186zpi: Difference between revisions
Contribution (talk | contribs) No edit summary |
Contribution (talk | contribs) No edit summary |
||
Line 104: | Line 104: | ||
== Intervals and notation == | == Intervals and notation == | ||
There are multiple ways to approach notation. The simplest method is to use the notations from [[41edo]]. However, this approach will not preserve octave compression when the audio is rendered by notation software. To address this, consider using the ups and downs notation from [[124edo]] at every 3-degree step (i.e., the [[edonoi]] [[124ed8]]). | There are multiple ways to approach notation. The simplest method is to use the notations from [[41edo]]. However, this approach will not preserve octave compression when the audio is rendered by notation software. To address this, consider using the ups and downs notation from [[124edo]] at every 3-degree step (i.e., the [[edonoi]] [[124ed8]]). | ||
=== Approximation to JI === | |||
The following table illustrates the representation of the 32-integer limit intervals in 186zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | |||
{| class="wikitable center-all mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | Intervals by direct approximation (even if inconsistent) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent| ¢]]) | |||
! Error (rel, [[Relative cent| %]]) | |||
|- | |||
| [[17/13]] | |||
| 0.030 | |||
| 0.102 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''0.075''' | |||
| '''0.259''' | |||
|- | |||
| [[25/17]] | |||
| 0.100 | |||
| 0.344 | |||
|- | |||
| [[25/13]] | |||
| 0.129 | |||
| 0.446 | |||
|- | |||
| [[23/11]] | |||
| 0.138 | |||
| 0.477 | |||
|- | |||
| [[25/1]] | |||
| 0.150 | |||
| 0.517 | |||
|- | |||
| ''[[11/8]]'' | |||
| ''0.155'' | |||
| ''0.533'' | |||
|- | |||
| [[17/5]] | |||
| 0.175 | |||
| 0.602 | |||
|- | |||
| [[13/5]] | |||
| 0.204 | |||
| 0.704 | |||
|- | |||
| '''[[17/1]]''' | |||
| '''0.250''' | |||
| '''0.861''' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''0.279''' | |||
| '''0.963''' | |||
|- | |||
| ''[[9/7]]'' | |||
| ''0.289'' | |||
| ''0.996'' | |||
|- | |||
| ''[[23/8]]'' | |||
| ''0.293'' | |||
| ''1.011'' | |||
|- | |||
| '''[[23/1]]''' | |||
| '''0.621''' | |||
| '''2.140''' | |||
|- | |||
| [[31/29]] | |||
| 0.641 | |||
| 2.209 | |||
|- | |||
| [[30/29]] | |||
| 0.642 | |||
| 2.211 | |||
|- | |||
| [[23/5]] | |||
| 0.696 | |||
| 2.399 | |||
|- | |||
| [[29/6]] | |||
| 0.717 | |||
| 2.470 | |||
|- | |||
| ''[[9/8]]'' | |||
| ''0.736'' | |||
| ''2.535'' | |||
|- | |||
| '''[[11/1]]''' | |||
| '''0.760''' | |||
| '''2.617''' | |||
|- | |||
| [[25/23]] | |||
| 0.771 | |||
| 2.657 | |||
|- | |||
| [[11/5]] | |||
| 0.835 | |||
| 2.876 | |||
|- | |||
| [[23/17]] | |||
| 0.871 | |||
| 3.001 | |||
|- | |||
| [[21/19]] | |||
| 0.881 | |||
| 3.037 | |||
|- | |||
| ''[[11/9]]'' | |||
| ''0.891'' | |||
| ''3.069'' | |||
|- | |||
| [[23/13]] | |||
| 0.901 | |||
| 3.103 | |||
|- | |||
| [[25/11]] | |||
| 0.910 | |||
| 3.135 | |||
|- | |||
| ''[[8/1]]'' | |||
| ''0.914'' | |||
| ''3.151'' | |||
|- | |||
| ''[[8/5]]'' | |||
| ''0.990'' | |||
| ''3.409'' | |||
|- | |||
| [[17/11]] | |||
| 1.009 | |||
| 3.478 | |||
|- | |||
| ''[[8/7]]'' | |||
| ''1.025'' | |||
| ''3.531'' | |||
|- | |||
| ''[[23/9]]'' | |||
| ''1.029'' | |||
| ''3.546'' | |||
|- | |||
| [[13/11]] | |||
| 1.039 | |||
| 3.580 | |||
|- | |||
| ''[[25/8]]'' | |||
| ''1.065'' | |||
| ''3.668'' | |||
|- | |||
| ''[[17/8]]'' | |||
| ''1.164'' | |||
| ''4.012'' | |||
|- | |||
| ''[[27/19]]'' | |||
| ''1.171'' | |||
| ''4.033'' | |||
|- | |||
| [[11/7]] | |||
| 1.180 | |||
| 4.065 | |||
|- | |||
| ''[[13/8]]'' | |||
| ''1.194'' | |||
| ''4.114'' | |||
|- | |||
| [[31/30]] | |||
| 1.283 | |||
| 4.420 | |||
|- | |||
| [[23/7]] | |||
| 1.318 | |||
| 4.542 | |||
|- | |||
| [[31/6]] | |||
| 1.358 | |||
| 4.679 | |||
|- | |||
| ''[[9/1]]'' | |||
| ''1.650'' | |||
| ''5.686'' | |||
|- | |||
| ''[[9/5]]'' | |||
| ''1.725'' | |||
| ''5.944'' | |||
|- | |||
| ''[[20/19]]'' | |||
| ''1.726'' | |||
| ''5.947'' | |||
|- | |||
| ''[[25/9]]'' | |||
| ''1.800'' | |||
| ''6.203'' | |||
|- | |||
| ''[[19/4]]'' | |||
| ''1.801'' | |||
| ''6.205'' | |||
|- | |||
| ''[[17/9]]'' | |||
| ''1.900'' | |||
| ''6.547'' | |||
|- | |||
| ''[[24/19]]'' | |||
| ''1.906'' | |||
| ''6.568'' | |||
|- | |||
| ''[[13/9]]'' | |||
| ''1.930'' | |||
| ''6.649'' | |||
|- | |||
| '''[[7/1]]''' | |||
| '''1.939''' | |||
| '''6.682''' | |||
|- | |||
| [[7/5]] | |||
| 2.015 | |||
| 6.941 | |||
|- | |||
| ''[[31/28]]'' | |||
| ''2.060'' | |||
| ''7.099'' | |||
|- | |||
| [[25/7]] | |||
| 2.090 | |||
| 7.199 | |||
|- | |||
| [[17/7]] | |||
| 2.189 | |||
| 7.543 | |||
|- | |||
| [[13/7]] | |||
| 2.219 | |||
| 7.645 | |||
|- | |||
| ''[[21/20]]'' | |||
| ''2.607'' | |||
| ''8.984'' | |||
|- | |||
| ''[[21/4]]'' | |||
| ''2.683'' | |||
| ''9.242'' | |||
|- | |||
| ''[[29/28]]'' | |||
| ''2.702'' | |||
| ''9.308'' | |||
|- | |||
| ''[[32/19]]'' | |||
| ''2.716'' | |||
| ''9.356'' | |||
|- | |||
| [[19/3]] | |||
| 2.821 | |||
| 9.719 | |||
|- | |||
| [[19/15]] | |||
| 2.896 | |||
| 9.977 | |||
|- | |||
| ''[[27/20]]'' | |||
| ''2.897'' | |||
| ''9.980'' | |||
|- | |||
| ''[[27/4]]'' | |||
| ''2.972'' | |||
| ''10.238'' | |||
|- | |||
| ''[[32/31]]'' | |||
| ''3.085'' | |||
| ''10.630'' | |||
|- | |||
| ''[[15/14]]'' | |||
| ''3.343'' | |||
| ''11.519'' | |||
|- | |||
| ''[[14/3]]'' | |||
| ''3.418'' | |||
| ''11.777'' | |||
|- | |||
| [[13/6]] | |||
| 3.428 | |||
| 11.811 | |||
|- | |||
| [[17/6]] | |||
| 3.458 | |||
| 11.913 | |||
|- | |||
| [[30/13]] | |||
| 3.503 | |||
| 12.069 | |||
|- | |||
| [[30/17]] | |||
| 3.533 | |||
| 12.171 | |||
|- | |||
| [[25/6]] | |||
| 3.557 | |||
| 12.256 | |||
|- | |||
| ''[[32/21]]'' | |||
| ''3.597'' | |||
| ''12.393'' | |||
|- | |||
| [[6/5]] | |||
| 3.632 | |||
| 12.515 | |||
|- | |||
| [[6/1]] | |||
| 3.708 | |||
| 12.774 | |||
|- | |||
| ''[[32/29]]'' | |||
| ''3.726'' | |||
| ''12.839'' | |||
|- | |||
| ''[[28/19]]'' | |||
| ''3.741'' | |||
| ''12.887'' | |||
|- | |||
| [[30/1]] | |||
| 3.783 | |||
| 13.032 | |||
|- | |||
| ''[[32/27]]'' | |||
| ''3.886'' | |||
| ''13.389'' | |||
|- | |||
| ''[[31/4]]'' | |||
| ''4.000'' | |||
| ''13.781'' | |||
|- | |||
| ''[[31/20]]'' | |||
| ''4.075'' | |||
| ''14.039'' | |||
|- | |||
| [[29/13]] | |||
| 4.145 | |||
| 14.280 | |||
|- | |||
| [[29/17]] | |||
| 4.174 | |||
| 14.382 | |||
|- | |||
| [[29/25]] | |||
| 4.274 | |||
| 14.726 | |||
|- | |||
| [[23/6]] | |||
| 4.329 | |||
| 14.914 | |||
|- | |||
| [[12/7]] | |||
| 4.333 | |||
| 14.928 | |||
|- | |||
| [[29/5]] | |||
| 4.349 | |||
| 14.985 | |||
|- | |||
| ''[[16/15]]'' | |||
| ''4.368'' | |||
| ''15.050'' | |||
|- | |||
| [[30/23]] | |||
| 4.404 | |||
| 15.172 | |||
|- | |||
| '''[[29/1]]''' | |||
| '''4.424''' | |||
| '''15.243''' | |||
|- | |||
| ''[[16/3]]'' | |||
| ''4.443'' | |||
| ''15.309'' | |||
|- | |||
| [[11/6]] | |||
| 4.467 | |||
| 15.391 | |||
|- | |||
| ''[[22/15]]'' | |||
| ''4.523'' | |||
| ''15.583'' | |||
|- | |||
| [[30/11]] | |||
| 4.542 | |||
| 15.649 | |||
|- | |||
| ''[[20/3]]'' | |||
| ''4.547'' | |||
| ''15.666'' | |||
|- | |||
| ''[[22/3]]'' | |||
| ''4.598'' | |||
| ''15.842'' | |||
|- | |||
| ''[[4/3]]'' | |||
| ''4.622'' | |||
| ''15.924'' | |||
|- | |||
| ''[[29/4]]'' | |||
| ''4.641'' | |||
| ''15.990'' | |||
|- | |||
| ''[[15/4]]'' | |||
| ''4.697'' | |||
| ''16.183'' | |||
|- | |||
| ''[[29/20]]'' | |||
| ''4.716'' | |||
| ''16.248'' | |||
|- | |||
| [[31/13]] | |||
| 4.786 | |||
| 16.489 | |||
|- | |||
| [[31/17]] | |||
| 4.816 | |||
| 16.591 | |||
|- | |||
| ''[[28/27]]'' | |||
| ''4.911'' | |||
| ''16.920'' | |||
|- | |||
| [[31/25]] | |||
| 4.915 | |||
| 16.935 | |||
|- | |||
| [[31/5]] | |||
| 4.990 | |||
| 17.194 | |||
|- | |||
| [[29/23]] | |||
| 5.046 | |||
| 17.383 | |||
|- | |||
| '''[[31/1]]''' | |||
| '''5.066''' | |||
| '''17.452''' | |||
|- | |||
| ''[[27/14]]'' | |||
| ''5.069'' | |||
| ''17.463'' | |||
|- | |||
| [[29/11]] | |||
| 5.184 | |||
| 17.860 | |||
|- | |||
| ''[[15/2]]'' | |||
| ''5.283'' | |||
| ''18.201'' | |||
|- | |||
| ''[[29/8]]'' | |||
| ''5.339'' | |||
| ''18.394'' | |||
|- | |||
| ''[[3/2]]'' | |||
| ''5.358'' | |||
| ''18.459'' | |||
|- | |||
| ''[[10/3]]'' | |||
| ''5.433'' | |||
| ''18.718'' | |||
|- | |||
| [[12/11]] | |||
| 5.513 | |||
| 18.993 | |||
|- | |||
| ''[[32/3]]'' | |||
| ''5.536'' | |||
| ''19.075'' | |||
|- | |||
| ''[[26/15]]'' | |||
| ''5.562'' | |||
| ''19.164'' | |||
|- | |||
| ''[[32/15]]'' | |||
| ''5.612'' | |||
| ''19.334'' | |||
|- | |||
| ''[[26/3]]'' | |||
| ''5.637'' | |||
| ''19.422'' | |||
|- | |||
| [[7/6]] | |||
| 5.647 | |||
| 19.456 | |||
|- | |||
| [[23/12]] | |||
| 5.651 | |||
| 19.470 | |||
|- | |||
| [[31/23]] | |||
| 5.687 | |||
| 19.592 | |||
|- | |||
| [[30/7]] | |||
| 5.722 | |||
| 19.714 | |||
|- | |||
| [[31/19]] | |||
| 5.801 | |||
| 19.986 | |||
|- | |||
| [[31/11]] | |||
| 5.825 | |||
| 20.069 | |||
|- | |||
| ''[[31/8]]'' | |||
| ''5.980'' | |||
| ''20.603'' | |||
|- | |||
| ''[[29/9]]'' | |||
| ''6.075'' | |||
| ''20.929'' | |||
|- | |||
| ''[[27/16]]'' | |||
| ''6.094'' | |||
| ''20.994'' | |||
|- | |||
| ''[[19/14]]'' | |||
| ''6.239'' | |||
| ''21.496'' | |||
|- | |||
| ''[[27/22]]'' | |||
| ''6.248'' | |||
| ''21.528'' | |||
|- | |||
| [[12/1]] | |||
| 6.272 | |||
| 21.610 | |||
|- | |||
| [[12/5]] | |||
| 6.347 | |||
| 21.869 | |||
|- | |||
| [[29/7]] | |||
| 6.364 | |||
| 21.925 | |||
|- | |||
| ''[[21/16]]'' | |||
| ''6.383'' | |||
| ''21.991'' | |||
|- | |||
| [[25/12]] | |||
| 6.422 | |||
| 22.127 | |||
|- | |||
| [[29/19]] | |||
| 6.442 | |||
| 22.195 | |||
|- | |||
| [[17/12]] | |||
| 6.522 | |||
| 22.471 | |||
|- | |||
| [[19/18]] | |||
| 6.528 | |||
| 22.492 | |||
|- | |||
| ''[[22/21]]'' | |||
| ''6.538'' | |||
| ''22.524'' | |||
|- | |||
| [[13/12]] | |||
| 6.552 | |||
| 22.573 | |||
|- | |||
| ''[[28/3]]'' | |||
| ''6.561'' | |||
| ''22.606'' | |||
|- | |||
| ''[[28/15]]'' | |||
| ''6.637'' | |||
| ''22.865'' | |||
|- | |||
| [[31/21]] | |||
| 6.682 | |||
| 23.023 | |||
|- | |||
| ''[[31/9]]'' | |||
| ''6.716'' | |||
| ''23.138'' | |||
|- | |||
| ''[[28/13]]'' | |||
| ''6.846'' | |||
| ''23.588'' | |||
|- | |||
| ''[[28/17]]'' | |||
| ''6.876'' | |||
| ''23.690'' | |||
|- | |||
| ''[[31/27]]'' | |||
| ''6.972'' | |||
| ''24.019'' | |||
|- | |||
| ''[[28/25]]'' | |||
| ''6.976'' | |||
| ''24.034'' | |||
|- | |||
| [[31/7]] | |||
| 7.005 | |||
| 24.134 | |||
|- | |||
| ''[[27/2]]'' | |||
| ''7.008'' | |||
| ''24.145'' | |||
|- | |||
| ''[[28/5]]'' | |||
| ''7.051'' | |||
| ''24.292'' | |||
|- | |||
| ''[[27/10]]'' | |||
| ''7.083'' | |||
| ''24.404'' | |||
|- | |||
| [[30/19]] | |||
| 7.084 | |||
| 24.406 | |||
|- | |||
| ''[[28/1]]'' | |||
| ''7.126'' | |||
| ''24.551'' | |||
|- | |||
| [[19/6]] | |||
| 7.159 | |||
| 24.665 | |||
|- | |||
| ''[[19/16]]'' | |||
| ''7.264'' | |||
| ''25.027'' | |||
|- | |||
| ''[[27/26]]'' | |||
| ''7.288'' | |||
| ''25.108'' | |||
|- | |||
| ''[[21/2]]'' | |||
| ''7.297'' | |||
| ''25.141'' | |||
|- | |||
| [[29/21]] | |||
| 7.324 | |||
| 25.232 | |||
|- | |||
| ''[[21/10]]'' | |||
| ''7.372'' | |||
| ''25.400'' | |||
|- | |||
| ''[[22/19]]'' | |||
| ''7.419'' | |||
| ''25.561'' | |||
|- | |||
| ''[[26/21]]'' | |||
| ''7.577'' | |||
| ''26.104'' | |||
|- | |||
| ''[[29/27]]'' | |||
| ''7.613'' | |||
| ''26.228'' | |||
|- | |||
| ''[[31/24]]'' | |||
| ''7.707'' | |||
| ''26.554'' | |||
|- | |||
| ''[[28/23]]'' | |||
| ''7.747'' | |||
| ''26.691'' | |||
|- | |||
| [[26/7]] | |||
| 7.761 | |||
| 26.739 | |||
|- | |||
| ''[[32/13]]'' | |||
| ''7.871'' | |||
| ''27.119'' | |||
|- | |||
| ''[[28/11]]'' | |||
| ''7.886'' | |||
| ''27.168'' | |||
|- | |||
| ''[[32/17]]'' | |||
| ''7.901'' | |||
| ''27.221'' | |||
|- | |||
| [[10/7]] | |||
| 7.965 | |||
| 27.443 | |||
|- | |||
| ''[[32/25]]'' | |||
| ''8.001'' | |||
| ''27.565'' | |||
|- | |||
| [[7/2]] | |||
| 8.040 | |||
| 27.702 | |||
|- | |||
| ''[[26/9]]'' | |||
| ''8.050'' | |||
| ''27.735'' | |||
|- | |||
| ''[[32/5]]'' | |||
| ''8.076'' | |||
| ''27.824'' | |||
|- | |||
| ''[[32/1]]'' | |||
| ''8.151'' | |||
| ''28.082'' | |||
|- | |||
| ''[[19/2]]'' | |||
| ''8.179'' | |||
| ''28.178'' | |||
|- | |||
| ''[[19/10]]'' | |||
| ''8.254'' | |||
| ''28.437'' | |||
|- | |||
| ''[[10/9]]'' | |||
| ''8.254'' | |||
| ''28.439'' | |||
|- | |||
| ''[[9/2]]'' | |||
| ''8.329'' | |||
| ''28.698'' | |||
|- | |||
| ''[[29/24]]'' | |||
| ''8.348'' | |||
| ''28.763'' | |||
|- | |||
| ''[[26/19]]'' | |||
| ''8.458'' | |||
| ''29.141'' | |||
|- | |||
| [[31/3]] | |||
| 8.622 | |||
| 29.705 | |||
|- | |||
| [[31/15]] | |||
| 8.697 | |||
| 29.964 | |||
|- | |||
| ''[[32/23]]'' | |||
| ''8.772'' | |||
| ''30.222'' | |||
|- | |||
| ''[[28/9]]'' | |||
| ''8.776'' | |||
| ''30.237'' | |||
|- | |||
| ''[[13/4]]'' | |||
| ''8.786'' | |||
| ''30.270'' | |||
|- | |||
| [[22/7]] | |||
| 8.800 | |||
| 30.319 | |||
|- | |||
| ''[[17/4]]'' | |||
| ''8.815'' | |||
| ''30.372'' | |||
|- | |||
| ''[[20/13]]'' | |||
| ''8.861'' | |||
| ''30.529'' | |||
|- | |||
| ''[[20/17]]'' | |||
| ''8.891'' | |||
| ''30.631'' | |||
|- | |||
| ''[[32/11]]'' | |||
| ''8.910'' | |||
| ''30.699'' | |||
|- | |||
| ''[[25/4]]'' | |||
| ''8.915'' | |||
| ''30.716'' | |||
|- | |||
| [[26/11]] | |||
| 8.941 | |||
| 30.803 | |||
|- | |||
| ''[[16/7]]'' | |||
| ''8.955'' | |||
| ''30.852'' | |||
|- | |||
| ''[[5/4]]'' | |||
| ''8.990'' | |||
| ''30.974'' | |||
|- | |||
| ''[[4/1]]'' | |||
| ''9.065'' | |||
| ''31.233'' | |||
|- | |||
| [[26/23]] | |||
| 9.079 | |||
| 31.281 | |||
|- | |||
| ''[[22/9]]'' | |||
| ''9.089'' | |||
| ''31.315'' | |||
|- | |||
| ''[[20/1]]'' | |||
| ''9.140'' | |||
| ''31.492'' | |||
|- | |||
| [[11/10]] | |||
| 9.145 | |||
| 31.508 | |||
|- | |||
| [[11/2]] | |||
| 9.220 | |||
| 31.766 | |||
|- | |||
| ''[[16/9]]'' | |||
| ''9.244'' | |||
| ''31.848'' | |||
|- | |||
| [[29/3]] | |||
| 9.263 | |||
| 31.914 | |||
|- | |||
| [[23/10]] | |||
| 9.284 | |||
| 31.985 | |||
|- | |||
| [[29/15]] | |||
| 9.338 | |||
| 32.173 | |||
|- | |||
| [[23/2]] | |||
| 9.359 | |||
| 32.243 | |||
|- | |||
| ''[[23/4]]'' | |||
| ''9.686'' | |||
| ''33.373'' | |||
|- | |||
| ''[[18/7]]'' | |||
| ''9.691'' | |||
| ''33.387'' | |||
|- | |||
| [[26/1]] | |||
| 9.700 | |||
| 33.421 | |||
|- | |||
| ''[[23/20]]'' | |||
| ''9.762'' | |||
| ''33.632'' | |||
|- | |||
| [[26/5]] | |||
| 9.775 | |||
| 33.679 | |||
|- | |||
| ''[[32/9]]'' | |||
| ''9.801'' | |||
| ''33.768'' | |||
|- | |||
| ''[[11/4]]'' | |||
| ''9.825'' | |||
| ''33.850'' | |||
|- | |||
| [[26/25]] | |||
| 9.850 | |||
| 33.938 | |||
|- | |||
| ''[[20/11]]'' | |||
| ''9.900'' | |||
| ''34.109'' | |||
|- | |||
| [[10/1]] | |||
| 9.905 | |||
| 34.125 | |||
|- | |||
| [[26/17]] | |||
| 9.950 | |||
| 34.282 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''9.980''' | |||
| '''34.384''' | |||
|- | |||
| [[5/2]] | |||
| 10.055 | |||
| 34.642 | |||
|- | |||
| ''[[32/7]]'' | |||
| ''10.090'' | |||
| ''34.764'' | |||
|- | |||
| [[23/22]] | |||
| 10.118 | |||
| 34.861 | |||
|- | |||
| [[25/2]] | |||
| 10.130 | |||
| 34.901 | |||
|- | |||
| ''[[16/11]]'' | |||
| ''10.135'' | |||
| ''34.917'' | |||
|- | |||
| [[17/10]] | |||
| 10.155 | |||
| 34.986 | |||
|- | |||
| [[13/10]] | |||
| 10.184 | |||
| 35.088 | |||
|- | |||
| [[17/2]] | |||
| 10.230 | |||
| 35.244 | |||
|- | |||
| [[13/2]] | |||
| 10.259 | |||
| 35.346 | |||
|- | |||
| ''[[14/9]]'' | |||
| ''10.269'' | |||
| ''35.380'' | |||
|- | |||
| ''[[23/16]]'' | |||
| ''10.273'' | |||
| ''35.394'' | |||
|- | |||
| [[19/13]] | |||
| 10.587 | |||
| 36.475 | |||
|- | |||
| [[19/17]] | |||
| 10.617 | |||
| 36.577 | |||
|- | |||
| [[29/12]] | |||
| 10.697 | |||
| 36.853 | |||
|- | |||
| ''[[9/4]]'' | |||
| ''10.716'' | |||
| ''36.919'' | |||
|- | |||
| [[25/19]] | |||
| 10.716 | |||
| 36.921 | |||
|- | |||
| [[22/1]] | |||
| 10.739 | |||
| 37.001 | |||
|- | |||
| ''[[20/9]]'' | |||
| ''10.791'' | |||
| ''37.177'' | |||
|- | |||
| [[19/5]] | |||
| 10.791 | |||
| 37.180 | |||
|- | |||
| [[22/5]] | |||
| 10.814 | |||
| 37.259 | |||
|- | |||
| '''[[19/1]]''' | |||
| '''10.866''' | |||
| '''37.438''' | |||
|- | |||
| ''[[18/11]]'' | |||
| ''10.870'' | |||
| ''37.452'' | |||
|- | |||
| [[25/22]] | |||
| 10.890 | |||
| 37.518 | |||
|- | |||
| ''[[16/1]]'' | |||
| ''10.894'' | |||
| ''37.534'' | |||
|- | |||
| ''[[16/5]]'' | |||
| ''10.969'' | |||
| ''37.793'' | |||
|- | |||
| [[22/17]] | |||
| 10.989 | |||
| 37.862 | |||
|- | |||
| ''[[7/4]]'' | |||
| ''11.005'' | |||
| ''37.915'' | |||
|- | |||
| ''[[23/18]]'' | |||
| ''11.009'' | |||
| ''37.929'' | |||
|- | |||
| [[22/13]] | |||
| 11.019 | |||
| 37.964 | |||
|- | |||
| ''[[25/16]]'' | |||
| ''11.044'' | |||
| ''38.052'' | |||
|- | |||
| ''[[20/7]]'' | |||
| ''11.080'' | |||
| ''38.174'' | |||
|- | |||
| ''[[17/16]]'' | |||
| ''11.144'' | |||
| ''38.395'' | |||
|- | |||
| [[14/11]] | |||
| 11.160 | |||
| 38.448 | |||
|- | |||
| ''[[16/13]]'' | |||
| ''11.174'' | |||
| ''38.497'' | |||
|- | |||
| [[23/14]] | |||
| 11.298 | |||
| 38.925 | |||
|- | |||
| [[31/12]] | |||
| 11.338 | |||
| 39.062 | |||
|- | |||
| [[21/13]] | |||
| 11.468 | |||
| 39.512 | |||
|- | |||
| [[23/19]] | |||
| 11.488 | |||
| 39.579 | |||
|- | |||
| [[21/17]] | |||
| 11.498 | |||
| 39.614 | |||
|- | |||
| [[25/21]] | |||
| 11.598 | |||
| 39.958 | |||
|- | |||
| [[19/11]] | |||
| 11.626 | |||
| 40.056 | |||
|- | |||
| ''[[18/1]]'' | |||
| ''11.630'' | |||
| ''40.069'' | |||
|- | |||
| [[21/5]] | |||
| 11.673 | |||
| 40.216 | |||
|- | |||
| ''[[18/5]]'' | |||
| ''11.705'' | |||
| ''40.328'' | |||
|- | |||
| [[21/1]] | |||
| 11.748 | |||
| 40.475 | |||
|- | |||
| ''[[27/13]]'' | |||
| ''11.758'' | |||
| ''40.508'' | |||
|- | |||
| ''[[25/18]]'' | |||
| ''11.780'' | |||
| ''40.587'' | |||
|- | |||
| ''[[19/8]]'' | |||
| ''11.781'' | |||
| ''40.589'' | |||
|- | |||
| ''[[27/17]]'' | |||
| ''11.787'' | |||
| ''40.610'' | |||
|- | |||
| ''[[18/17]]'' | |||
| ''11.880'' | |||
| ''40.930'' | |||
|- | |||
| ''[[19/12]]'' | |||
| ''11.886'' | |||
| ''40.952'' | |||
|- | |||
| ''[[27/25]]'' | |||
| ''11.887'' | |||
| ''40.954'' | |||
|- | |||
| ''[[18/13]]'' | |||
| ''11.910'' | |||
| ''41.032'' | |||
|- | |||
| [[14/1]] | |||
| 11.919 | |||
| 41.066 | |||
|- | |||
| ''[[27/5]]'' | |||
| ''11.962'' | |||
| ''41.213'' | |||
|- | |||
| [[14/5]] | |||
| 11.994 | |||
| 41.324 | |||
|- | |||
| ''[[27/1]]'' | |||
| ''12.037'' | |||
| ''41.471'' | |||
|- | |||
| ''[[31/14]]'' | |||
| ''12.040'' | |||
| ''41.482'' | |||
|- | |||
| [[25/14]] | |||
| 12.069 | |||
| 41.583 | |||
|- | |||
| [[17/14]] | |||
| 12.169 | |||
| 41.926 | |||
|- | |||
| [[14/13]] | |||
| 12.199 | |||
| 42.028 | |||
|- | |||
| [[31/18]] | |||
| 12.329 | |||
| 42.478 | |||
|- | |||
| [[23/21]] | |||
| 12.369 | |||
| 42.615 | |||
|- | |||
| ''[[24/13]]'' | |||
| ''12.493'' | |||
| ''43.044'' | |||
|- | |||
| [[21/11]] | |||
| 12.507 | |||
| 43.092 | |||
|- | |||
| ''[[19/9]]'' | |||
| ''12.517'' | |||
| ''43.124'' | |||
|- | |||
| ''[[24/17]]'' | |||
| ''12.523'' | |||
| ''43.146'' | |||
|- | |||
| ''[[25/24]]'' | |||
| ''12.623'' | |||
| ''43.489'' | |||
|- | |||
| ''[[27/23]]'' | |||
| ''12.658'' | |||
| ''43.611'' | |||
|- | |||
| ''[[21/8]]'' | |||
| ''12.662'' | |||
| ''43.626'' | |||
|- | |||
| ''[[29/14]]'' | |||
| ''12.681'' | |||
| ''43.691'' | |||
|- | |||
| ''[[24/5]]'' | |||
| ''12.698'' | |||
| ''43.748'' | |||
|- | |||
| ''[[24/1]]'' | |||
| ''12.773'' | |||
| ''44.006'' | |||
|- | |||
| ''[[27/11]]'' | |||
| ''12.797'' | |||
| ''44.089'' | |||
|- | |||
| [[19/7]] | |||
| 12.806 | |||
| 44.120 | |||
|- | |||
| ''[[27/8]]'' | |||
| ''12.951'' | |||
| ''44.622'' | |||
|- | |||
| [[29/18]] | |||
| 12.970 | |||
| 44.687 | |||
|- | |||
| ''[[31/16]]'' | |||
| ''13.065'' | |||
| ''45.014'' | |||
|- | |||
| ''[[31/22]]'' | |||
| ''13.220'' | |||
| ''45.547'' | |||
|- | |||
| ''[[15/7]]'' | |||
| ''13.323'' | |||
| ''45.902'' | |||
|- | |||
| ''[[24/23]]'' | |||
| ''13.394'' | |||
| ''46.147'' | |||
|- | |||
| ''[[7/3]]'' | |||
| ''13.398'' | |||
| ''46.161'' | |||
|- | |||
| [[13/3]] | |||
| 13.408 | |||
| 46.194 | |||
|- | |||
| [[17/3]] | |||
| 13.437 | |||
| 46.296 | |||
|- | |||
| [[15/13]] | |||
| 13.483 | |||
| 46.453 | |||
|- | |||
| [[17/15]] | |||
| 13.513 | |||
| 46.555 | |||
|- | |||
| ''[[24/11]]'' | |||
| ''13.532'' | |||
| ''46.624'' | |||
|- | |||
| [[25/3]] | |||
| 13.537 | |||
| 46.640 | |||
|- | |||
| [[5/3]] | |||
| 13.612 | |||
| 46.898 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''13.687''' | |||
| '''47.157''' | |||
|- | |||
| ''[[29/16]]'' | |||
| ''13.706'' | |||
| ''47.223'' | |||
|- | |||
| [[15/1]] | |||
| 13.762 | |||
| 47.416 | |||
|- | |||
| ''[[29/22]]'' | |||
| ''13.861'' | |||
| ''47.756'' | |||
|- | |||
| ''[[27/7]]'' | |||
| ''13.976'' | |||
| ''48.153'' | |||
|- | |||
| ''[[31/2]]'' | |||
| ''13.980'' | |||
| ''48.164'' | |||
|- | |||
| ''[[31/10]]'' | |||
| ''14.055'' | |||
| ''48.423'' | |||
|- | |||
| [[29/26]] | |||
| 14.125 | |||
| 48.664 | |||
|- | |||
| ''[[31/26]]'' | |||
| ''14.259'' | |||
| ''49.127'' | |||
|- | |||
| [[23/3]] | |||
| 14.308 | |||
| 49.297 | |||
|- | |||
| [[24/7]] | |||
| 14.313 | |||
| 49.312 | |||
|- | |||
| [[29/10]] | |||
| 14.329 | |||
| 49.368 | |||
|- | |||
| ''[[15/8]]'' | |||
| ''14.348'' | |||
| ''49.434'' | |||
|- | |||
| [[23/15]] | |||
| 14.384 | |||
| 49.556 | |||
|- | |||
| [[29/2]] | |||
| 14.404 | |||
| 49.627 | |||
|- | |||
| ''[[8/3]]'' | |||
| ''14.423'' | |||
| ''49.692'' | |||
|- | |||
| [[11/3]] | |||
| 14.447 | |||
| 49.774 | |||
|- | |||
| ''[[15/11]]'' | |||
| ''14.503'' | |||
| ''49.967'' | |||
|} |
Revision as of 17:47, 28 June 2024
186 zeta peak index (abbreviated 186zpi), is the equal-step tuning system obtained from the 186st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 0.241233 | 11.567493 | 41edo | 1190.02021518380 | 2 | 2 |
Theory
Record on the Riemann zeta function with primes 2 and 3 removed
186zpi sets a height record on the Riemann zeta function with primes 2 and 3 removed. The previous record is 125zpi and the next one is 565zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with primes 2 and 3 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
125zpi | 30.6006474885974 | 39.2148564976330 | 1.468164 | 31edo | 1215.66055142662 | 30.5974484926723 | 39.2189564527704 | 3.769318 | 31edo | 1215.78765003588 |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 41edo | 1190.02021518380 | 41.3477989230936 | 29.0221010852836 | 4.469823 | 41edo | 1189.90614449663 |
565zpi | 98.6209462564991 | 12.1678005084130 | 2.305330 | 99edo | 1204.61225033289 | 98.6257548378926 | 12.1672072570942 | 4.883729 | 99edo | 1204.55351845233 |
Harmonic series
As a non-octave, non-tritave scale, 186zpi features a well-balanced harmonic series segment from 5 to 9, and performs exceptionally well across all prime harmonics from 5 to 23, with the exception of 19.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.0 | +13.7 | +9.1 | +0.1 | +3.7 | -1.9 | -0.9 | -1.7 | -9.9 | -0.8 | -6.3 | +0.3 | -11.9 | +13.8 | -10.9 |
Relative (%) | -34.4 | +47.2 | +31.2 | +0.3 | +12.8 | -6.7 | -3.2 | -5.7 | -34.1 | -2.6 | -21.6 | +1.0 | -41.1 | +47.4 | -37.5 | |
Step | 41 | 66 | 83 | 96 | 107 | 116 | 124 | 131 | 137 | 143 | 148 | 153 | 157 | 162 | 165 |
Harmonic | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.2 | -11.6 | +10.9 | +9.1 | +11.7 | -10.7 | -0.6 | +12.8 | +0.2 | -9.7 | +12.0 | +7.1 | +4.4 | +3.8 | +5.1 | +8.2 |
Relative (%) | +0.9 | -40.1 | +37.4 | +31.5 | +40.5 | -37.0 | -2.1 | +44.0 | +0.5 | -33.4 | +41.5 | +24.6 | +15.2 | +13.0 | +17.5 | +28.1 | |
Step | 169 | 172 | 176 | 179 | 182 | 184 | 187 | 190 | 192 | 194 | 197 | 199 | 201 | 203 | 205 | 207 |
Approximation of EDONOIs
Based on harmonics with less than 1 cent of error, 186zpi can be approximated by 96ed5, 124ed8 (or every 3 steps of 124edo), 143ed11, 153ed13, 169ed17, 187ed23, and 192ed25.
Intervals and notation
There are multiple ways to approach notation. The simplest method is to use the notations from 41edo. However, this approach will not preserve octave compression when the audio is rendered by notation software. To address this, consider using the ups and downs notation from 124edo at every 3-degree step (i.e., the edonoi 124ed8).
Approximation to JI
The following table illustrates the representation of the 32-integer limit intervals in 186zpi. Prime harmonics are in bold; inconsistent intervals are in italic.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
17/13 | 0.030 | 0.102 |
5/1 | 0.075 | 0.259 |
25/17 | 0.100 | 0.344 |
25/13 | 0.129 | 0.446 |
23/11 | 0.138 | 0.477 |
25/1 | 0.150 | 0.517 |
11/8 | 0.155 | 0.533 |
17/5 | 0.175 | 0.602 |
13/5 | 0.204 | 0.704 |
17/1 | 0.250 | 0.861 |
13/1 | 0.279 | 0.963 |
9/7 | 0.289 | 0.996 |
23/8 | 0.293 | 1.011 |
23/1 | 0.621 | 2.140 |
31/29 | 0.641 | 2.209 |
30/29 | 0.642 | 2.211 |
23/5 | 0.696 | 2.399 |
29/6 | 0.717 | 2.470 |
9/8 | 0.736 | 2.535 |
11/1 | 0.760 | 2.617 |
25/23 | 0.771 | 2.657 |
11/5 | 0.835 | 2.876 |
23/17 | 0.871 | 3.001 |
21/19 | 0.881 | 3.037 |
11/9 | 0.891 | 3.069 |
23/13 | 0.901 | 3.103 |
25/11 | 0.910 | 3.135 |
8/1 | 0.914 | 3.151 |
8/5 | 0.990 | 3.409 |
17/11 | 1.009 | 3.478 |
8/7 | 1.025 | 3.531 |
23/9 | 1.029 | 3.546 |
13/11 | 1.039 | 3.580 |
25/8 | 1.065 | 3.668 |
17/8 | 1.164 | 4.012 |
27/19 | 1.171 | 4.033 |
11/7 | 1.180 | 4.065 |
13/8 | 1.194 | 4.114 |
31/30 | 1.283 | 4.420 |
23/7 | 1.318 | 4.542 |
31/6 | 1.358 | 4.679 |
9/1 | 1.650 | 5.686 |
9/5 | 1.725 | 5.944 |
20/19 | 1.726 | 5.947 |
25/9 | 1.800 | 6.203 |
19/4 | 1.801 | 6.205 |
17/9 | 1.900 | 6.547 |
24/19 | 1.906 | 6.568 |
13/9 | 1.930 | 6.649 |
7/1 | 1.939 | 6.682 |
7/5 | 2.015 | 6.941 |
31/28 | 2.060 | 7.099 |
25/7 | 2.090 | 7.199 |
17/7 | 2.189 | 7.543 |
13/7 | 2.219 | 7.645 |
21/20 | 2.607 | 8.984 |
21/4 | 2.683 | 9.242 |
29/28 | 2.702 | 9.308 |
32/19 | 2.716 | 9.356 |
19/3 | 2.821 | 9.719 |
19/15 | 2.896 | 9.977 |
27/20 | 2.897 | 9.980 |
27/4 | 2.972 | 10.238 |
32/31 | 3.085 | 10.630 |
15/14 | 3.343 | 11.519 |
14/3 | 3.418 | 11.777 |
13/6 | 3.428 | 11.811 |
17/6 | 3.458 | 11.913 |
30/13 | 3.503 | 12.069 |
30/17 | 3.533 | 12.171 |
25/6 | 3.557 | 12.256 |
32/21 | 3.597 | 12.393 |
6/5 | 3.632 | 12.515 |
6/1 | 3.708 | 12.774 |
32/29 | 3.726 | 12.839 |
28/19 | 3.741 | 12.887 |
30/1 | 3.783 | 13.032 |
32/27 | 3.886 | 13.389 |
31/4 | 4.000 | 13.781 |
31/20 | 4.075 | 14.039 |
29/13 | 4.145 | 14.280 |
29/17 | 4.174 | 14.382 |
29/25 | 4.274 | 14.726 |
23/6 | 4.329 | 14.914 |
12/7 | 4.333 | 14.928 |
29/5 | 4.349 | 14.985 |
16/15 | 4.368 | 15.050 |
30/23 | 4.404 | 15.172 |
29/1 | 4.424 | 15.243 |
16/3 | 4.443 | 15.309 |
11/6 | 4.467 | 15.391 |
22/15 | 4.523 | 15.583 |
30/11 | 4.542 | 15.649 |
20/3 | 4.547 | 15.666 |
22/3 | 4.598 | 15.842 |
4/3 | 4.622 | 15.924 |
29/4 | 4.641 | 15.990 |
15/4 | 4.697 | 16.183 |
29/20 | 4.716 | 16.248 |
31/13 | 4.786 | 16.489 |
31/17 | 4.816 | 16.591 |
28/27 | 4.911 | 16.920 |
31/25 | 4.915 | 16.935 |
31/5 | 4.990 | 17.194 |
29/23 | 5.046 | 17.383 |
31/1 | 5.066 | 17.452 |
27/14 | 5.069 | 17.463 |
29/11 | 5.184 | 17.860 |
15/2 | 5.283 | 18.201 |
29/8 | 5.339 | 18.394 |
3/2 | 5.358 | 18.459 |
10/3 | 5.433 | 18.718 |
12/11 | 5.513 | 18.993 |
32/3 | 5.536 | 19.075 |
26/15 | 5.562 | 19.164 |
32/15 | 5.612 | 19.334 |
26/3 | 5.637 | 19.422 |
7/6 | 5.647 | 19.456 |
23/12 | 5.651 | 19.470 |
31/23 | 5.687 | 19.592 |
30/7 | 5.722 | 19.714 |
31/19 | 5.801 | 19.986 |
31/11 | 5.825 | 20.069 |
31/8 | 5.980 | 20.603 |
29/9 | 6.075 | 20.929 |
27/16 | 6.094 | 20.994 |
19/14 | 6.239 | 21.496 |
27/22 | 6.248 | 21.528 |
12/1 | 6.272 | 21.610 |
12/5 | 6.347 | 21.869 |
29/7 | 6.364 | 21.925 |
21/16 | 6.383 | 21.991 |
25/12 | 6.422 | 22.127 |
29/19 | 6.442 | 22.195 |
17/12 | 6.522 | 22.471 |
19/18 | 6.528 | 22.492 |
22/21 | 6.538 | 22.524 |
13/12 | 6.552 | 22.573 |
28/3 | 6.561 | 22.606 |
28/15 | 6.637 | 22.865 |
31/21 | 6.682 | 23.023 |
31/9 | 6.716 | 23.138 |
28/13 | 6.846 | 23.588 |
28/17 | 6.876 | 23.690 |
31/27 | 6.972 | 24.019 |
28/25 | 6.976 | 24.034 |
31/7 | 7.005 | 24.134 |
27/2 | 7.008 | 24.145 |
28/5 | 7.051 | 24.292 |
27/10 | 7.083 | 24.404 |
30/19 | 7.084 | 24.406 |
28/1 | 7.126 | 24.551 |
19/6 | 7.159 | 24.665 |
19/16 | 7.264 | 25.027 |
27/26 | 7.288 | 25.108 |
21/2 | 7.297 | 25.141 |
29/21 | 7.324 | 25.232 |
21/10 | 7.372 | 25.400 |
22/19 | 7.419 | 25.561 |
26/21 | 7.577 | 26.104 |
29/27 | 7.613 | 26.228 |
31/24 | 7.707 | 26.554 |
28/23 | 7.747 | 26.691 |
26/7 | 7.761 | 26.739 |
32/13 | 7.871 | 27.119 |
28/11 | 7.886 | 27.168 |
32/17 | 7.901 | 27.221 |
10/7 | 7.965 | 27.443 |
32/25 | 8.001 | 27.565 |
7/2 | 8.040 | 27.702 |
26/9 | 8.050 | 27.735 |
32/5 | 8.076 | 27.824 |
32/1 | 8.151 | 28.082 |
19/2 | 8.179 | 28.178 |
19/10 | 8.254 | 28.437 |
10/9 | 8.254 | 28.439 |
9/2 | 8.329 | 28.698 |
29/24 | 8.348 | 28.763 |
26/19 | 8.458 | 29.141 |
31/3 | 8.622 | 29.705 |
31/15 | 8.697 | 29.964 |
32/23 | 8.772 | 30.222 |
28/9 | 8.776 | 30.237 |
13/4 | 8.786 | 30.270 |
22/7 | 8.800 | 30.319 |
17/4 | 8.815 | 30.372 |
20/13 | 8.861 | 30.529 |
20/17 | 8.891 | 30.631 |
32/11 | 8.910 | 30.699 |
25/4 | 8.915 | 30.716 |
26/11 | 8.941 | 30.803 |
16/7 | 8.955 | 30.852 |
5/4 | 8.990 | 30.974 |
4/1 | 9.065 | 31.233 |
26/23 | 9.079 | 31.281 |
22/9 | 9.089 | 31.315 |
20/1 | 9.140 | 31.492 |
11/10 | 9.145 | 31.508 |
11/2 | 9.220 | 31.766 |
16/9 | 9.244 | 31.848 |
29/3 | 9.263 | 31.914 |
23/10 | 9.284 | 31.985 |
29/15 | 9.338 | 32.173 |
23/2 | 9.359 | 32.243 |
23/4 | 9.686 | 33.373 |
18/7 | 9.691 | 33.387 |
26/1 | 9.700 | 33.421 |
23/20 | 9.762 | 33.632 |
26/5 | 9.775 | 33.679 |
32/9 | 9.801 | 33.768 |
11/4 | 9.825 | 33.850 |
26/25 | 9.850 | 33.938 |
20/11 | 9.900 | 34.109 |
10/1 | 9.905 | 34.125 |
26/17 | 9.950 | 34.282 |
2/1 | 9.980 | 34.384 |
5/2 | 10.055 | 34.642 |
32/7 | 10.090 | 34.764 |
23/22 | 10.118 | 34.861 |
25/2 | 10.130 | 34.901 |
16/11 | 10.135 | 34.917 |
17/10 | 10.155 | 34.986 |
13/10 | 10.184 | 35.088 |
17/2 | 10.230 | 35.244 |
13/2 | 10.259 | 35.346 |
14/9 | 10.269 | 35.380 |
23/16 | 10.273 | 35.394 |
19/13 | 10.587 | 36.475 |
19/17 | 10.617 | 36.577 |
29/12 | 10.697 | 36.853 |
9/4 | 10.716 | 36.919 |
25/19 | 10.716 | 36.921 |
22/1 | 10.739 | 37.001 |
20/9 | 10.791 | 37.177 |
19/5 | 10.791 | 37.180 |
22/5 | 10.814 | 37.259 |
19/1 | 10.866 | 37.438 |
18/11 | 10.870 | 37.452 |
25/22 | 10.890 | 37.518 |
16/1 | 10.894 | 37.534 |
16/5 | 10.969 | 37.793 |
22/17 | 10.989 | 37.862 |
7/4 | 11.005 | 37.915 |
23/18 | 11.009 | 37.929 |
22/13 | 11.019 | 37.964 |
25/16 | 11.044 | 38.052 |
20/7 | 11.080 | 38.174 |
17/16 | 11.144 | 38.395 |
14/11 | 11.160 | 38.448 |
16/13 | 11.174 | 38.497 |
23/14 | 11.298 | 38.925 |
31/12 | 11.338 | 39.062 |
21/13 | 11.468 | 39.512 |
23/19 | 11.488 | 39.579 |
21/17 | 11.498 | 39.614 |
25/21 | 11.598 | 39.958 |
19/11 | 11.626 | 40.056 |
18/1 | 11.630 | 40.069 |
21/5 | 11.673 | 40.216 |
18/5 | 11.705 | 40.328 |
21/1 | 11.748 | 40.475 |
27/13 | 11.758 | 40.508 |
25/18 | 11.780 | 40.587 |
19/8 | 11.781 | 40.589 |
27/17 | 11.787 | 40.610 |
18/17 | 11.880 | 40.930 |
19/12 | 11.886 | 40.952 |
27/25 | 11.887 | 40.954 |
18/13 | 11.910 | 41.032 |
14/1 | 11.919 | 41.066 |
27/5 | 11.962 | 41.213 |
14/5 | 11.994 | 41.324 |
27/1 | 12.037 | 41.471 |
31/14 | 12.040 | 41.482 |
25/14 | 12.069 | 41.583 |
17/14 | 12.169 | 41.926 |
14/13 | 12.199 | 42.028 |
31/18 | 12.329 | 42.478 |
23/21 | 12.369 | 42.615 |
24/13 | 12.493 | 43.044 |
21/11 | 12.507 | 43.092 |
19/9 | 12.517 | 43.124 |
24/17 | 12.523 | 43.146 |
25/24 | 12.623 | 43.489 |
27/23 | 12.658 | 43.611 |
21/8 | 12.662 | 43.626 |
29/14 | 12.681 | 43.691 |
24/5 | 12.698 | 43.748 |
24/1 | 12.773 | 44.006 |
27/11 | 12.797 | 44.089 |
19/7 | 12.806 | 44.120 |
27/8 | 12.951 | 44.622 |
29/18 | 12.970 | 44.687 |
31/16 | 13.065 | 45.014 |
31/22 | 13.220 | 45.547 |
15/7 | 13.323 | 45.902 |
24/23 | 13.394 | 46.147 |
7/3 | 13.398 | 46.161 |
13/3 | 13.408 | 46.194 |
17/3 | 13.437 | 46.296 |
15/13 | 13.483 | 46.453 |
17/15 | 13.513 | 46.555 |
24/11 | 13.532 | 46.624 |
25/3 | 13.537 | 46.640 |
5/3 | 13.612 | 46.898 |
3/1 | 13.687 | 47.157 |
29/16 | 13.706 | 47.223 |
15/1 | 13.762 | 47.416 |
29/22 | 13.861 | 47.756 |
27/7 | 13.976 | 48.153 |
31/2 | 13.980 | 48.164 |
31/10 | 14.055 | 48.423 |
29/26 | 14.125 | 48.664 |
31/26 | 14.259 | 49.127 |
23/3 | 14.308 | 49.297 |
24/7 | 14.313 | 49.312 |
29/10 | 14.329 | 49.368 |
15/8 | 14.348 | 49.434 |
23/15 | 14.384 | 49.556 |
29/2 | 14.404 | 49.627 |
8/3 | 14.423 | 49.692 |
11/3 | 14.447 | 49.774 |
15/11 | 14.503 | 49.967 |