Horwell temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Cmloegcmluin (talk | contribs)
"optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence
Line 14: Line 14:
[[POTE generator]]: ~5/4 = 385.980
[[POTE generator]]: ~5/4 = 385.980


{{Val list|legend=1| 3, 84, 87, 171, 771, 942, 1113, 1284, 1455 }}
{{Optimal ET sequence|legend=1| 3, 84, 87, 171, 771, 942, 1113, 1284, 1455 }}


[[Badness]]: 0.162467
[[Badness]]: 0.162467
Line 29: Line 29:
[[POTE generator]]: ~5/4 = 385.964
[[POTE generator]]: ~5/4 = 385.964


{{Val list|legend=1| 3, 84, 87, 171 }}
{{Optimal ET sequence|legend=1| 3, 84, 87, 171 }}


[[Badness]]: 0.028406
[[Badness]]: 0.028406
Line 42: Line 42:
POTE generator: ~5/4 = 386.020
POTE generator: ~5/4 = 386.020


Optimal GPV sequence: {{Val list| 3, 84, 87, 171, 258, 429e }}
{{Optimal ET sequence|legend=1| 3, 84, 87, 171, 258, 429e }}


Badness: 0.058344
Badness: 0.058344
Line 55: Line 55:
POTE generator: ~5/4 = 386.022
POTE generator: ~5/4 = 386.022


Optimal GPV sequence: {{Val list| 3, 84, 87, 171, 258, 429ef }}
{{Optimal ET sequence|legend=1| 3, 84, 87, 171, 258, 429ef }}


Badness: 0.029089
Badness: 0.029089
Line 72: Line 72:
[[POTE generator]]: ~5488/3645 = 708.774
[[POTE generator]]: ~5488/3645 = 708.774


{{Val list|legend=1| 22, 149, 171, 1903c, 2074c, 2245cd, 2416cd, 2587cd, 2758cd, 2929cd, 3100cd, 3271ccd, 3442ccd, 3613ccd }}
{{Optimal ET sequence|legend=1| 22, 149, 171, 1903c, 2074c, 2245cd, 2416cd, 2587cd, 2758cd, 2929cd, 3100cd, 3271ccd, 3442ccd, 3613ccd }}


[[Badness]]: 0.025840
[[Badness]]: 0.025840
Line 89: Line 89:
[[POTE generator]]: ~3125/2268 = 551.7745
[[POTE generator]]: ~3125/2268 = 551.7745


{{Val list|legend=1| 87, 137, 224, 311, 535, 1381c, 1916c }}
{{Optimal ET sequence|legend=1| 87, 137, 224, 311, 535, 1381c, 1916c }}


[[Badness]]: 0.135696
[[Badness]]: 0.135696
Line 102: Line 102:
POTE generator: ~11/8 = 551.7746
POTE generator: ~11/8 = 551.7746


Optimal GPV sequence: {{Val list| 87, 137, 224, 311, 535, 1381ce, 1916ce }}
{{Optimal ET sequence|legend=1| 87, 137, 224, 311, 535, 1381ce, 1916ce }}


Badness: 0.035586
Badness: 0.035586
Line 115: Line 115:
POTE generator: ~11/8 = 551.7749
POTE generator: ~11/8 = 551.7749


Optimal GPV sequence: {{Val list| 87, 137, 224, 311, 535, 1916cef, 2451cceff, 2986cceeff }}
{{Optimal ET sequence|legend=1| 87, 137, 224, 311, 535, 1916cef, 2451cceff, 2986cceeff }}


Badness: 0.017853
Badness: 0.017853
Line 130: Line 130:
[[POTE generator]]: ~3375/3136 = 132.1845
[[POTE generator]]: ~3375/3136 = 132.1845


{{Val list|legend=1| 109, 118, 345d }}
{{Optimal ET sequence|legend=1| 109, 118, 345d }}


[[Badness]]: 0.183435
[[Badness]]: 0.183435
Line 143: Line 143:
POTE generator: ~121/112 = 132.1864
POTE generator: ~121/112 = 132.1864


Optimal GPV sequence: {{Val list| 109, 118, 345de, 463de, 581dde }}
{{Optimal ET sequence|legend=1| 109, 118, 345de, 463de, 581dde }}


Badness: 0.052693
Badness: 0.052693
Line 156: Line 156:
POTE generator: ~13/12 = 132.1789
POTE generator: ~13/12 = 132.1789


Optimal GPV sequence: {{Val list| 109, 118f, 227f }}
{{Optimal ET sequence|legend=1| 109, 118f, 227f }}


Badness: 0.046695
Badness: 0.046695
Line 175: Line 175:
[[POTE generator]]: ~3/2 = 702.1137
[[POTE generator]]: ~3/2 = 702.1137


{{Val list|legend=1| 28, 56, 84, 140, 224, 364, 588, 952 }}
{{Optimal ET sequence|legend=1| 28, 56, 84, 140, 224, 364, 588, 952 }}


[[Badness]]: 0.088286
[[Badness]]: 0.088286
Line 188: Line 188:
POTE generator: ~3/2 = 702.0186
POTE generator: ~3/2 = 702.0186


Optimal GPV sequence: {{Val list| 84, 140, 224, 364, 588, 1400cd, 1988cd, 2576ccdd }}
{{Optimal ET sequence|legend=1| 84, 140, 224, 364, 588, 1400cd, 1988cd, 2576ccdd }}


Badness: 0.047853
Badness: 0.047853
Line 201: Line 201:
POTE generator: ~3/2 = 702.0288
POTE generator: ~3/2 = 702.0288


Optimal GPV sequence: {{Val list| 84, 140, 224, 364, 588 }}
{{Optimal ET sequence|legend=1| 84, 140, 224, 364, 588 }}


Badness: 0.021968
Badness: 0.021968

Revision as of 16:42, 7 May 2023

Horwell temperaments temper out the horwell comma, [-16 1 5 1 = 65625/65536.

Discussed elsewhere are bisupermajor, countercata, eris, escaped, hemithirds, keen, mabila, maquiloid, narayana, orwell, paramity, pontiac, tertiaseptal, worschmidt, and soviet ferris wheel.

Mutt

Subgroup: 2.3.5

Comma list: [-44 -3 21

Mapping: [3 5 7], 0 -7 -1]]

POTE generator: ~5/4 = 385.980

Optimal ET sequence3, 84, 87, 171, 771, 942, 1113, 1284, 1455

Badness: 0.162467

7-limit

Subgroup: 2.3.5.7

Comma list: 65625/65536, 250047/250000

Mapping: [3 5 7 8], 0 -7 -1 12]]

Wedgie⟨⟨ 21 3 -36 -44 -116 -92 ]]

POTE generator: ~5/4 = 385.964

Optimal ET sequence3, 84, 87, 171

Badness: 0.028406

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 4375/4356, 16384/16335

Mapping: [3 5 7 8 10], 0 -7 -1 12 11]]

POTE generator: ~5/4 = 386.020

Optimal ET sequence3, 84, 87, 171, 258, 429e

Badness: 0.058344

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 625/624, 2200/2197

Mapping: [3 5 7 8 10 11], 0 -7 -1 12 11 3]]

POTE generator: ~5/4 = 386.022

Optimal ET sequence3, 84, 87, 171, 258, 429ef

Badness: 0.029089

Fifthplus

Fifthplus (22&171) tempers out the sesesix comma, [-74 13 23 in the 5-limit. The name "fifthplus" means using a sharp fifth interval (such as superpyth fifth) as a generator.

Subgroup: 2.3.5.7

Comma list: 65625/65536, 420175/419904

Mapping: [1 11 -3 20], 0 -23 13 -42]]

Wedgie⟨⟨ 23 -13 42 -74 2 134 ]]

POTE generator: ~5488/3645 = 708.774

Optimal ET sequence22, 149, 171, 1903c, 2074c, 2245cd, 2416cd, 2587cd, 2758cd, 2929cd, 3100cd, 3271ccd, 3442ccd, 3613ccd

Badness: 0.025840

Emkay

Emkay (87&224) tempers out the same 5-limit comma as the emka temperament (37&50), but with the horwell (65625/65536) rather than the hemimean (3136/3125) tempered out.

Subgroup: 2.3.5.7

Comma list: 65625/65536, 244140625/243045684

Mapping: [1 14 6 -28], 0 -27 -8 67]]

Wedgie⟨⟨ 27 8 -67 -50 -182 -178 ]]

POTE generator: ~3125/2268 = 551.7745

Optimal ET sequence87, 137, 224, 311, 535, 1381c, 1916c

Badness: 0.135696

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4000/3993, 65625/65536

Mapping: [1 14 6 -28 3], 0 -27 -8 67 1]]

POTE generator: ~11/8 = 551.7746

Optimal ET sequence87, 137, 224, 311, 535, 1381ce, 1916ce

Badness: 0.035586

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1575/1573, 2080/2079, 2200/2197

Mapping: [1 14 6 -28 3 6], 0 -27 -8 67 1 -5]]

POTE generator: ~11/8 = 551.7749

Optimal ET sequence87, 137, 224, 311, 535, 1916cef, 2451cceff, 2986cceeff

Badness: 0.017853

Kastro

Subgroup: 2.3.5.7

Comma list: 65625/65536, 117649/116640

Mapping: [1 5 1 6], 0 -31 12 -29]]

POTE generator: ~3375/3136 = 132.1845

Optimal ET sequence109, 118, 345d

Badness: 0.183435

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 3388/3375, 12005/11979

Mapping: [1 5 1 6 5], 0 -31 12 -29 -14]]

POTE generator: ~121/112 = 132.1864

Optimal ET sequence109, 118, 345de, 463de, 581dde

Badness: 0.052693

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 364/363, 385/384, 3388/3375

Mapping: [1 5 1 6 5 7], 0 -31 12 -29 -14 -30]]

POTE generator: ~13/12 = 132.1789

Optimal ET sequence109, 118f, 227f

Badness: 0.046695

Oquatonic

The oquatonic has a period of 1/28 octave and tempers out the horwell (65625/65536) and the dimcomp (390625/388962), as well as the hemfiness (4096000/4084101, saquinru-atriyo). In this temperament, major third of 5/4 is mapped into 9\28.

Subgroup: 2.3.5.7

Comma list: 65625/65536, 390625/388962

Mapping: [28 0 65 123], 0 1 0 -1]]

Mapping generators: ~128/125, ~3

Wedgie⟨⟨ 28 0 -28 -65 -123 -65 ]]

POTE generator: ~3/2 = 702.1137

Optimal ET sequence28, 56, 84, 140, 224, 364, 588, 952

Badness: 0.088286

11-limit

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 6250/6237, 65625/65536

Mapping: [28 0 65 123 230], 0 1 0 -1 -3]]

POTE generator: ~3/2 = 702.0186

Optimal ET sequence84, 140, 224, 364, 588, 1400cd, 1988cd, 2576ccdd

Badness: 0.047853

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1375/1372, 2080/2079, 2200/2197

Mapping: [28 0 65 123 230 148], 0 1 0 -1 -3 -1]]

POTE generator: ~3/2 = 702.0288

Optimal ET sequence84, 140, 224, 364, 588

Badness: 0.021968

Bezique

Bezique splits the octave into 32 equal parts and reaches 3/2, 8/5 and 11/8 in just one generator with the 64-tone mos. The card game of bezique is played with two packs of 32 cards, hence the name.

Subgroup: 2.3.5.7

Comma list: 65625/65536, 847288609443/843308032000

Mapping: [32 0 125 -113], 0 1 -1 4]]

Mapping generators: ~100352/98415, ~3

Optimal tuning (CTE): ~100352/98415 = 1\32, ~3/2 = 701.610

11-limit

Subgroup: 2.3.5.7.11

Comma list: 9801/9800, 46656/46585, 65625/65536

Mapping: [32 0 125 -113 60], 0 1 -1 4 1]]

Optimal tuning (CTE): ~45/44 = 1\32, ~3/2 = 701.601

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 729/728, 1575/1573, 4225/4224, 6656/6655

Mapping: [32 0 125 -113 60 17], 0 1 -1 4 1 2]]

Optimal tuning (CTE): ~45/44 = 1\32, ~3/2 = 701.593

Vals: 224, 320, 544, 768, 992, 1216, 1312, ...