +4oct | 519 | |
174 | 5050.330 | vvA2 +4oct, ^^d3 +4oct | 522 | |
175 | 5079.355 | vvvm3 +4oct | 525 | |
176 | 5108.379 | 19/1 | m3 +4oct | 528 |
177 | 5137.404 | ^^^m3 +4oct | 531 | |
178 | 5166.429 | vvM3 +4oct | 534 | |
179 | 5195.454 | 20/1 | ^M3 +4oct | 537 |
180 | 5224.479 | ^4M3 +4oct | 540 | |
181 | 5253.504 | ^^^d4 +4oct | 543 | |
182 | 5282.529 | 21/1 | vv4 +4oct | 546 |
183 | 5311.554 | ^4 +4oct | 549 | |
184 | 5340.579 | 22/1 | ~4 +4oct | 552 |
185 | 5369.603 | vA4 +4oct | 555 | |
186 | 5398.628 | ^^A4 +4oct, vvd5 +4oct | 558 | |
187 | 5427.653 | 23/1 | ^d5 +4oct | 561 |
188 | 5456.678 | ~5 +4oct | 564 | |
189 | 5485.703 | v5 +4oct | 567 | |
190 | 5514.728 | 24/1 | ^^5 +4oct | 570 |
191 | 5543.753 | vvvA5 +4oct | 573 | |
192 | 5572.778 | 25/1 | v4m6 +4oct | 576 |
193 | 5601.802 | vm6 +4oct | 579 | |
194 | 5630.827 | 26/1 | ^^m6 +4oct | 582 |
195 | 5659.852 | vvvM6 +4oct | 585 | |
196 | 5688.877 | M6 +4oct | 588 | |
197 | 5717.902 | 27/1 | ^^^M6 +4oct | 591 |
198 | 5746.927 | vvA6 +4oct, ^^d7 +4oct | 594 | |
199 | 5775.952 | 28/1 | vvvm7 +4oct | 597 |
200 | 5804.977 | m7 +4oct | 600 | |
201 | 5834.002 | 29/1 | ^^^m7 +4oct | 603 |
202 | 5863.026 | vvM7 +4oct | 606 | |
203 | 5892.051 | 30/1 | ^M7 +4oct | 609 |
204 | 5921.076 | ^4M7 +4oct | 612 | |
205 | 5950.101 | 31/1 | ^^^d1 +5oct | 615 |
206 | 5979.126 | vv1 +5oct | 618 | |
207 | 6008.151 | 32/1 | ^1 +5oct | 621 |
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 186zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
17/13 | 0.030 | 0.102 |
5/1 | 0.075 | 0.259 |
25/17 | 0.100 | 0.344 |
25/13 | 0.129 | 0.446 |
23/11 | 0.138 | 0.477 |
25/1 | 0.150 | 0.517 |
11/8 | 0.155 | 0.533 |
17/5 | 0.175 | 0.602 |
13/5 | 0.204 | 0.704 |
17/1 | 0.250 | 0.861 |
13/1 | 0.279 | 0.963 |
9/7 | 0.289 | 0.996 |
23/8 | 0.293 | 1.011 |
23/1 | 0.621 | 2.140 |
31/29 | 0.641 | 2.209 |
30/29 | 0.642 | 2.211 |
23/5 | 0.696 | 2.399 |
29/6 | 0.717 | 2.470 |
9/8 | 0.736 | 2.535 |
11/1 | 0.760 | 2.617 |
25/23 | 0.771 | 2.657 |
11/5 | 0.835 | 2.876 |
23/17 | 0.871 | 3.001 |
21/19 | 0.881 | 3.037 |
11/9 | 0.891 | 3.069 |
23/13 | 0.901 | 3.103 |
25/11 | 0.910 | 3.135 |
8/1 | 0.914 | 3.151 |
8/5 | 0.990 | 3.409 |
17/11 | 1.009 | 3.478 |
8/7 | 1.025 | 3.531 |
23/9 | 1.029 | 3.546 |
13/11 | 1.039 | 3.580 |
25/8 | 1.065 | 3.668 |
17/8 | 1.164 | 4.012 |
27/19 | 1.171 | 4.033 |
11/7 | 1.180 | 4.065 |
13/8 | 1.194 | 4.114 |
31/30 | 1.283 | 4.420 |
23/7 | 1.318 | 4.542 |
31/6 | 1.358 | 4.679 |
9/1 | 1.650 | 5.686 |
9/5 | 1.725 | 5.944 |
20/19 | 1.726 | 5.947 |
25/9 | 1.800 | 6.203 |
19/4 | 1.801 | 6.205 |
17/9 | 1.900 | 6.547 |
24/19 | 1.906 | 6.568 |
13/9 | 1.930 | 6.649 |
7/1 | 1.939 | 6.682 |
7/5 | 2.015 | 6.941 |
31/28 | 2.060 | 7.099 |
25/7 | 2.090 | 7.199 |
17/7 | 2.189 | 7.543 |
13/7 | 2.219 | 7.645 |
21/20 | 2.607 | 8.984 |
21/4 | 2.683 | 9.242 |
29/28 | 2.702 | 9.308 |
32/19 | 2.716 | 9.356 |
19/3 | 2.821 | 9.719 |
19/15 | 2.896 | 9.977 |
27/20 | 2.897 | 9.980 |
27/4 | 2.972 | 10.238 |
32/31 | 3.085 | 10.630 |
15/14 | 3.343 | 11.519 |
14/3 | 3.418 | 11.777 |
13/6 | 3.428 | 11.811 |
17/6 | 3.458 | 11.913 |
30/13 | 3.503 | 12.069 |
30/17 | 3.533 | 12.171 |
25/6 | 3.557 | 12.256 |
32/21 | 3.597 | 12.393 |
6/5 | 3.632 | 12.515 |
6/1 | 3.708 | 12.774 |
32/29 | 3.726 | 12.839 |
28/19 | 3.741 | 12.887 |
30/1 | 3.783 | 13.032 |
32/27 | 3.886 | 13.389 |
31/4 | 4.000 | 13.781 |
31/20 | 4.075 | 14.039 |
29/13 | 4.145 | 14.280 |
29/17 | 4.174 | 14.382 |
29/25 | 4.274 | 14.726 |
23/6 | 4.329 | 14.914 |
12/7 | 4.333 | 14.928 |
29/5 | 4.349 | 14.985 |
16/15 | 4.368 | 15.050 |
30/23 | 4.404 | 15.172 |
29/1 | 4.424 | 15.243 |
16/3 | 4.443 | 15.309 |
11/6 | 4.467 | 15.391 |
22/15 | 4.523 | 15.583 |
30/11 | 4.542 | 15.649 |
20/3 | 4.547 | 15.666 |
22/3 | 4.598 | 15.842 |
4/3 | 4.622 | 15.924 |
29/4 | 4.641 | 15.990 |
15/4 | 4.697 | 16.183 |
29/20 | 4.716 | 16.248 |
31/13 | 4.786 | 16.489 |
31/17 | 4.816 | 16.591 |
28/27 | 4.911 | 16.920 |
31/25 | 4.915 | 16.935 |
31/5 | 4.990 | 17.194 |
29/23 | 5.046 | 17.383 |
31/1 | 5.066 | 17.452 |
27/14 | 5.069 | 17.463 |
29/11 | 5.184 | 17.860 |
15/2 | 5.283 | 18.201 |
29/8 | 5.339 | 18.394 |
3/2 | 5.358 | 18.459 |
10/3 | 5.433 | 18.718 |
12/11 | 5.513 | 18.993 |
32/3 | 5.536 | 19.075 |
26/15 | 5.562 | 19.164 |
32/15 | 5.612 | 19.334 |
26/3 | 5.637 | 19.422 |
7/6 | 5.647 | 19.456 |
23/12 | 5.651 | 19.470 |
31/23 | 5.687 | 19.592 |
30/7 | 5.722 | 19.714 |
31/19 | 5.801 | 19.986 |
31/11 | 5.825 | 20.069 |
31/8 | 5.980 | 20.603 |
29/9 | 6.075 | 20.929 |
27/16 | 6.094 | 20.994 |
19/14 | 6.239 | 21.496 |
27/22 | 6.248 | 21.528 |
12/1 | 6.272 | 21.610 |
12/5 | 6.347 | 21.869 |
29/7 | 6.364 | 21.925 |
21/16 | 6.383 | 21.991 |
25/12 | 6.422 | 22.127 |
29/19 | 6.442 | 22.195 |
17/12 | 6.522 | 22.471 |
19/18 | 6.528 | 22.492 |
22/21 | 6.538 | 22.524 |
13/12 | 6.552 | 22.573 |
28/3 | 6.561 | 22.606 |
28/15 | 6.637 | 22.865 |
31/21 | 6.682 | 23.023 |
31/9 | 6.716 | 23.138 |
28/13 | 6.846 | 23.588 |
28/17 | 6.876 | 23.690 |
31/27 | 6.972 | 24.019 |
28/25 | 6.976 | 24.034 |
31/7 | 7.005 | 24.134 |
27/2 | 7.008 | 24.145 |
28/5 | 7.051 | 24.292 |
27/10 | 7.083 | 24.404 |
30/19 | 7.084 | 24.406 |
28/1 | 7.126 | 24.551 |
19/6 | 7.159 | 24.665 |
19/16 | 7.264 | 25.027 |
27/26 | 7.288 | 25.108 |
21/2 | 7.297 | 25.141 |
29/21 | 7.324 | 25.232 |
21/10 | 7.372 | 25.400 |
22/19 | 7.419 | 25.561 |
26/21 | 7.577 | 26.104 |
29/27 | 7.613 | 26.228 |
31/24 | 7.707 | 26.554 |
28/23 | 7.747 | 26.691 |
26/7 | 7.761 | 26.739 |
32/13 | 7.871 | 27.119 |
28/11 | 7.886 | 27.168 |
32/17 | 7.901 | 27.221 |
10/7 | 7.965 | 27.443 |
32/25 | 8.001 | 27.565 |
7/2 | 8.040 | 27.702 |
26/9 | 8.050 | 27.735 |
32/5 | 8.076 | 27.824 |
32/1 | 8.151 | 28.082 |
19/2 | 8.179 | 28.178 |
19/10 | 8.254 | 28.437 |
10/9 | 8.254 | 28.439 |
9/2 | 8.329 | 28.698 |
29/24 | 8.348 | 28.763 |
26/19 | 8.458 | 29.141 |
31/3 | 8.622 | 29.705 |
31/15 | 8.697 | 29.964 |
32/23 | 8.772 | 30.222 |
28/9 | 8.776 | 30.237 |
13/4 | 8.786 | 30.270 |
22/7 | 8.800 | 30.319 |
17/4 | 8.815 | 30.372 |
20/13 | 8.861 | 30.529 |
20/17 | 8.891 | 30.631 |
32/11 | 8.910 | 30.699 |
25/4 | 8.915 | 30.716 |
26/11 | 8.941 | 30.803 |
16/7 | 8.955 | 30.852 |
5/4 | 8.990 | 30.974 |
4/1 | 9.065 | 31.233 |
26/23 | 9.079 | 31.281 |
22/9 | 9.089 | 31.315 |
20/1 | 9.140 | 31.492 |
11/10 | 9.145 | 31.508 |
11/2 | 9.220 | 31.766 |
16/9 | 9.244 | 31.848 |
29/3 | 9.263 | 31.914 |
23/10 | 9.284 | 31.985 |
29/15 | 9.338 | 32.173 |
23/2 | 9.359 | 32.243 |
23/4 | 9.686 | 33.373 |
18/7 | 9.691 | 33.387 |
26/1 | 9.700 | 33.421 |
23/20 | 9.762 | 33.632 |
26/5 | 9.775 | 33.679 |
32/9 | 9.801 | 33.768 |
11/4 | 9.825 | 33.850 |
26/25 | 9.850 | 33.938 |
20/11 | 9.900 | 34.109 |
10/1 | 9.905 | 34.125 |
26/17 | 9.950 | 34.282 |
2/1 | 9.980 | 34.384 |
5/2 | 10.055 | 34.642 |
32/7 | 10.090 | 34.764 |
23/22 | 10.118 | 34.861 |
25/2 | 10.130 | 34.901 |
16/11 | 10.135 | 34.917 |
17/10 | 10.155 | 34.986 |
13/10 | 10.184 | 35.088 |
17/2 | 10.230 | 35.244 |
13/2 | 10.259 | 35.346 |
14/9 | 10.269 | 35.380 |
23/16 | 10.273 | 35.394 |
19/13 | 10.587 | 36.475 |
19/17 | 10.617 | 36.577 |
29/12 | 10.697 | 36.853 |
9/4 | 10.716 | 36.919 |
25/19 | 10.716 | 36.921 |
22/1 | 10.739 | 37.001 |
20/9 | 10.791 | 37.177 |
19/5 | 10.791 | 37.180 |
22/5 | 10.814 | 37.259 |
19/1 | 10.866 | 37.438 |
18/11 | 10.870 | 37.452 |
25/22 | 10.890 | 37.518 |
16/1 | 10.894 | 37.534 |
16/5 | 10.969 | 37.793 |
22/17 | 10.989 | 37.862 |
7/4 | 11.005 | 37.915 |
23/18 | 11.009 | 37.929 |
22/13 | 11.019 | 37.964 |
25/16 | 11.044 | 38.052 |
20/7 | 11.080 | 38.174 |
17/16 | 11.144 | 38.395 |
14/11 | 11.160 | 38.448 |
16/13 | 11.174 | 38.497 |
23/14 | 11.298 | 38.925 |
31/12 | 11.338 | 39.062 |
21/13 | 11.468 | 39.512 |
23/19 | 11.488 | 39.579 |
21/17 | 11.498 | 39.614 |
25/21 | 11.598 | 39.958 |
19/11 | 11.626 | 40.056 |
18/1 | 11.630 | 40.069 |
21/5 | 11.673 | 40.216 |
18/5 | 11.705 | 40.328 |
21/1 | 11.748 | 40.475 |
27/13 | 11.758 | 40.508 |
25/18 | 11.780 | 40.587 |
19/8 | 11.781 | 40.589 |
27/17 | 11.787 | 40.610 |
18/17 | 11.880 | 40.930 |
19/12 | 11.886 | 40.952 |
27/25 | 11.887 | 40.954 |
18/13 | 11.910 | 41.032 |
14/1 | 11.919 | 41.066 |
27/5 | 11.962 | 41.213 |
14/5 | 11.994 | 41.324 |
27/1 | 12.037 | 41.471 |
31/14 | 12.040 | 41.482 |
25/14 | 12.069 | 41.583 |
17/14 | 12.169 | 41.926 |
14/13 | 12.199 | 42.028 |
31/18 | 12.329 | 42.478 |
23/21 | 12.369 | 42.615 |
24/13 | 12.493 | 43.044 |
21/11 | 12.507 | 43.092 |
19/9 | 12.517 | 43.124 |
24/17 | 12.523 | 43.146 |
25/24 | 12.623 | 43.489 |
27/23 | 12.658 | 43.611 |
21/8 | 12.662 | 43.626 |
29/14 | 12.681 | 43.691 |
24/5 | 12.698 | 43.748 |
24/1 | 12.773 | 44.006 |
27/11 | 12.797 | 44.089 |
19/7 | 12.806 | 44.120 |
27/8 | 12.951 | 44.622 |
29/18 | 12.970 | 44.687 |
31/16 | 13.065 | 45.014 |
31/22 | 13.220 | 45.547 |
15/7 | 13.323 | 45.902 |
24/23 | 13.394 | 46.147 |
7/3 | 13.398 | 46.161 |
13/3 | 13.408 | 46.194 |
17/3 | 13.437 | 46.296 |
15/13 | 13.483 | 46.453 |
17/15 | 13.513 | 46.555 |
24/11 | 13.532 | 46.624 |
25/3 | 13.537 | 46.640 |
5/3 | 13.612 | 46.898 |
3/1 | 13.687 | 47.157 |
29/16 | 13.706 | 47.223 |
15/1 | 13.762 | 47.416 |
29/22 | 13.861 | 47.756 |
27/7 | 13.976 | 48.153 |
31/2 | 13.980 | 48.164 |
31/10 | 14.055 | 48.423 |
29/26 | 14.125 | 48.664 |
31/26 | 14.259 | 49.127 |
23/3 | 14.308 | 49.297 |
24/7 | 14.313 | 49.312 |
29/10 | 14.329 | 49.368 |
15/8 | 14.348 | 49.434 |
23/15 | 14.384 | 49.556 |
29/2 | 14.404 | 49.627 |
8/3 | 14.423 | 49.692 |
11/3 | 14.447 | 49.774 |
15/11 | 14.503 | 49.967 |