Keemic temperaments: Difference between revisions
Wikispaces>genewardsmith **Imported revision 337626628 - Original comment: ** |
m Text replacement - "Category:Temperament collections" to "Category:Temperament collections Category:Pages with mostly numerical content" |
||
(39 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
These temper out the keema, {{monzo| -5 -3 3 1 }} = [[875/864]] = {{S|5/S6}}, whose fundamental equivalence entails that [[6/5]] is sharpened so that it stacks three times to reach [[7/4]], and the interval between 6/5 and [[5/4]] is compressed so that [[7/6]] - 6/5 - 5/4 - [[9/7]] are set equidistant from each other. As the [[Keemic family#Undecimal supermagic|canonical extension]] of rank-3 keemic to the [[11-limit]] tempers out the commas [[100/99]] and [[385/384]] (whereby ([[6/5]])<sup>2</sup> is identified with [[16/11]]), this provides a clean way to extend the various keemic temperaments to the 11-limit as well. | |||
Full [[7-limit]] keemic temperaments discussed elsewhere are: | |||
* [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]] | |||
* ''[[Doublewide]]'' (+50/49) → [[Jubilismic clan #Doublewide|Jubilismic clan]] | |||
* [[Porcupine]] (+64/63) → [[Porcupine family #Septimal porcupine|Porcupine family]] | |||
* [[Flattone]] (+81/80) → [[Meantone family #Flattone|Meantone family]] | |||
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]] | |||
* ''[[Sycamore]]'' (+686/675) → [[Sycamore family #Septimal sycamore|Sycamore family]] | |||
* [[Superkleismic]] (+1029/1024) → [[Gamelismic clan #Superkleismic|Gamelismic clan]] | |||
* ''[[Undeka]]'' (+3200/3087) → [[11th-octave temperaments #Undeka|11th-octave temperaments]] | |||
Discussed below are quasitemp, chromo, barbad, hyperkleismic, and sevond. | |||
== Quasitemp == | |||
: ''For the 5-limit version of this temperament, see [[Miscellaneous 5-limit temperaments #Quasitemp]].'' | |||
Quasitemp is a full 7-limit strong extension of [[gariberttet]], the 2.5/3.7/3 subgroup temperament defined by tempering out [[3125/3087]]. In gariberttet, three generators reach [[5/3]] and five reach [[7/3]], so that the generator itself has the interpretation of [[25/21]] (which is equated to [[13/11]] in the 13-limit extension). This implies that 3:5:7 and 5:6:7 chords are reached rather quickly. In quasitemp, tempering out 875/864 entails that [[8/7]] is found after 9 generators, from which the mappings of 3 and 5 follow. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 2401/2400 | |||
{{Mapping|legend=1| 1 5 5 5 | 0 -14 -11 -9 }} | |||
: Mapping generators: ~2, ~25/21 | |||
POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 292.710 | ||
{{Optimal ET sequence|legend=1| 4, 37, 41 }} | |||
[[Badness]]: 0.060269 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 385/384, 1375/1372 | |||
Mapping: {{mapping| 1 5 5 5 2 | 0 -14 -11 -9 6 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.547 | ||
{{Optimal ET sequence|legend=1| 4, 37, 41, 119 }} | |||
Badness: 0.043209 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 196/195, 275/273, 385/384 | |||
Mapping: {{mapping| 1 5 5 5 2 2 | 0 -14 -11 -9 6 7 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.457 | ||
{{Optimal ET sequence|legend=1| 4, 37, 41, 78, 119f }} | |||
Badness: 0.032913 | |||
=== Quato === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 243/242, 441/440, 625/616 | |||
Mapping: {{mapping| 1 5 5 5 12 | 0 -14 -11 -9 -35 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.851 | |||
{{Optimal ET sequence|legend=1| 41, 127cd, 168cd }} | |||
Badness: 0.041170 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 105/104, 243/242, 275/273, 325/324 | |||
Mapping: {{mapping| 1 5 5 5 12 12 | 0 -14 -11 -9 -35 -34 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.928 | |||
{{Optimal ET sequence|legend=1| 41, 86ce, 127cd }} | |||
POTE | Badness: 0.030081 | ||
== Chromo == | |||
: ''For the 5-limit version of this temperament, see [[Miscellaneous 5-limit temperaments #Chromo]].'' | |||
Badness: 0. | Chromo represents the [[13edf]] chain as a rank-2 temperament, with [[6/5]] and [[5/4]] mapped to 6 and 7 steps, respectively. Since the difference of those two intervals is abbreviated considerably from just, keemic provides the most meaningful 7-limit extension (setting [[7/6]], 6/5, 5/4, [[9/7]] equidistant) so that the temperament then approximates the [[4:5:6:7]] tetrad with 0:7:13:18 generator steps. | ||
Note that if one allows a more complex mapping for prime 7 and wants a larger prime limit, one may prefer [[escapade]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 2430/2401 | |||
{{Mapping|legend=1| 1 1 2 2 | 0 13 7 18 }} | |||
Badness: 0. | : Mapping generators: ~2, ~25/24 | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/24 = 53.816 | |||
{{Optimal ET sequence|legend=1| 22, 45, 67c }} | |||
POTE | |||
[[Badness]]: 0.090769 | |||
== Barbad == | |||
Badness: 0. | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 875/864, 16875/16807 | |||
{{Mapping|legend=1| 1 9 7 11 | 0 -19 -12 -21 }} | |||
POTE | |||
: Mapping generators: ~2, ~98/75 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~98/75 = 468.331 | |||
Badness: 0. | |||
{{Optimal ET sequence|legend=1| 18, 23d, 41 }} | |||
[[Badness]]: 0.110448 | |||
POTE | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 245/242, 540/539, 625/616 | |||
Badness: 0. | |||
Mapping: {{mapping| 1 9 7 11 14 | 0 -19 -12 -21 -27 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.367 | |||
POTE | {{Optimal ET sequence|legend=1| 18e, 23de, 41, 228ccdd }} | ||
Badness: 0.050105 | |||
=== 13-limit === | |||
Badness: 0. | Subgroup: 2.3.5.7.11.13 | ||
Comma list: 144/143, 196/195, 245/242, 275/273 | |||
Mapping: {{mapping| 1 9 7 11 14 8 | 0 -19 -12 -21 -27 -11 }} | |||
POTE | |||
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 468.270 | |||
{{Optimal ET sequence|legend=1| 18e, 23de, 41 }} | |||
Badness: 0. | |||
Badness: 0.039183 | |||
== Hyperkleismic == | |||
[[Subgroup]]: 2.3.5.7 | |||
POTE | |||
[[Comma list]]: 875/864, 51200/50421 | |||
{{Mapping|legend=1| 1 -3 -2 2 | 0 17 16 3 }} | |||
: Mapping generators: ~2, ~6/5 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 323.780 | |||
{{Optimal ET sequence|legend=1| 26, 37, 63 }} | |||
[[Badness]]: 0.157830 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 385/384, 2420/2401 | |||
Mapping: {{mapping| 1 -3 -2 2 4 | 0 17 16 3 -2}} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.796 | |||
{{Optimal ET sequence|legend=1| 26, 37, 63 }} | |||
Badness: 0.065356 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 169/168, 275/273, 385/384 | |||
Mapping: {{mapping| 1 -3 -2 2 4 1 | 0 17 16 3 -2 10 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.790 | |||
{{Optimal ET sequence|legend=1| 26, 37, 63 }} | |||
Badness: 0.035724 | |||
== Sevond == | |||
10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 875/864, 327680/321489 | |||
{{Mapping|legend=1| 7 0 -6 53 | 0 1 2 -3 }} | |||
: Mapping generators: ~10/9, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~10/9 = 1\7, ~3/2 = 705.613 | |||
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }} | |||
[[Badness]]: 0.206592 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 385/384, 6655/6561 | |||
Mapping: {{mapping| 7 0 -6 53 2 | 0 1 2 -3 2 }} | |||
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.518 | |||
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }} | |||
Badness: 0.070437 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 169/168, 352/351, 385/384 | |||
Mapping: {{mapping| 7 0 -6 53 2 37 | 0 1 2 -3 2 -1 }} | |||
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.344 | |||
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }} | |||
Badness: 0.041238 | |||
[[Category:Temperament collections]] | |||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Keemic temperaments| ]] <!-- main article --> | |||
[[Category:Rank 2]] |
Latest revision as of 00:36, 24 June 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
These temper out the keema, [-5 -3 3 1⟩ = 875/864 = S5/S6, whose fundamental equivalence entails that 6/5 is sharpened so that it stacks three times to reach 7/4, and the interval between 6/5 and 5/4 is compressed so that 7/6 - 6/5 - 5/4 - 9/7 are set equidistant from each other. As the canonical extension of rank-3 keemic to the 11-limit tempers out the commas 100/99 and 385/384 (whereby (6/5)2 is identified with 16/11), this provides a clean way to extend the various keemic temperaments to the 11-limit as well.
Full 7-limit keemic temperaments discussed elsewhere are:
- Keemun (+49/48) → Kleismic family
- Doublewide (+50/49) → Jubilismic clan
- Porcupine (+64/63) → Porcupine family
- Flattone (+81/80) → Meantone family
- Magic (+225/224) → Magic family
- Sycamore (+686/675) → Sycamore family
- Superkleismic (+1029/1024) → Gamelismic clan
- Undeka (+3200/3087) → 11th-octave temperaments
Discussed below are quasitemp, chromo, barbad, hyperkleismic, and sevond.
Quasitemp
- For the 5-limit version of this temperament, see Miscellaneous 5-limit temperaments #Quasitemp.
Quasitemp is a full 7-limit strong extension of gariberttet, the 2.5/3.7/3 subgroup temperament defined by tempering out 3125/3087. In gariberttet, three generators reach 5/3 and five reach 7/3, so that the generator itself has the interpretation of 25/21 (which is equated to 13/11 in the 13-limit extension). This implies that 3:5:7 and 5:6:7 chords are reached rather quickly. In quasitemp, tempering out 875/864 entails that 8/7 is found after 9 generators, from which the mappings of 3 and 5 follow.
Subgroup: 2.3.5.7
Comma list: 875/864, 2401/2400
Mapping: [⟨1 5 5 5], ⟨0 -14 -11 -9]]
- Mapping generators: ~2, ~25/21
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.710
Optimal ET sequence: 4, 37, 41
Badness: 0.060269
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 385/384, 1375/1372
Mapping: [⟨1 5 5 5 2], ⟨0 -14 -11 -9 6]]
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.547
Optimal ET sequence: 4, 37, 41, 119
Badness: 0.043209
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 196/195, 275/273, 385/384
Mapping: [⟨1 5 5 5 2 2], ⟨0 -14 -11 -9 6 7]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.457
Optimal ET sequence: 4, 37, 41, 78, 119f
Badness: 0.032913
Quato
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 625/616
Mapping: [⟨1 5 5 5 12], ⟨0 -14 -11 -9 -35]]
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.851
Optimal ET sequence: 41, 127cd, 168cd
Badness: 0.041170
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 243/242, 275/273, 325/324
Mapping: [⟨1 5 5 5 12 12], ⟨0 -14 -11 -9 -35 -34]]
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.928
Optimal ET sequence: 41, 86ce, 127cd
Badness: 0.030081
Chromo
- For the 5-limit version of this temperament, see Miscellaneous 5-limit temperaments #Chromo.
Chromo represents the 13edf chain as a rank-2 temperament, with 6/5 and 5/4 mapped to 6 and 7 steps, respectively. Since the difference of those two intervals is abbreviated considerably from just, keemic provides the most meaningful 7-limit extension (setting 7/6, 6/5, 5/4, 9/7 equidistant) so that the temperament then approximates the 4:5:6:7 tetrad with 0:7:13:18 generator steps.
Note that if one allows a more complex mapping for prime 7 and wants a larger prime limit, one may prefer escapade.
Subgroup: 2.3.5.7
Comma list: 875/864, 2430/2401
Mapping: [⟨1 1 2 2], ⟨0 13 7 18]]
- Mapping generators: ~2, ~25/24
Optimal tuning (POTE): ~2 = 1\1, ~25/24 = 53.816
Optimal ET sequence: 22, 45, 67c
Badness: 0.090769
Barbad
Subgroup: 2.3.5.7
Comma list: 875/864, 16875/16807
Mapping: [⟨1 9 7 11], ⟨0 -19 -12 -21]]
- Mapping generators: ~2, ~98/75
Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.331
Optimal ET sequence: 18, 23d, 41
Badness: 0.110448
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/242, 540/539, 625/616
Mapping: [⟨1 9 7 11 14], ⟨0 -19 -12 -21 -27]]
Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.367
Optimal ET sequence: 18e, 23de, 41, 228ccdd
Badness: 0.050105
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 196/195, 245/242, 275/273
Mapping: [⟨1 9 7 11 14 8], ⟨0 -19 -12 -21 -27 -11]]
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 468.270
Optimal ET sequence: 18e, 23de, 41
Badness: 0.039183
Hyperkleismic
Subgroup: 2.3.5.7
Comma list: 875/864, 51200/50421
Mapping: [⟨1 -3 -2 2], ⟨0 17 16 3]]
- Mapping generators: ~2, ~6/5
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.780
Optimal ET sequence: 26, 37, 63
Badness: 0.157830
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 385/384, 2420/2401
Mapping: [⟨1 -3 -2 2 4], ⟨0 17 16 3 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.796
Optimal ET sequence: 26, 37, 63
Badness: 0.065356
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 169/168, 275/273, 385/384
Mapping: [⟨1 -3 -2 2 4 1], ⟨0 17 16 3 -2 10]]
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.790
Optimal ET sequence: 26, 37, 63
Badness: 0.035724
Sevond
10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.
Subgroup: 2.3.5.7
Comma list: 875/864, 327680/321489
Mapping: [⟨7 0 -6 53], ⟨0 1 2 -3]]
- Mapping generators: ~10/9, ~3
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.613
Optimal ET sequence: 7, 56, 63, 119
Badness: 0.206592
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 385/384, 6655/6561
Mapping: [⟨7 0 -6 53 2], ⟨0 1 2 -3 2]]
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.518
Optimal ET sequence: 7, 56, 63, 119
Badness: 0.070437
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 169/168, 352/351, 385/384
Mapping: [⟨7 0 -6 53 2 37], ⟨0 1 2 -3 2 -1]]
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.344
Optimal ET sequence: 7, 56, 63, 119
Badness: 0.041238