Canou family: Difference between revisions
Cmloegcmluin (talk | contribs) "optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence |
Update keys |
||
Line 1: | Line 1: | ||
The '''canou family''' of rank-3 | The '''canou family''' of [[Rank-3 temperament|rank-3]] [[temperament]]s [[Tempering out|tempers out]] the [[canousma]], 4802000/4782969 = {{monzo| 4 -14 3 4 }}, a 7-limit comma measuring about 6.9 [[cent]]s. | ||
== Canou == | == Canou == | ||
{{Main| Canou temperament }} | {{Main| Canou temperament }} | ||
The canou temperament features a period of an octave and | The canou temperament features a [[period]] of an [[octave]] and [[generator]]s of [[3/2]] and [[81/70]]. The 81/70-generator is about 255 cents. Two of them make [[980/729]] at about 510 cents, an audibly off perfect fourth. Three make [[14/9]]; four make [[9/5]]. It therefore also features splitting the septimal diesis, [[49/48]], into three equal parts, making two distinct [[interseptimal interval]]s related to the 35th harmonic. | ||
For tunings, a basic option would be [[99edo]], although [[80edo]] is even simpler and distinctive. More intricate tunings are provided by [[311edo]] and [[410edo]], whereas the [[optimal patent val]] goes up to [[1131edo]], relating it to the [[amicable]] temperament. | For tunings, a basic option would be [[99edo]], although [[80edo]] is even simpler and distinctive. More intricate tunings are provided by [[311edo]] and [[410edo]], whereas the [[optimal patent val]] goes up to [[1131edo]], relating it to the [[amicable]] temperament. | ||
It has a neat extension to the 2.3.5.7.17.19 subgroup with virtually no additional errors. The [[comma basis]] is {1216/1215, 1225/1224, 1445/1444}. Otherwise, 11- and 13-limit extensions are somewhat less ideal. | It has a neat extension to the 2.3.5.7.17.19 [[subgroup]] with virtually no additional errors. The [[comma basis]] is {1216/1215, 1225/1224, 1445/1444}. Otherwise, 11- and 13-limit extensions are somewhat less ideal. | ||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 14: | Line 14: | ||
[[Comma list]]: [[4802000/4782969]] | [[Comma list]]: [[4802000/4782969]] | ||
{{Mapping|legend=1| 1 0 0 -1 | 0 1 2 2 | 0 0 -4 3 }} | |||
: mapping generators: ~2, ~3, ~81/70 | |||
Lattice basis: | Lattice basis: | ||
Line 20: | Line 22: | ||
: Angle (3/2, 81/70) = 73.88 deg | : Angle (3/2, 81/70) = 73.88 deg | ||
Optimal tuning ([[CTE]]): ~3/2 = 702.3175, ~81/70 = 254.6220 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.3175, ~81/70 = 254.6220 | ||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* [[7-odd-limit]]: 3 +c/14, 5 and 7 just | * [[7-odd-limit]]: 3 +c/14, 5 and 7 just | ||
: [[Eigenmonzo basis | : [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.7 | ||
* [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | * [[9-odd-limit]]: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just | ||
: [[Eigenmonzo basis | : [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5 | ||
{{Optimal ET sequence|legend=1| 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b }} | {{Optimal ET sequence|legend=1| 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b }} | ||
Line 39: | Line 41: | ||
Comma list: 1225/1224, 295936/295245 | Comma list: 1225/1224, 295936/295245 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -5 | 0 1 2 2 6 | 0 0 -4 3 -2 }} | ||
Optimal tuning (CTE): ~3/2 = 702.3458, ~81/70 = 254.6233 | Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.3458, ~81/70 = 254.6233 | ||
{{Optimal ET sequence|legend=1| 94, 99, 193, 217, 292, 311, 410, 1131, 1541b }} | {{Optimal ET sequence|legend=1| 94, 99, 193, 217, 292, 311, 410, 1131, 1541b }} | ||
Line 52: | Line 54: | ||
Comma list: 1216/1215, 1225/1224, 1445/1444 | Comma list: 1216/1215, 1225/1224, 1445/1444 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -5 -6 | 0 1 2 2 6 7 | 0 0 -4 3 -2 -4 }} | ||
Optimal tuning (CTE): ~3/2 = 702.3233, ~81/70 = 254.6279 | Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.3233, ~81/70 = 254.6279 | ||
{{Optimal ET sequence|legend=1| 94, 99, 118, 193, 217, 292h, 311, 410, 721 }} | {{Optimal ET sequence|legend=1| 94, 99, 118, 193, 217, 292h, 311, 410, 721 }} | ||
Line 67: | Line 69: | ||
[[Comma list]]: 19712/19683, 42875/42768 | [[Comma list]]: 19712/19683, 42875/42768 | ||
{{Mapping|legend=1| 1 0 0 -1 -7 | 0 1 2 2 7 | 0 0 -4 3 -3 }} | |||
Optimal tuning ([[CTE]]): ~3/2 = 702.2115, ~81/70 = 254.6215 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.2115, ~81/70 = 254.6215 | ||
{{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | {{Optimal ET sequence|legend=1| 94, 99e, 118, 193, 212, 311, 740, 1051d }} | ||
Line 82: | Line 84: | ||
Comma list: 2080/2079, 19712/19683, 42875/42768 | Comma list: 2080/2079, 19712/19683, 42875/42768 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -7 -13 | 0 1 2 2 7 10 | 0 0 -4 3 -3 4 }} | ||
Optimal tuning (CTE): ~3/2 = 702.2075, ~81/70 = 254.6183 | Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2075, ~81/70 = 254.6183 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | {{Optimal ET sequence|legend=1| 94, 118f, 193f, 212, 217, 311, 740, 1051d }} | ||
Line 95: | Line 97: | ||
Comma list: 595/594, 833/832, 1156/1155, 19712/19683 | Comma list: 595/594, 833/832, 1156/1155, 19712/19683 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 -7 -13 -5 | 0 1 2 2 7 10 6 | 0 0 -4 3 -3 4 -2 }} | ||
Optimal tuning (CTE): ~3/2 = 702.2296, ~51/44 = 254.6012 | Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2296, ~51/44 = 254.6012 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | {{Optimal ET sequence|legend=1| 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg }} | ||
Line 108: | Line 110: | ||
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215 | Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215 | ||
Mapping: | Mapping: {{mapping|| 1 0 0 -1 -7 -13 -5 -6 | 0 1 2 2 7 10 6 7 | 0 0 -4 3 -3 4 -2 -4 }} | ||
Optimal tuning (CTE): ~3/2 = 702.2355, ~22/19 = 254.5930 | Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2355, ~22/19 = 254.5930 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | {{Optimal ET sequence|legend=1| 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh }} | ||
Line 123: | Line 125: | ||
[[Comma list]]: 896/891, 472392/471625 | [[Comma list]]: 896/891, 472392/471625 | ||
{{Mapping|legend=1| 1 0 0 -1 6 | 0 1 2 2 -2 | 0 0 4 -3 -3 }} | |||
Optimal tuning ([[CTE]]): ~3/2 = 702.8093, ~64/55 = 254.3378 | [[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8093, ~64/55 = 254.3378 | ||
{{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e }} | {{Optimal ET sequence|legend=1| 75e, 80, 99e, 179e }} | ||
Line 136: | Line 138: | ||
Comma list: 352/351, 364/363, 472392/471625 | Comma list: 352/351, 364/363, 472392/471625 | ||
Mapping: | Mapping: {{mapping| 1 0 0 -1 6 11 | 0 1 2 2 -2 -5 | 0 0 4 -3 -3 -3 }} | ||
Optimal tuning (CTE): ~3/2 = 703.6228, ~64/55 = 254.3447 | Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 703.6228, ~64/55 = 254.3447 | ||
{{Optimal ET sequence|legend=1| 75e, 80, 99ef, 179ef }} | {{Optimal ET sequence|legend=1| 75e, 80, 99ef, 179ef }} | ||
Line 149: | Line 151: | ||
The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9-11/9-11/9-11/10. | The other comma necessary to define it is 14641/14580, the [[semicanousma]], which is the difference between [[121/120]] and [[243/242]]. By flattening the 11th harmonic by one cent, it identifies [[20/11]] by three [[11/9]]'s stacked, so an octave can be divided into 11/9-11/9-11/9-11/10. | ||
Natural extensions arise up to the 19-limit, and 410edo provides a satisfactory tuning solution to | Natural extensions arise up to the 19-limit, and 410edo provides a satisfactory tuning solution to all of them. | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 155: | Line 157: | ||
[[Comma list]]: 9801/9800, 14641/14580 | [[Comma list]]: 9801/9800, 14641/14580 | ||
{{Mapping|legend=1| 2 0 0 -2 1 | 0 1 2 2 2 | 0 0 -4 3 -1 }} | |||
: mapping generators: ~99/70, ~3, ~81/70 | |||
Optimal tuning ([[CTE]]): ~3/2 = 702.4262, ~81/70 = 254.6191 | [[Optimal tuning]] ([[CTE]]): ~99/70 = 1\2, ~3/2 = 702.4262, ~81/70 = 254.6191 | ||
{{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | {{Optimal ET sequence|legend=1| 80, 94, 118, 198, 212, 292, 330e, 410 }} | ||
Line 170: | Line 172: | ||
Comma list: 1716/1715, 2080/2079, 14641/14580 | Comma list: 1716/1715, 2080/2079, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 -11 | 0 1 2 2 2 5 | 0 0 -4 3 -1 6 }} | ||
Optimal tuning (CTE): ~3/2 = 702.4802, ~81/70 = 254.6526 | Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4802, ~81/70 = 254.6526 | ||
{{Optimal ET sequence|legend=1| 80f, 94, 118f, 198, 410 }} | {{Optimal ET sequence|legend=1| 80f, 94, 118f, 198, 410 }} | ||
Line 183: | Line 185: | ||
Comma list: 715/714, 1089/1088, 1225/1224, 14641/14580 | Comma list: 715/714, 1089/1088, 1225/1224, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 | 0 1 2 2 2 5 6 | 0 0 -4 3 -1 6 -2 }} | ||
Optimal tuning (CTE): ~3/2 = 702.4415, ~81/70 = 254.6663 | Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4415, ~81/70 = 254.6663 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 198g, 212g, 292, 410 }} | {{Optimal ET sequence|legend=1| 94, 118f, 198g, 212g, 292, 410 }} | ||
Line 196: | Line 198: | ||
Comma list: 715/714, 1089/1088, 1216/1215, 1225/1224, 1445/1444 | Comma list: 715/714, 1089/1088, 1216/1215, 1225/1224, 1445/1444 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 -11 -10 -12 | 0 1 2 2 2 5 6 7 | 0 0 -4 3 -1 6 -2 -4 }} | ||
Optimal tuning (CTE): ~3/2 = 702.4030, ~81/70 = 254.6870 | Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4030, ~81/70 = 254.6870 | ||
{{Optimal ET sequence|legend=1| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | {{Optimal ET sequence|legend=1| 94, 118f, 198gh, 212gh, 292h, 410, 622ef }} | ||
Line 211: | Line 213: | ||
Comma list: 352/351, 9801/9800, 14641/14580 | Comma list: 352/351, 9801/9800, 14641/14580 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 11 | 0 1 2 2 2 -1 | 0 0 -4 3 -1 -1 }} | ||
Optimal tuning (CTE): ~3/2 = 702.5374, ~81/70 = 254.6819 | Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.5374, ~81/70 = 254.6819 | ||
{{Optimal ET sequence|legend=1| 80, 94, 118, 174d, 198, 490f }} | {{Optimal ET sequence|legend=1| 80, 94, 118, 174d, 198, 490f }} | ||
Line 228: | Line 230: | ||
Comma list: 351/350, 364/363, 11011/10935 | Comma list: 351/350, 364/363, 11011/10935 | ||
Mapping: | Mapping: {{mapping| 2 0 0 -2 1 0 | 0 1 2 2 2 3 | 0 0 -4 3 -1 -5 }} | ||
Optimal tuning (CTE): ~3/2 = 702.7417, ~15/13 = 254.3382 | Optimal tuning (CTE): ~3/2 = 702.7417, ~15/13 = 254.3382 | ||
Line 238: | Line 240: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Canou family| ]] <!-- main article --> | [[Category:Canou family| ]] <!-- main article --> | ||
[[Category:Canou| ]] <!-- key article --> | |||
[[Category:Rank 3]] | [[Category:Rank 3]] |
Revision as of 08:33, 14 September 2023
The canou family of rank-3 temperaments tempers out the canousma, 4802000/4782969 = [4 -14 3 4⟩, a 7-limit comma measuring about 6.9 cents.
Canou
The canou temperament features a period of an octave and generators of 3/2 and 81/70. The 81/70-generator is about 255 cents. Two of them make 980/729 at about 510 cents, an audibly off perfect fourth. Three make 14/9; four make 9/5. It therefore also features splitting the septimal diesis, 49/48, into three equal parts, making two distinct interseptimal intervals related to the 35th harmonic.
For tunings, a basic option would be 99edo, although 80edo is even simpler and distinctive. More intricate tunings are provided by 311edo and 410edo, whereas the optimal patent val goes up to 1131edo, relating it to the amicable temperament.
It has a neat extension to the 2.3.5.7.17.19 subgroup with virtually no additional errors. The comma basis is {1216/1215, 1225/1224, 1445/1444}. Otherwise, 11- and 13-limit extensions are somewhat less ideal.
Subgroup: 2.3.5.7
Mapping: [⟨1 0 0 -1], ⟨0 1 2 2], ⟨0 0 -4 3]]
- mapping generators: ~2, ~3, ~81/70
Lattice basis:
- 3/2 length = 0.8110, 81/70 length = 0.5135
- Angle (3/2, 81/70) = 73.88 deg
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.3175, ~81/70 = 254.6220
- 7-odd-limit: 3 +c/14, 5 and 7 just
- 9-odd-limit: 3 just, 5 and 7 -c/7 to 3 +c/14, 5 and 7 just
Optimal ET sequence: 19, 56d, 61d, 75, 80, 94, 99, 212, 292, 311, 410, 1131, 1541b, 1659b
Badness: 1.122 × 10-3
Complexity spectrum: 4/3, 9/7, 9/8, 7/6, 6/5, 10/9, 5/4, 8/7, 7/5
2.3.5.7.17 subgroup
Subgroup: 2.3.5.7.17
Comma list: 1225/1224, 295936/295245
Mapping: [⟨1 0 0 -1 -5], ⟨0 1 2 2 6], ⟨0 0 -4 3 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.3458, ~81/70 = 254.6233
Optimal ET sequence: 94, 99, 193, 217, 292, 311, 410, 1131, 1541b
Badness: 0.775 × 10-3
2.3.5.7.17.19 subgroup
Subgroup: 2.3.5.7.17.19
Comma list: 1216/1215, 1225/1224, 1445/1444
Mapping: [⟨1 0 0 -1 -5 -6], ⟨0 1 2 2 6 7], ⟨0 0 -4 3 -2 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.3233, ~81/70 = 254.6279
Optimal ET sequence: 94, 99, 118, 193, 217, 292h, 311, 410, 721
Badness: 0.548 × 10-3
Synca
Synca, for symbiotic canou, adds the symbiotic comma and the wilschisma to the comma list.
Subgroup: 2.3.5.7.11
Comma list: 19712/19683, 42875/42768
Mapping: [⟨1 0 0 -1 -7], ⟨0 1 2 2 7], ⟨0 0 -4 3 -3]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2115, ~81/70 = 254.6215
Optimal ET sequence: 94, 99e, 118, 193, 212, 311, 740, 1051d
Badness: 2.04 × 10-3
Complexity spectrum: 4/3, 9/8, 9/7, 7/6, 5/4, 6/5, 10/9, 11/9, 8/7, 12/11, 11/10, 14/11, 11/8, 7/5
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 19712/19683, 42875/42768
Mapping: [⟨1 0 0 -1 -7 -13], ⟨0 1 2 2 7 10], ⟨0 0 -4 3 -3 4]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2075, ~81/70 = 254.6183
Optimal ET sequence: 94, 118f, 193f, 212, 217, 311, 740, 1051d
Badness: 2.56 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 833/832, 1156/1155, 19712/19683
Mapping: [⟨1 0 0 -1 -7 -13 -5], ⟨0 1 2 2 7 10 6], ⟨0 0 -4 3 -3 4 -2]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2296, ~51/44 = 254.6012
Optimal ET sequence: 94, 118f, 193f, 212g, 217, 311, 740g, 1051dg
Badness: 1.49 × 10-3
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215
Mapping: [⟨], ⟨1 0 0 -1 -7 -13 -5 -6], ⟨0 1 2 2 7 10 6 7], ⟨0 0 -4 3 -3 4 -2 -4]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.2355, ~22/19 = 254.5930
Optimal ET sequence: 94, 118f, 193f, 212gh, 217, 311, 740g, 1051dgh
Badness: 1.00 × 10-3
Canta
By adding 896/891, the pentacircle comma, 33/32 is equated with 28/27, so the scale is filled with this 33/32~28/27 mixture. This may be described as 75e & 80 & 99e, and 80edo makes the optimal. It has a natural extension to the 13-limit since 896/891 = (352/351)(364/363), named gentcanta in earlier materials.
Subgroup: 2.3.5.7.11
Comma list: 896/891, 472392/471625
Mapping: [⟨1 0 0 -1 6], ⟨0 1 2 2 -2], ⟨0 0 4 -3 -3]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.8093, ~64/55 = 254.3378
Optimal ET sequence: 75e, 80, 99e, 179e
Badness: 4.523 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 364/363, 472392/471625
Mapping: [⟨1 0 0 -1 6 11], ⟨0 1 2 2 -2 -5], ⟨0 0 4 -3 -3 -3]]
Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 703.6228, ~64/55 = 254.3447
Optimal ET sequence: 75e, 80, 99ef, 179ef
Badness: 4.781 × 10-3
Semicanou
Semicanou adds 9801/9800, the kalisma, to the comma list, and may be described as 80 & 94 & 118. It splits the octave into two equal parts, each representing 99/70~140/99. Note that 99/70 = (81/70)(11/9), this extension is more than natural.
The other comma necessary to define it is 14641/14580, the semicanousma, which is the difference between 121/120 and 243/242. By flattening the 11th harmonic by one cent, it identifies 20/11 by three 11/9's stacked, so an octave can be divided into 11/9-11/9-11/9-11/10.
Natural extensions arise up to the 19-limit, and 410edo provides a satisfactory tuning solution to all of them.
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 14641/14580
Mapping: [⟨2 0 0 -2 1], ⟨0 1 2 2 2], ⟨0 0 -4 3 -1]]
- mapping generators: ~99/70, ~3, ~81/70
Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4262, ~81/70 = 254.6191
Optimal ET sequence: 80, 94, 118, 198, 212, 292, 330e, 410
Badness: 2.197 × 10-3
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 14641/14580
Mapping: [⟨2 0 0 -2 1 -11], ⟨0 1 2 2 2 5], ⟨0 0 -4 3 -1 6]]
Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4802, ~81/70 = 254.6526
Optimal ET sequence: 80f, 94, 118f, 198, 410
Badness: 2.974 × 10-3
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 715/714, 1089/1088, 1225/1224, 14641/14580
Mapping: [⟨2 0 0 -2 1 -11 -10], ⟨0 1 2 2 2 5 6], ⟨0 0 -4 3 -1 6 -2]]
Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4415, ~81/70 = 254.6663
Optimal ET sequence: 94, 118f, 198g, 212g, 292, 410
Badness: 2.421 × 10-3
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 715/714, 1089/1088, 1216/1215, 1225/1224, 1445/1444
Mapping: [⟨2 0 0 -2 1 -11 -10 -12], ⟨0 1 2 2 2 5 6 7], ⟨0 0 -4 3 -1 6 -2 -4]]
Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.4030, ~81/70 = 254.6870
Optimal ET sequence: 94, 118f, 198gh, 212gh, 292h, 410, 622ef
Badness: 2.177 × 10-3
Semicanoumint
This extension was named semicanou in the earlier materials. It adds 352/351, the minthma, to the comma list, so that the flat ~11/9 simultaneously represents ~39/32.
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 9801/9800, 14641/14580
Mapping: [⟨2 0 0 -2 1 11], ⟨0 1 2 2 2 -1], ⟨0 0 -4 3 -1 -1]]
Optimal tuning (CTE): ~99/70 = 1\2, ~3/2 = 702.5374, ~81/70 = 254.6819
Optimal ET sequence: 80, 94, 118, 174d, 198, 490f
Badness: 2.701 × 10-3
Semicanouwolf
This extension was named gentsemicanou in the earlier materials. It adds 351/350, the ratwolfsma, as wells as 364/363, the gentle comma, to the comma list. Since 351/350 = (81/70)/(15/13), the 81/70-generator simultaneously represents 15/13, adding a lot of fun to the scale.
Not supported by many patent vals, 80edo easily makes the optimal. Yet 104edo in 104c val and 118edo in 118f val are worth mentioning, and the temperament may be described as 80 & 104c & 118f.
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 364/363, 11011/10935
Mapping: [⟨2 0 0 -2 1 0], ⟨0 1 2 2 2 3], ⟨0 0 -4 3 -1 -5]]
Optimal tuning (CTE): ~3/2 = 702.7417, ~15/13 = 254.3382
Optimal ET sequence: 80, 104c, 118f, 198f, 420cff
Badness: 3.511 × 10-3