229edo: Difference between revisions
m Comma basis; update template |
→Music: +link |
||
(14 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is | While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is [[consistency|distinctly consistent]] in the [[11-odd-limit]]. It [[tempering out|tempers out]] 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[alphatricot comma]]) in the [[5-limit]]; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the [[7-limit]]; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the [[11-limit]], notably [[support]]ing [[hemiwürschmidt]], [[newt]], and [[alphatrident]]. | ||
It extends less well to the 13-limit. Using the [[patent val]] {{val| 229 363 532 643 792 '''847''' }}, it tempers out [[351/350]], [[1573/1568]], [[2080/2079]], and [[4096/4095]]. Using the alternative 229f val {{val| 229 363 532 643 792 '''848''' }}, it tempers out [[352/351]], [[729/728]], [[1001/1000]], and [[1716/1715]]. | |||
Higher [[harmonic]]s like [[17/1|17]], [[19/1|19]], and [[23/1|23]] are well-approximated, so it shows great potential in the no-13 23-limit. It tempers out [[561/560]], [[1089/1088]], and [[1701/1700]] in the 17-limit; [[476/475]], [[1216/1215]], [[1445/1444]], and [[1540/1539]] in the 19-limit; and [[484/483]], [[576/575]] and [[736/735]] in the 23-limit. | |||
The 229b [[val]] supports a [[septimal meantone]] close to the [[CTE tuning]]. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|229 | {{Harmonics in equal|229}} | ||
=== Subsets and supersets === | |||
229edo is the 50th [[prime edo]]. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 30: | Line 30: | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{ | | {{Monzo| 363 -229 }} | ||
| | | {{Mapping| 229 363 }} | ||
| | | −0.072 | ||
| 0.072 | | 0.072 | ||
| 1.38 | | 1.38 | ||
Line 38: | Line 38: | ||
| 2.3.5 | | 2.3.5 | ||
| 393216/390625, {{monzo| 39 -29 3 }} | | 393216/390625, {{monzo| 39 -29 3 }} | ||
| | | {{Mapping| 229 363 532 }} | ||
| | | −0.258 | ||
| 0.269 | | 0.269 | ||
| 5.13 | | 5.13 | ||
Line 45: | Line 45: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 3136/3125, 14348907/14336000 | | 2401/2400, 3136/3125, 14348907/14336000 | ||
| | | {{Mapping| 229 363 532 643 }} | ||
| | | −0.247 | ||
| 0.233 | | 0.233 | ||
| 4.46 | | 4.46 | ||
Line 52: | Line 52: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 3025/3024, 3136/3125, 8019/8000 | | 2401/2400, 3025/3024, 3136/3125, 8019/8000 | ||
| | | {{Mapping| 229 363 532 643 792 }} | ||
| | | −0.134 | ||
| 0.308 | | 0.308 | ||
| 5.87 | | 5.87 | ||
|- | |- | ||
| 2.3.5.7.11.17 | |||
| 561/560, 1089/1088, 1701/1700, 2401/2400, 3136/3125 | |||
| {{Mapping| 229 363 532 643 792 936 }} | |||
| −0.106 | |||
| 0.288 | |||
| 5.50 | |||
|- | |||
| 2.3.5.7.11.17.19 | |||
| 476/475, 561/560, 1089/1088, 1216/1215, 1445/1444, 2401/2400 | |||
| {{Mapping| 229 363 532 643 792 936 973 }} | |||
| −0.130 | |||
| 0.273 | |||
| 5.22 | |||
|- | |||
| 2.3.5.7.11.17.19.23 | |||
| 476/475, 484/483, 561/560, 576/575, 736/735, 1089/1088, 1216/1215 | |||
| {{Mapping| 229 363 532 643 792 936 973 1036 }} | |||
| −0.129 | |||
| 0.256 | |||
| 4.88 | |||
|- style="border-top: double;" | |||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 351/350, 1573/1568, 2080/2079, 3136/3125 | | 351/350, 1573/1568, 2080/2079, 2197/2187, 3136/3125 | ||
| | | {{Mapping| 229 363 532 643 792 847 }} (229) | ||
| | | −0.017 | ||
| 0.384 | | 0.384 | ||
| 7.32 | | 7.32 | ||
|- | |- style="border-top: double;" | ||
| 2.3.5.7.11.13 | |||
| 352/351, 729/728, 1001/1000, 1716/1715, 3025/3024 | |||
| {{Mapping| 229 363 532 643 792 848 }} (229f) | |||
| −0.253 | |||
| 0.387 | |||
| 7.39 | |||
| 2.3.5.7.11.13 | |||
| | |||
| | |||
| | |||
| 0. | |||
| | |||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br>per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br>ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |||
| 1 | |||
| 16\229 | |||
| 83.84 | |||
| 16807/16000 | |||
| [[Sextilimeans]] | |||
|- | |- | ||
| 1 | | 1 | ||
Line 92: | Line 113: | ||
| 99.56 | | 99.56 | ||
| 18/17 | | 18/17 | ||
| [[Quintagar]] / [[quinsandra]] / [[quinsandric]] | | [[Quintagar]] / [[quinsandra]] (229) / [[quinsandric]] (229) | ||
|- | |- | ||
| 1 | | 1 | ||
Line 104: | Line 125: | ||
| 351.09 | | 351.09 | ||
| 49/40 | | 49/40 | ||
| [[Newt]] | | [[Newt]] (229) | ||
|- | |- | ||
| 1 | | 1 | ||
Line 110: | Line 131: | ||
| 387.77 | | 387.77 | ||
| 5/4 | | 5/4 | ||
| [[Würschmidt]] | | [[Würschmidt]] (5-limit) | ||
|- | |- | ||
| 1 | | 1 | ||
Line 128: | Line 149: | ||
| 565.94 | | 565.94 | ||
| 18/13 | | 18/13 | ||
| [[ | | [[Alphatrident]] (229) | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
[[ | == Music == | ||
[[Category: | ; [[Francium]] | ||
* "Don't Think About Mimes" from ''Don't'' (2025) – [https://open.spotify.com/track/4jGvn8IFTQeJwNc0y17MpQ Spotify] | [https://francium223.bandcamp.com/track/dont-think-about-mimes Bandcamp] | [https://www.youtube.com/watch?v=MNHUrF4Ff0A YouTube] | |||
[[Category:Hemiwürschmidt]] | |||
[[Category:Würschmidt]] | [[Category:Würschmidt]] | ||
Latest revision as of 12:02, 3 July 2025
← 228edo | 229edo | 230edo → |
229 equal divisions of the octave (abbreviated 229edo or 229ed2), also called 229-tone equal temperament (229tet) or 229 equal temperament (229et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 229 equal parts of about 5.24 ¢ each. Each step represents a frequency ratio of 21/229, or the 229th root of 2.
Theory
While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. It tempers out 393216/390625 (würschmidt comma) and [39 -29 3⟩ (alphatricot comma) in the 5-limit; 2401/2400, 3136/3125, 6144/6125, and 14348907/14336000 in the 7-limit; 3025/3024, 3388/3375, 8019/8000, 14641/14580 and 15488/15435 in the 11-limit, notably supporting hemiwürschmidt, newt, and alphatrident.
It extends less well to the 13-limit. Using the patent val ⟨229 363 532 643 792 847], it tempers out 351/350, 1573/1568, 2080/2079, and 4096/4095. Using the alternative 229f val ⟨229 363 532 643 792 848], it tempers out 352/351, 729/728, 1001/1000, and 1716/1715.
Higher harmonics like 17, 19, and 23 are well-approximated, so it shows great potential in the no-13 23-limit. It tempers out 561/560, 1089/1088, and 1701/1700 in the 17-limit; 476/475, 1216/1215, 1445/1444, and 1540/1539 in the 19-limit; and 484/483, 576/575 and 736/735 in the 23-limit.
The 229b val supports a septimal meantone close to the CTE tuning.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.23 | +1.46 | +0.61 | -1.10 | -2.10 | -0.15 | +1.18 | +0.55 | -2.50 | +2.56 |
Relative (%) | +0.0 | +4.4 | +27.8 | +11.6 | -21.0 | -40.1 | -2.9 | +22.5 | +10.4 | -47.8 | +48.9 | |
Steps (reduced) |
229 (0) |
363 (134) |
532 (74) |
643 (185) |
792 (105) |
847 (160) |
936 (20) |
973 (57) |
1036 (120) |
1112 (196) |
1135 (219) |
Subsets and supersets
229edo is the 50th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [363 -229⟩ | [⟨229 363]] | −0.072 | 0.072 | 1.38 |
2.3.5 | 393216/390625, [39 -29 3⟩ | [⟨229 363 532]] | −0.258 | 0.269 | 5.13 |
2.3.5.7 | 2401/2400, 3136/3125, 14348907/14336000 | [⟨229 363 532 643]] | −0.247 | 0.233 | 4.46 |
2.3.5.7.11 | 2401/2400, 3025/3024, 3136/3125, 8019/8000 | [⟨229 363 532 643 792]] | −0.134 | 0.308 | 5.87 |
2.3.5.7.11.17 | 561/560, 1089/1088, 1701/1700, 2401/2400, 3136/3125 | [⟨229 363 532 643 792 936]] | −0.106 | 0.288 | 5.50 |
2.3.5.7.11.17.19 | 476/475, 561/560, 1089/1088, 1216/1215, 1445/1444, 2401/2400 | [⟨229 363 532 643 792 936 973]] | −0.130 | 0.273 | 5.22 |
2.3.5.7.11.17.19.23 | 476/475, 484/483, 561/560, 576/575, 736/735, 1089/1088, 1216/1215 | [⟨229 363 532 643 792 936 973 1036]] | −0.129 | 0.256 | 4.88 |
2.3.5.7.11.13 | 351/350, 1573/1568, 2080/2079, 2197/2187, 3136/3125 | [⟨229 363 532 643 792 847]] (229) | −0.017 | 0.384 | 7.32 |
2.3.5.7.11.13 | 352/351, 729/728, 1001/1000, 1716/1715, 3025/3024 | [⟨229 363 532 643 792 848]] (229f) | −0.253 | 0.387 | 7.39 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 16\229 | 83.84 | 16807/16000 | Sextilimeans |
1 | 19\229 | 99.56 | 18/17 | Quintagar / quinsandra (229) / quinsandric (229) |
1 | 37\229 | 193.87 | 28/25 | Didacus / hemiwürschmidt |
1 | 67\229 | 351.09 | 49/40 | Newt (229) |
1 | 74\229 | 387.77 | 5/4 | Würschmidt (5-limit) |
1 | 95\229 | 497.82 | 4/3 | Gary |
1 | 75\229 | 503.06 | 147/110 | Quadrawürschmidt |
1 | 108\229 | 565.94 | 18/13 | Alphatrident (229) |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct