4L 7s: Difference between revisions
→Modes: added MOS mode degrees template, added "proposed names" subheading |
removed idiosyncratic notation |
||
Line 11: | Line 11: | ||
The [[TAMNAMS]] name for this scale used to be ''kleistonic'', but is now simply called '''p-chro smitonic''' in the latest [[TAMNAMS Extension|extension]] (the [[User:Frostburn/TAMNAMS_Extension|euphonic name]] being '''smipechromic'''). The prefix for mossteps is '''klei-'''. | The [[TAMNAMS]] name for this scale used to be ''kleistonic'', but is now simply called '''p-chro smitonic''' in the latest [[TAMNAMS Extension|extension]] (the [[User:Frostburn/TAMNAMS_Extension|euphonic name]] being '''smipechromic'''). The prefix for mossteps is '''klei-'''. | ||
== Intervals == | == Intervals == | ||
Line 24: | Line 16: | ||
|- | |- | ||
! Generators | ! Generators | ||
! Interval category name | ! Interval category name | ||
! Generators | ! Generators | ||
! Interval category name | ! Interval category name | ||
|- | |- | ||
| colspan=" | | colspan="4" style="text-align:left" | The 11-note MOS has the following intervals (from some root): | ||
|- | |- | ||
| 0 | | 0 | ||
| perfect unison | | perfect unison | ||
| 0 | | 0 | ||
| dodecave (same as octave) | | dodecave (same as octave) | ||
|- | |- | ||
| 1 | | 1 | ||
| perfect kleifourth (minor third) | | perfect kleifourth (minor third) | ||
| -1 | | -1 | ||
| perfect kleininth (major sixth) | | perfect kleininth (major sixth) | ||
|- | |- | ||
| 2 | | 2 | ||
| minor kleiseventh | | minor kleiseventh | ||
| -2 | | -2 | ||
| major kleisixth | | major kleisixth | ||
|- | |- | ||
| 3 | | 3 | ||
| minor kleitenth | | minor kleitenth | ||
| -3 | | -3 | ||
| major kleithird | | major kleithird | ||
|- | |- | ||
| 4 | | 4 | ||
| minor kleisecond | | minor kleisecond | ||
| -4 | | -4 | ||
| major kleieleventh | | major kleieleventh | ||
|- | |- | ||
| 5 | | 5 | ||
| minor kleififth | | minor kleififth | ||
| -5 | | -5 | ||
| major kleieighth | | major kleieighth | ||
|- | |- | ||
| 6 | | 6 | ||
| minor kleieighth | | minor kleieighth | ||
| -6 | | -6 | ||
| major kleififth | | major kleififth | ||
|- | |- | ||
| 7 | | 7 | ||
| minor kleieleventh | | minor kleieleventh | ||
| -7 | | -7 | ||
| major kleisecond | | major kleisecond | ||
|- | |- | ||
| 8 | | 8 | ||
| minor kleithird | | minor kleithird | ||
| -8 | | -8 | ||
| major kleitenth | | major kleitenth | ||
|- | |- | ||
| 9 | | 9 | ||
| minor kleisixth | | minor kleisixth | ||
| -9 | | -9 | ||
| major kleiseventh | | major kleiseventh | ||
|- | |- | ||
| 10 | | 10 | ||
| diminished kleininth | | diminished kleininth | ||
| -10 | | -10 | ||
| augmented kleithird | | augmented kleithird | ||
|- | |- | ||
| colspan=" | | colspan="4" style="text-align:left" | The chromatic 15-note MOS (either [[4L 11s]], [[11L 4s]], or [[15edo]]) also has the following intervals (from some root): | ||
|- | |- | ||
| 11 | | 11 | ||
| diminished dodecave | | diminished dodecave | ||
| -11 | | -11 | ||
| augmented unison (chroma) | | augmented unison (chroma) | ||
|- | |- | ||
| 12 | | 12 | ||
| diminished kleifourth | | diminished kleifourth | ||
| -12 | | -12 | ||
| augmented kleininth | | augmented kleininth | ||
|- | |- | ||
| 13 | | 13 | ||
| diminished kleiseventh | | diminished kleiseventh | ||
| -13 | | -13 | ||
| augmented kleisixth | | augmented kleisixth | ||
|- | |- | ||
| 14 | | 14 | ||
| diminished kleitenth | | diminished kleitenth | ||
| -14 | | -14 | ||
| augmented kleithird | | augmented kleithird | ||
|} | |} | ||
Line 144: | Line 104: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|- | |- | ||
| | | -11 | ||
| | | -10 | ||
| | | -9 | ||
| | | -8 | ||
| | | -7 | ||
| | | -6 | ||
| | | -5 | ||
| | | -4 | ||
| | | -3 | ||
| | | -2 | ||
| | | -1 | ||
| | | 0 | ||
| | | +1 | ||
| | | +2 | ||
| | | +3 | ||
| | | +4 | ||
| | | +5 | ||
| | | +6 | ||
| | | +7 | ||
| | | +8 | ||
| | | +9 | ||
| | | +10 | ||
| | | +11 | ||
|- | |- | ||
| d12 | | d12 | ||
| d9 | | d9 | ||
Line 202: | Line 151: | ||
| A4 | | A4 | ||
| A1 | | A1 | ||
|} | |} | ||
Line 350: | Line 290: | ||
== Modes == | == Modes == | ||
{{MOS mode degrees}} | {{MOS mode degrees}} | ||
== Temperaments == | == Temperaments == | ||
Revision as of 07:45, 26 July 2024
↖ 3L 6s | ↑ 4L 6s | 5L 6s ↗ |
← 3L 7s | 4L 7s | 5L 7s → |
↙ 3L 8s | ↓ 4L 8s | 5L 8s ↘ |
┌╥┬╥┬┬╥┬┬╥┬┬┐ │║│║││║││║│││ │││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLssLsL
4L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 7 small steps, repeating every octave. 4L 7s is a child scale of 4L 3s, expanding it by 4 tones. Generators that produce this scale range from 872.7 ¢ to 900 ¢, or from 300 ¢ to 327.3 ¢. One of the harmonic entropy minimums in this range is Kleismic/Hanson.
The TAMNAMS name for this scale used to be kleistonic, but is now simply called p-chro smitonic in the latest extension (the euphonic name being smipechromic). The prefix for mossteps is klei-.
Intervals
Generators | Interval category name | Generators | Interval category name |
---|---|---|---|
The 11-note MOS has the following intervals (from some root): | |||
0 | perfect unison | 0 | dodecave (same as octave) |
1 | perfect kleifourth (minor third) | -1 | perfect kleininth (major sixth) |
2 | minor kleiseventh | -2 | major kleisixth |
3 | minor kleitenth | -3 | major kleithird |
4 | minor kleisecond | -4 | major kleieleventh |
5 | minor kleififth | -5 | major kleieighth |
6 | minor kleieighth | -6 | major kleififth |
7 | minor kleieleventh | -7 | major kleisecond |
8 | minor kleithird | -8 | major kleitenth |
9 | minor kleisixth | -9 | major kleiseventh |
10 | diminished kleininth | -10 | augmented kleithird |
The chromatic 15-note MOS (either 4L 11s, 11L 4s, or 15edo) also has the following intervals (from some root): | |||
11 | diminished dodecave | -11 | augmented unison (chroma) |
12 | diminished kleifourth | -12 | augmented kleininth |
13 | diminished kleiseventh | -13 | augmented kleisixth |
14 | diminished kleitenth | -14 | augmented kleithird |
Genchain
The generator chain for this scale is as follows:
-11 | -10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 |
d12 | d9 | m6 | m3 | m11 | m8 | m5 | m2 | m10 | m7 | P4 | P1 | P9 | M6 | M3 | M11 | M8 | M5 | M2 | M10 | M7 | A4 | A1 |
Tuning ranges
Soft range
The soft range for tunings of p-chro smitonic encompasses parasoft and hyposoft tunings. This implies step ratios smaller than 2/1, meaning a generator sharper than 4\15 = 320¢.
This is the range associated with extensions of Orgone[7]. The small step is recognizable as a near diatonic semitone, while the large step is in the ambiguous area of neutral seconds.
Soft p-chro smitonic edos include 15edo and 26edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various soft tunings:
15edo (basic) | 26edo (soft) | Some JI approximations | |
---|---|---|---|
generator (g) | 4\15, 320.00 | 7\26, 323.08 | 77/64, 6/5 |
L (octave - 3g) | 2\15, 160.00 | 3\26, 138.46 | 12/11, 13/12 |
s (4g - octave) | 1\15, 80.00 | 2\19, 92.31 | 21/20, 22/21, 20/19 |
Hypohard

Hypohard tunings of p-chro smitonic have step ratios between 2/1 and 3/1, implying a generator sharper than 5\19 = 315.79¢ and flatter than 4\15 = 320¢.
This range represents one of the harmonic entropy minimums, where 6 generators make a just diatonic fifth (3/2), an octave above. This is the range associated with the eponymous Kleismic (aka Hanson) temperament and its extensions.
Hypohard p-chro smitonic edos include 15edo, 19edo, and 34edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various hypohard p-chro smitonic tunings:
15edo (basic) | 19edo (hard) | 34edo (semihard) | Some JI approximations | |
---|---|---|---|---|
generator (g) | 4\15, 320.00 | 5\19, 315.79 | 9\34, 317.65 | 6/5 |
L (octave - 3g) | 2\15, 160.00 | 3\19, 189.47 | 5\34, 176.47 | 10/9, 11/10 (in 15edo) |
s (4g - octave) | 1\15, 80.00 | 1\19, 63.16 | 2\34, 70.59 | 25/24, 26/25 (in better kleismic tunings) |
Parahard
Parahard tunings of p-chro smitonic have step ratios between 3/1 and 4/1, implying a generator sharper than 6\23 = 313.04¢ and flatter than 5\19 = 315.79¢.
The minor third is at its purest here, but the resulting scales tend to approximate intervals that employ a much higher limit harmony, especially in the case of the superhard 23edo. However, the large step is recognizable as a regular diatonic whole step, approximating both 10/9 and 9/8, while the small step is a slightly sharp of a quarter tone.
Parahard p-chro smitonic edos include 19edo, 23edo, and 42edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various parahard p-chro smitonic tunings:
19edo (hard) | 23edo (superhard) | 42edo (parahard) | Some JI approximations | |
---|---|---|---|---|
generator (g) | 5\19, 315.79 | 6\23, 313.04 | 11\42, 314.29 | 6/5 |
L (octave - 3g) | 3\19, 189.47 | 4\23, 208.70 | 7\42, 200.00 | 10/9, 9/8 |
s (4g - octave) | 1\19, 63.16 | 1\23, 52.17 | 2\42, 57.14 | 28/27, 33/32 |
Hyperhard
Hyperhard tunings of p-chro smitonic have step ratios between 4/1 and 6/1, implying a generator sharper than 8\31 = 309.68¢ and flatter than 6\23 = 313.04¢.
The temperament known as Myna (a pun on "minor third") resides here, as this is the range where 10 generators make a just diatonic fifth (3/2), two octaves above. These scales are stacked with simple intervals, but are melodically difficult due to the extreme step size disparity, where the small step is generally flat of a quarter tone.
Hyperhard p-chro smitonic edos include 23edo, 31edo, and 27edo. The sizes of the generator, large step and small step of p-chro smitonic are as follows in various hyperhard p-chro smitonic tunings:
23edo (superhard) | 31edo (extrahard) | 27edo (pentahard) | Some JI approximations | |
---|---|---|---|---|
generator (g) | 6\23, 313.04 | 8\31, 309.68 | 7\27, 311.11 | 6/5 |
L (octave - 3g) | 4\23, 208.70 | 6\31, 232.26 | 5\27, 222.22 | 8/7, 9/8 |
s (4g - octave) | 1\23, 52.17 | 1\31, 38.71 | 1\27, 44.44 | 36/35, 45/44 |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||
10|0 | 1 | LsLssLssLss | Perf. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. |
9|1 | 9 | LssLsLssLss | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Perf. |
8|2 | 6 | LssLssLsLss | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Perf. |
7|3 | 3 | LssLssLssLs | Perf. | Maj. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Perf. |
6|4 | 11 | sLsLssLssLs | Perf. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Perf. |
5|5 | 8 | sLssLsLssLs | Perf. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Perf. |
4|6 | 5 | sLssLssLsLs | Perf. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Perf. |
3|7 | 2 | sLssLssLssL | Perf. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. |
2|8 | 10 | ssLsLssLssL | Perf. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Min. | Perf. |
1|9 | 7 | ssLssLsLssL | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Perf. |
0|10 | 4 | ssLssLssLsL | Perf. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Perf. |
Temperaments
Scales
Scale tree
The spectrum looks like this:
Generator | Cents | L | s | L/s | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | ||||||||||
8\11 | 872.727 | 327.273 | 1 | 1 | 1.000 | ||||||
43\59 | 874.576 | 325.424 | 6 | 5 | 1.200 | Oregon | |||||
35\48 | 875.000 | 325.000 | 5 | 4 | 1.250 | ||||||
62\85 | 875.294 | 324.706 | 9 | 7 | 1.286 | ||||||
27\37 | 875.676 | 324.324 | 4 | 3 | 1.333 | ||||||
73\100 | 876.000 | 324.000 | 11 | 8 | 1.375 | ||||||
46\63 | 876.190 | 323.810 | 7 | 5 | 1.400 | ||||||
65\89 | 876.404 | 323.596 | 10 | 7 | 1.428 | Orgone | |||||
19\26 | 876.923 | 323.077 | 3 | 2 | 1.500 | L/s = 3/2 | |||||
68\93 | 877.419 | 322.581 | 11 | 7 | 1.571 | Magicaltet | |||||
49\67 | 877.612 | 322.388 | 8 | 5 | 1.600 | ||||||
79\108 | 877.778 | 322.222 | 13 | 8 | 1.625 | Golden superkleismic | |||||
30\41 | 878.049 | 321.951 | 5 | 3 | 1.667 | Superkleismic | |||||
71\97 | 878.351 | 321.649 | 12 | 7 | 1.714 | ||||||
41\56 | 878.571 | 321.429 | 7 | 4 | 1.750 | ||||||
52\71 | 878.873 | 321.127 | 9 | 5 | 1.800 | ||||||
11\15 | 880.000 | 320.000 | 2 | 1 | 2.000 | Basic p-chro smitonic (Generators smaller than this are proper) | |||||
47\64 | 881.250 | 318.750 | 9 | 4 | 2.250 | ||||||
36\49 | 881.633 | 318.367 | 7 | 3 | 2.333 | Catalan | |||||
61\83 | 881.928 | 318.072 | 12 | 5 | 2.400 | ||||||
25\34 | 882.353 | 317.647 | 5 | 2 | 2.500 | ||||||
64\87 | 882.759 | 317.241 | 13 | 5 | 2.600 | Countercata | |||||
39\53 | 883.019 | 316.981 | 8 | 3 | 2.667 | Hanson/cata | |||||
53\72 | 883.333 | 316.667 | 11 | 4 | 2.750 | Catakleismic | |||||
14\19 | 884.211 | 315.789 | 3 | 1 | 3.000 | L/s = 3/1 | |||||
45\61 | 885.246 | 314.754 | 10 | 3 | 3.333 | Parakleismic | |||||
31\42 | 885.714 | 314.286 | 7 | 2 | 3.500 | ||||||
48\65 | 886.154 | 313.846 | 11 | 3 | 3.667 | ||||||
17\23 | 886.957 | 313.043 | 4 | 1 | 4.000 | ||||||
37\50 | 888.000 | 312.000 | 9 | 2 | 4.500 | Oolong | |||||
20\27 | 888.889 | 311.111 | 5 | 1 | 5.000 | Starlingtet | |||||
23\31 | 890.323 | 309.677 | 6 | 1 | 6.000 | Myna | |||||
3\4 | 900.000 | 300.000 | 1 | 0 | → inf |