Schismic–Pythagorean equivalence continuum: Difference between revisions
CompactStar (talk | contribs) No edit summary |
The inverted continuum |
||
Line 1: | Line 1: | ||
The ''' | The '''schismic-Pythagorean equivalence continuum''' is a continuum of 5-limit temperaments which equate a number of [[32805/32768|schismas (32805/32768)]] with [[Pythagorean comma|Pythagorean comma ({{monzo| -19 12 }})]]. This continuum is theoretically interesting in that these are all 5-limit temperaments supported by [[12edo]]. | ||
All temperaments in the continuum satisfy (32805/32768)<sup>''n''</sup> ~ {{monzo|-19 12}}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[schismic]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[12edo]] due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of ''n'' is approximately 12.0078623975…, and temperaments having ''n'' near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small [[Kirnberger's atom]] (the difference between 12 schismas and the Pythagorean comma) is. | All temperaments in the continuum satisfy (32805/32768)<sup>''n''</sup> ~ {{monzo| -19 12 }}. Varying ''n'' results in different temperaments listed in the table below. It converges to [[schismic]] as ''n'' approaches infinity. If we allow non-integer and infinite ''n'', the continuum describes the set of all [[5-limit]] temperaments supported by [[12edo]] due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of ''n'' is approximately 12.0078623975…, and temperaments having ''n'' near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small [[Kirnberger's atom]] (the difference between 12 schismas and the Pythagorean comma) is. | ||
{| class="wikitable center-1 center-2" | {| class="wikitable center-1 center-2" | ||
|+ Temperaments | |+ Temperaments with integer ''n'' | ||
|- | |- | ||
! rowspan="2" | ''n'' | ! rowspan="2" | ''n'' | ||
Line 20: | Line 20: | ||
| 0 | | 0 | ||
| [[Compton family|Compton]] | | [[Compton family|Compton]] | ||
| 531441/524288 | | [[531441/524288]] | ||
| {{monzo| -19 12 }} | | {{monzo| -19 12 }} | ||
|- | |- | ||
| 1 | | 1 | ||
| [[Meantone family|Meantone]] | | [[Meantone family|Meantone]] | ||
| 81/80 | | [[81/80]] | ||
| {{monzo| -4 4 -1 }} | | {{monzo| -4 4 -1 }} | ||
|- | |- | ||
| 2 | | 2 | ||
| [[Diaschismic family|Diaschismic]] | | [[Diaschismic family|Diaschismic]] | ||
| 2048/2025 | | [[2048/2025]] | ||
| {{monzo| 11 -4 -2 }} | | {{monzo| 11 -4 -2 }} | ||
|- | |- | ||
| 3 | | 3 | ||
| [[Misty family|Misty]] | | [[Misty family|Misty]] | ||
| 67108864/66430125 | | [[67108864/66430125]] | ||
| {{monzo| 26 -12 -3 }} | | {{monzo| 26 -12 -3 }} | ||
|- | |- | ||
Line 97: | Line 97: | ||
| [[32805/32768]] | | [[32805/32768]] | ||
| {{monzo| -15 8 1 }} | | {{monzo| -15 8 1 }} | ||
|} | |||
We may invert the continuum by setting ''m'' such that 1/''m'' + 1/''n'' = 1. The just value of ''m'' is 1.0908441588… | |||
{| class="wikitable center-1 center-2" | |||
|+ Temperaments with integer ''m'' | |||
|- | |||
! rowspan="2" | ''m'' | |||
! rowspan="2" | Temperament | |||
! colspan="2" | Comma | |||
|- | |||
! Ratio | |||
! Monzo | |||
|- | |||
| 0 | |||
| [[Compton family|Compton]] | |||
| [[531441/524288]] | |||
| {{monzo| -19 12 }} | |||
|- | |||
| 1 | |||
| [[Schismic]] | |||
| [[32805/32768]] | |||
| {{monzo| -15 8 1 }} | |||
|- | |||
| 2 | |||
| [[Diaschismic family|Diaschismic]] | |||
| [[2048/2025]] | |||
| {{monzo| 11 -4 -2 }} | |||
|- | |||
| 3 | |||
| [[Augmented]] | |||
| [[128/125]] | |||
| {{monzo| 7 0 -3 }} | |||
|- | |||
| 4 | |||
| [[Diminished]] | |||
| [[648/625]] | |||
| {{monzo| 3 4 -4 }} | |||
|- | |||
| 5 | |||
| [[Ripple]] | |||
| [[6561/6250]] | |||
| {{monzo| -1 8 -5 }} | |||
|- | |||
| 6 | |||
| [[Wronecki]] | |||
| [[531441/500000]] | |||
| {{monzo| -5 12 -6 }} | |||
|- | |||
| … | |||
| … | |||
| … | |||
| … | |||
|- | |||
| ∞ | |||
| [[Meantone]] | |||
| [[81/80]] | |||
| {{monzo| -4 4 -1 }} | |||
|} | |} | ||
Revision as of 09:59, 20 April 2024
The schismic-Pythagorean equivalence continuum is a continuum of 5-limit temperaments which equate a number of schismas (32805/32768) with Pythagorean comma ([-19 12⟩). This continuum is theoretically interesting in that these are all 5-limit temperaments supported by 12edo.
All temperaments in the continuum satisfy (32805/32768)n ~ [-19 12⟩. Varying n results in different temperaments listed in the table below. It converges to schismic as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 12edo due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of n is approximately 12.0078623975…, and temperaments having n near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small Kirnberger's atom (the difference between 12 schismas and the Pythagorean comma) is.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
-1 | Gracecordial | 17433922005/17179869184 | [-34 20 1⟩ |
0 | Compton | 531441/524288 | [-19 12⟩ |
1 | Meantone | 81/80 | [-4 4 -1⟩ |
2 | Diaschismic | 2048/2025 | [11 -4 -2⟩ |
3 | Misty | 67108864/66430125 | [26 -12 -3⟩ |
4 | Undim | [41 -20 -4⟩ | |
5 | Quindromeda | [56 -28 -5⟩ | |
6 | Sextile | [71 -36 -6⟩ | |
7 | Sepsa-sepgu (12&323) | [86 -44 -7⟩ | |
8 | World calendar | [101 -52 -8⟩ | |
9 | Quinbisa-tritrigu (12&441) | [116 -60 -9⟩ | |
10 | Lesa-quinbigu (12&494) | [131 -68 -10⟩ | |
11 | Quadtrisa-legu (12&559) | [146 -76 -11⟩ | |
12 | Atomic | [161 -84 -12⟩ | |
13 | Quintrila-theyo (12&677) | [-176 92 13⟩ | |
… | … | … | … |
∞ | Schismic | 32805/32768 | [-15 8 1⟩ |
We may invert the continuum by setting m such that 1/m + 1/n = 1. The just value of m is 1.0908441588…
m | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
0 | Compton | 531441/524288 | [-19 12⟩ |
1 | Schismic | 32805/32768 | [-15 8 1⟩ |
2 | Diaschismic | 2048/2025 | [11 -4 -2⟩ |
3 | Augmented | 128/125 | [7 0 -3⟩ |
4 | Diminished | 648/625 | [3 4 -4⟩ |
5 | Ripple | 6561/6250 | [-1 8 -5⟩ |
6 | Wronecki | 531441/500000 | [-5 12 -6⟩ |
… | … | … | … |
∞ | Meantone | 81/80 | [-4 4 -1⟩ |
Examples of temperaments with fractional values of n:
- Python (n = 1/2 = 0.5)
- Ripple (n = 5/4 = 1.25)
- Diminished (n = 4/3 = 1.3)
- Augmented (n = 3/2 = 1.5)
- Passion (n = 5/3 = 1.6)
- Quintaleap (n = 5/2 = 2.5)
Compton (12&72)
- Compton family and
Subgroup: 2.3.5
Comma list: [-19 12⟩ = 531441/524288
Mapping: [⟨12 19 28], ⟨0 0 -1]]
Wedgie: ⟨⟨ 0 12 19 ]]
POTE generator: ~5/4 = 384.882
Optimal ET sequence: 12, 48, 60, 72, 84
Badness: 0.094494
Python (12&79)
Subgroup: 2.3.5
Comma list: [-23 16 -1⟩ = 43046721/41943040
Mapping: [⟨1 0 -23], ⟨0 -1 -16]]
Wedgie: ⟨⟨ 1 16 23 ]]
POTE generator: ~4/3 = 500.970
Optimal ET sequence: 12, …, 79, 91, 103
Badness: 0.295079
Quintaleap (12&121)
Subgroup: 2.3.5
Comma list: [37 -16 -5⟩ = 137438953472/134521003125
Mapping: [⟨1 2 1], ⟨0 -5 16]]
Wedgie: ⟨⟨ 5 -16 -37 ]]
POTE generator: ~135/128 = 99.267
Optimal ET sequence: 12, …, 85, 97, 109, 121, 133, 278c, 411bc, 544bc
Badness: 0.444506
Undim (12&152)
Subgroup: 2.3.5
Comma list: [41 -20 -4⟩
Mapping: [⟨4 0 41], ⟨0 1 -5]]
Wedgie: ⟨⟨ 4 -20 -41 ]]
POTE generator: ~3/2 = 702.6054
Optimal ET sequence: 12, …, 104, 116, 128, 140, 152, 610, 772, 924c, 1076bc, 1228bc
Badness: 0.241703
Quindromeda (12&205)
Subgroup: 2.3.5
Comma list: [56 -28 -5⟩
Mapping: [⟨1 2 0], ⟨0 -5 28]]
POTE generator: ~4428675/4194304 = 99.526
Wedgie: ⟨⟨ 5 -28 -56 ]]
Optimal ET sequence: 12, …, 181, 193, 205, 217, 422
Badness: 0.399849
Sextile (12&270)
Subgroup: 2.3.5
Comma list: [71 -36 -6⟩
Mapping: [⟨6 0 71], ⟨0 1 -6]]
POTE generator: ~3/2 = 702.2356
Wedgie: ⟨⟨ 6 -36 -77 ]]
Optimal ET sequence: 12, …, 222, 234, 246, 258, 270, 1068, 1338, 1608, 1878, 4026bc
Badness: 0.555423